
Appendix: Redistributive effects of different pension systems

when longevity varies by socioeconomic status

by Miguel Sanchez-Romero, Ronald D. Lee, Alexia Prskawetz

A Demographics

Individuals. Let the probability of surviving from birth to age x of an individual belonging to
income group i 2 I = {1, 2, . . . , I} be

pi(x) = e�
R x
0 µi(t)dt, (A.1)

with pi(0) = 1, pi(!) = 0, ! 2 (0,1) denotes the maximum age, and µi(t) � 0 is the mortality
hazard rate at age t of an individual of group i. The life expectancy at age x of an individual
belonging to income group i is defined as

ei(x) =

Z !

x

pi(t)

pi(x)
dt. (A.2)

Population. Given that all income groups grow steadily at the same rate n, the total population
size at time t is

P (t) = B(t)

Z !

0

e�nxp(x)dx, with p(x) =
1

I

X
i2I

pi(x), (A.3)

where B(t) is the total number of births at time t, p(x) is the average survival, which implies
that the average mortality hazard rate at age x, denoted by µ(x), is

P
i2I µi(x)pi(x)

�P
i2I pi(x) .

The existence of a positive relationship between the income group and the life expectancy —see
Table 1— implies that the average mortality hazard rate is biased with age towards the mortality
hazard rate of higher income individuals.

B Derivation of Eq. (6)

Assuming that an individual will retire at age Ri, we define the social security wealth at age Si <

t  Ri of an individual of type i, denoted by SSWi(t), as

SSWi(t) = bi(Ri)

Z !

Ri

e�
R x
t r+µi(j)djdx�

Z Ri

t

e�
R x
t r+µi(j)dj⌧yi(x)dx. (B.1)

The first component of (B.1) is the present value at age t of the survival weighted stream of future
benefits during retirement, while the second component of (B.1) is the present value at age t of the
survival weighted remaining pension contributions to pay until retirement.
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Eq. (6) can easily be derived from (1)–(4) by elementary algebraic manipulations of (B.1).
Integrating Eq. (1) from Si until retirement Ri gives

ppi(Ri) =

Z Ri

Si

e
RRi
x r̃+µ̃(j)dj�⌧yi(x)dx. (B.2)

Splitting in two the integral (B.2) gives

ppi(Ri) =

Z t

Si

e
RRi
x r̃+µ̃(j)dj�⌧yi(x)dx+

Z Ri

t

e
RRi
x r̃+µ̃(j)dj�⌧yi(x)dx =

= e
RRi
t r̃+µ̃(j)dj

Z t

Si

e
R t
x r̃+µ̃(j)dj�⌧yi(x)dx+

Z Ri

t

e
RRi
x r̃+µ̃(j)dj�⌧yi(x)dx. (B.3)

Substituting (2) in (B.1), using the definition of Ai(Ri, r), and rearranging terms, gives

SSWi(t) = e�
RRi
t r+µi(j)djfi(Ri)Ai(Ri, r)ppi(Ri)�

Z Ri

t

e�
R x
t r+µi(j)dj⌧yi(x)dx. (B.4)

By substituting (B.3) in (B.4) and after some manipulations we have

SSWi(t) = fi(Ri)Ai(Ri, r)e
RRi
t r̃+µ̃(j)�(r+µi(j))dj

Z t

Si

e
R t
x r̃+µ̃(j)dj�⌧yi(x)dx

+ e�
RRi
t r+µi(j)dj�fi(Ri)Ai(Ri, r)

Z Ri

t

e
RRi
x r̃+µ̃(j)dj�⌧yi(x)dx

�

Z Ri

t

e�
R x
t r+µi(j)dj⌧yi(x)dx. (B.5)

By multiplying and dividing by � the first term on the right-hand side of (B.5) we obtain that the
first term of (B.5) is Pi(t) times the total value of all the contributions paid until age t, ppi(t)/�.
Moreover, we know from (5) that Pi(t)e�

RRi
t r̃+µ̃(j)dj = �fi(Ri)Ai(Ri, r)e�

RRi
t r+µi(j)dj . Thus,

SSWi(t) = Pi(t)
ppi(t)

�
+ Pi(t)e

�
RRi
t r̃+µ̃(j)dj

Z Ri

t

e
RRi
x r̃+µ̃(j)dj⌧yi(x)dx

�

Z Ri

t

e�
R x
t r+µi(j)dj⌧yi(x)dx. (B.6)

Taking into account that Pi(t)
Pi(x)

= e
R x
t r̃+µ̃(j)�(r+µi(j))dj , the social security wealth at time t in (B.6)

can also be written as

SSWi(t) = Pi(t)
ppi(t)

�
�

Z Ri

t

e�
R x
t r+µi(j)dj⌧(1� Pi(x))yi(x)dx. (B.7)

The first component of (B.7) is the monetary value given to the stream of contributions until age t,
while the second component of (B.7) is the present value, survival weighted, at age t of the stream
of future implicit taxes/subsidies on labor income.
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By differentiating (B.7) with respect to t we have

@SSWi(t)

@t
=

✓
r̃ + µ̃(t) +

1

Pi(t)

@Pi(t)

@t

◆
Pi(t)

ppi(t)

�

� (r + µi(t))

Z Ri

t

e�
R x
t r+µi(j)dj⌧(1� P(x))yi(x)dx+ ⌧yi(t). (B.8)

Finally, using (7) in the second term of (B.8) and the definition of SSW in (B.7) we obtain Eq. (6).

C Parametrization

We impose the following set of assumptions with respect to the economic variables. First, we
assume a risk-free market discount factor (r) of 3%. This market interest rate coincides with
that assumed in the report by the National Academies of Science (NASEM, 2015). Second, the
population is assumed to grow at an annual constant rate (n) of 0.5% and the growth rate of labor
productivity (g) is set at 1.5% per year, corresponding closely to the US case. Third, the annual
capitalization factor of the unfunded pension system (̃r) is set at 2%(=n + g), which is lower than
the market discount factor. Therefore, since a return of 1%(=3%-2%) is lost annually, contributions
to the pension system are implicitly considered by individuals as a tax on labor income. From (7)
we know that this assumption implies that the marginal value of a dollar contributed to the pension
system is an increasing function with respect to age and, as a consequence, all pension systems
will provide an incentive to supply more labor early in the working life and to reduce labor before
retirement. Moreover, since all pension systems have a similar increase in P i, pension systems
will have a similar direct impact on the length of schooling. Fourth, unless otherwise indicated, we
assume that the social security system uses the average survival probability to calculate the pension
benefits; i.e, p̃(x) := p(x) =

P
i2I pi(x)/I . Fifth, we assume for the NDC systems a minimum

retirement age of 55 and a maximum retirement age of 70 for all i 2 I. For the DB systems,
we restrict the minimum retirement age to 62 and the maximum to 70, similar to the US pension
system. Sixth, the social security budget is balanced11

X

i2I

Z Ri

Si

e�ntpi(t)⌧wi(Si, t)`i(t)dt ==
X

i2I

e�nRi

Z !

Ri

e�(n+g)(t�Ri)pi(t)bi(Ri)dt. (C.1)

Using Eq. (C.1) we adjust in the DB systems the social contribution rate in order to support all
pension benefits claimed by the surviving retirees, while in the NDC systems we adjust the over-
all pension replacement rate, or generosity of the pension system. For the sake of comparison
across the alternative pension systems, we use for all the NDC systems the social contribution rate

11Note in Eq. (C.1) that similar to the US pension system, we assume that pension benefits are held constant (in real
terms) after retirement and thus they do not increase with productivity.
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obtained for the US pension system (DB-II). In particular, we obtain that the necessary social con-
tribution rate to balance the US pension system with our assumed population structure is 11.83%,
under the hypothetical assumption that the population faces the survival probabilities of the cohort
born in 1930. While ⌧ must be set at 13.28% in the case of using the survival probabilities of the
cohort born in 1960.

In addition, we assume all individuals have similar preferences, except for the disutility of
labor (↵i) that is specific to the income quintile of the individual. This assumption reflects the
fact that individuals in different quintiles have different health and labor market trajectories. The
instantaneous utility of consumption is assumed to be logarithmic (�c = 1), as found empirically
by Chetty (2006), the intertemporal elasticity of substitution on labor (�`) is set at 0.33, so that
workers supply on average thirty five percent of their available time for labor (excluding sleep
time), and the subjective discount factor (⇢) is set at 0.005. As a result, the cross-sectional con-
sumption profile increases with age by one percent, similar to the consumption pattern reported
in the NTA accounts for the US in 2003 (see www.ntaccounts.org). The marginal utility of
leisure during retirement '(·) is assumed to be constant across income groups and birth cohorts
and monotonically increasing with age. Thus, we consider the marginal utility of leisure to be
a function of the average life expectancy of the 1930 birth cohort; i.e '(t) = '0 (e(t))

�'1 with
'0, '1 > 0. To match the wage rate per unit of human capital for the cohort born in 1930, we take
the parameters of the Mincerian equation reported in Table 2 in Heckman et al. (2006). Neverthe-
less, the parameter �0 is adjusted in order to take into account the effect of productivity growth.
As in Cervellati and Sunde (2013) we fix the returns to scale in education (�) at 0.65. Following
Sánchez-Romero et al. (2016) we set the disutility of schooling (⌘) at 3.5 for all income groups,
which corresponds to the most likely value of ⌘ for an average return to schooling between 11 and
12 percent given the life expectancy of US males born in 1930. The learning ability (✓i) for each
income quintile group is calibrated to replicate the length of schooling and the retirement age from
the Health and Retirement Survey (HRS).12 Finally, the weight of disability cost (↵i) is used to
replicate the present value of lifetime benefits (PVB) at age 50 reported in NASEM (2015) for the
cohort born in 1930. See Table 8 in Appendix E.

D Economic problem

We solve the problem of maximizing the lifetime utility (11) subject to the constraints (1)–(10)
using the Hamiltonian before age Si, during the working period (Si, Ri), and after the retirement
age Ri, or periods 1, 2, and 3, respectively (Tomiyama, 1985). We denote with the letter Hj the

12Data from the HRS on length of schooling and retirement age for males born in 1930 was provided by Arda Aktas
and Miguel Poblete-Cazenave.
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Hamiltonian associated to period j = {1, 2, 3}.

Period 1. Given a length of schooling Si and retirement age Ri, the Hamiltonian of an individual
type i 2 I before working (t  Si) is defined as

H
1 = e�

R t
x0

⇢+µi(j)dj [U(ci(t))� ⌘] + �1a(t) [(r + µi(t))ai(t)� ci(t)] +

+ �h[✓ihi(t)
�
� �hi(t)] (D.1)

where �1a(t) and �h(t) are the costate or adjoint variables associated to the dynamics of each state
variable {ai(t), hi(t)} for period 1. The first-order conditions (FOCs) for an interior consumption
is:

@H1

@ci
= e�

R t
x0

⇢+µi(j)djU 0(ci(t))� �1a(t) = 0. (D.2)

The dynamic laws of the costate or adjoint variables are:

@�1a(t)

@t
= ��11(t)(r + µi(t)), (D.3)

@�1h(t)

@t
= ��1h(t)(�✓ihi(t)

��1
� �), (D.4)

Period 2. Given a length of schooling Si and a retirement age Ri, the Hamiltonian of an individ-
ual type i 2 I during the working period (Si < t < Ri) is defined as

H
2 = e�

R t
x0

⇢+µi(j)dj [U(ci(t))� ↵iv(`i(t))] +

+ �2a(t) [(r + µi(t))ai(t) + (1� ⌧)hi(Si)w̄(t� Si)`i(t)� ci(t)] +

+ �2p(t) [(̃r + µ̃(t))ppi(t) + �⌧hi(Si)w̄(t� Si)`i(t)] , (D.5)

where �2a(t), �2h(t), and �2p(t) are the costate or adjoint variables associated to the dynamics of each
state variable {ai(t), hi(Si), ppi(t)} for period 2. The first-order conditions (FOCs) for an interior
consumption and hours worked are:

@H2

@ci
= e�

R t
x0

⇢+µi(j)djU 0(ci(t))� �2a(t) = 0, (D.6)

@H2

@`i
= �e�

R t
x0

⇢+µi(j)dj↵iv
0(`i(t)) + �2a(t)(1� ⌧)hi(Si)w̄(t� Si)+

+ �2p(t)�⌧hi(Si)w̄(t� Si) = 0. (D.7)
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The dynamic laws of the costate or adjoint variables are:

@�2a(t)

@t
= ��2a(t)(r + µi(t)), (D.8)

@�2h(t)

@t
= ��2a(t)(1� ⌧)w̄(t� Si)`i(t)� �2p(t)�⌧ w̄(t� Si)`i(t), (D.9)

@�2p(t)

@t
= ��2p(t)(̃r + µ̃(t)). (D.10)

Period 3. Given a length of schooling Si and a retirement age Ri, the Hamiltonian of an individ-
ual type i 2 I during retirement (t � Ri) is defined as

H
3 = e�

R t
x0

⇢+µi(j)dj [U(ci(t)) + '(t)]

+ �3a(t) [(r + µi(t))ai(t) + fi(Ri)ppi(Ri)� ci(t)] , (D.11)

where �3a(t) and �3p(t) are the costate or adjoint variables associated to the dynamics of the state
variables {ai(t), ppi(t)} for period 3. The first-order conditions (FOCs) for an interior consump-
tion and hours worked are:

@H3

@ci
= e�

R t
x0

⇢+µi(j)djU 0(ci(t))� �2a(t) = 0. (D.12)

Using the definition (15), the dynamic laws of the costate or adjoint variables are:

@�3a(t)

@t
= ��3a(t)(r + µi(t)), (D.13)

@�3p(t)

@t
= ��3a(t)fi(Ri)(1� "i). (D.14)

Moreover, the following matching conditions hold at the switching ages Si and Ri for the costate
or adjoint variables

�a(Si) := �1a(Si) = �2a(Si), (D.15a)

�h(Si) := �1h(Si) = �2h(Si), (D.15b)

�a(Ri) := �2a(Ri) = �3a(Ri), (D.15c)

�p(Ri) := �2p(Ri) = �3p(Ri), (D.15d)

and for the Hamiltonians

H(Si) := H
1(Si) = H

2(Si), (D.16a)

H(Ri) := H
2(Ri) = H

3(Ri). (D.16b)
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Taking into account the above matching conditions, let us define the marginal rate of substitution
of assets for social contributions P(t) = ��p(t)/�a(t) for periods {2, 3}. Differentiating P(t) with
respect to time t, and using the dynamics of the adjoint variables, gives

@P(t)

@t
=

8
<

:
P(t)(r � r̃ + µi(t)� µ̃(t)) for Si < t < Ri,

P(t)(r + µi(t))� �fi(Ri)(1� "i) for t � Ri.
(D.17)

Solving (D.17) and using the fact that P(!) = 0, the marginal rate of substitution of assets for a
dollar of social contribution is:

P(t) = �fi(Ri)(1� "i)Ai(Ri, r)e
RRi
t r̃+µ̃(j)�(r+µi(j))dj, (D.18)

which is equivalent to P(t) = P(t)(1� "i).

D.1 Optimal paths of consumption (c) and hours worked (`)

From the FOCs, the optimal consumption and hours worked at age x satisfy

e�
R t
x0

⇢+µi(j)djU 0(ci(t)) = �a(t), (D.19)

e�
R t
x0

⇢+µi(j)dj↵iv
0(`i(t)) = �2a(t)hi(Si)w̄(t� Si)(1� ⌧ + ⌧P(t)). (D.20)

Taking logarithms in both sides of the equation and differentiating with respect to t gives

�(⇢+ µi(t)) +
ci(t)U 00(ci(t))

U 0(ci(t))

1

ci(t)

@ci(t)

@t
=

1

�a(t)

@�a(t)

@t
, (D.21)

�(⇢+ µi(t)) +
`i(t)v00(`i(t))

v0(`i(t))

1

`i(t)

@`i(t)

@t
=

1

�a(t)

@�a(t)

@t
+

w̄0(t� Si)

w̄(t� Si)
+

⌧P
0
(t)

1� ⌧ + ⌧P(t)
.

(D.22)

Using the envelope condition on assets held and rearranging terms, we obtain (12) and (13), re-
spectively.

D.2 Optimal length of schooling (Si)

Given an optimal retirement age Ri we first differentiate the expected utility Vi(x0) w.r.t. S and
making it equal to zero

Z !

x0

e�
R t
x0

⇢+µi(j)djU 0 (ci(t))
@ci(t)

@S
dt�

Z Ri

S

e�
R t
x0

⇢+µi(j)dj↵iv
0 (`i(t))

@`i(t)

@S
dt

= e�
R S
x0

⇢+µi(j)dj (⌘ � ↵iv(`i(S))) . (D.23)
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Substituting the FOCs in the previous equation gives
Z !

x0

�a(t)
@ci(t)

@S
dt�

Z Ri

S

�a(t)(1� ⌧ + ⌧P(t))wi(Si, t)
@`i(t)

@S
dt

= e�
R S
x0

⇢+µi(j)dj (⌘ � ↵iv(`i(S))) . (D.24)

Solving the envelope condition on assets gives �a(t) = �a(x0)e
�

R t
x0

r+µi(j)dj . Substituting this last
result in (D.24) and dividing by �a(x0) gives

Z !

x0

e�
R t
x0

r+µi(j)dj @ci(t)

@S
dt�

Z Ri

S

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P(t))wi(Si, t)
@`i(t)

@S
dt

= e�
R S
x0

⇢+µi(j)dj ⌘ � ↵iv(`(S))

�a(x0)
. (D.25)

Second, we differentiate the budget constraint (10) at age x0 w.r.t. S
Z !

x0

e�
R t
x0

r+µi(j)dj @ci(t)

@S
dt =

Z Ri

S

e�
R t
x0

r+µi(j)djwi(S, t)
@`i(t)

@S
dt

+

Z Ri

S

e�
R t
x0

r+µi(j)dj @wi(S, t)

@S
`i(t)dt

� e�
R S
x0

r+µi(j)djwi(S, S)`i(S) +
@SSWi(x0)

@S
. (D.26)

From (B.7) we have

SSWi(x0) = �

Z Ri

S

e�
R t
x0

r+µi(j)dj⌧(1� P(t))wi(S, t)`i(t)dt. (D.27)

First, differentiating (D.27) with respect to S gives

@SSWi(x0)

@S
= �

Z Ri

S

e�
R t
x0

r+µi(j)dj⌧(1� P(t))wi(S, t)
@`i(t)

@S
dt

�

Z Ri

S

e�
R t
x0

r+µi(j)dj⌧(1� P(t))
@wi(S, t)

@S
`i(t)dt

+ e�
R S
x0

r+µi(j)dj⌧(1� P(S))wi(S, S)`i(S)

+

Z Ri

S

e�
R t
x0

r+µi(j)dj⌧
@P(t)

@S
wi(S, t)`i(t)dt. (D.28)

Second, differentiating (5) with respect to S gives

@Pi(t)

@S
= �

@fi(Ri)

@ppi(Ri)

@ppi(Ri)

@S
Ai(Ri, r)e

RRi
t r̃+µ̃(j)�(r+µi(j))dj. (D.29)

Using (5) and (15) in (D.29) gives

@Pi(t)

@S
= �

1

ppi(Ri)

@ppi(Ri)

@S
"iPi(t). (D.30)
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Substituting (D.30) on the third term on the right-hand side of Eq. (D.28), and using the fact that
Pi(t) = Pi(Ri)e

RRi
t r̃+µ̃i(j)�(r+µi(j))dj gives, after canceling terms,

@Pi(t)

@S
= �

@ppi(Ri)

@S

"iPi(Ri)

�
e�

RRi
x0

r+µi(j)dj. (D.31)

Differentiating the total pension points at age Ri with respect to S gives

@ppi(Ri)

@S
=

Z Ri

S

e
RRi
t r̃+µ̃(j)dj�⌧wi(S, t)

@`i(t)

@S
dt

+

Z Ri

S

e
RRi
t r̃+µ̃(j)dj�⌧

@wi(S, t)

@S
`i(t)dt

� e
RRi
S r̃+µ̃(j)dj�⌧wi(S, S)`i(S). (D.32)

Plugging (D.32) in (D.31), and using the fact that Pi(Ri) = Pi(t)e�
RRi
t r̃+µ̃(j)�(r+µi(j))dj , gives

@Pi(t)

@S
= �

@ppi(Ri)

@S

Pi(Ri)

�
"ie

�
RRi
x0

r+µi(j)dj

= �

Z Ri

S

e�
R t
x0

r+µi(j)dj⌧"iPi(t)wi(S, t)
@`i(t)

@S
dt

�

Z Ri

S

e�
R t
x0

r+µi(j)dj⌧"iPi(t)
@wi(S, t)

@S
`i(t)dt

+ e�
R S
x0

r+µi(j)dj⌧"iPi(S)wi(S, S)`i(S). (D.33)

Substituting (D.33) in the last term in (D.28) gives

@SSWi(x0)

@S
= �

Z Ri

x0

e�
R t
x0

r+µi(j)dj⌧(1� P i(t))wi(S, t)
@`i(t)

@S
dt

�

Z Ri

x0

e�
R t
x0

r+µi(j)dj⌧(1� P i(t))
@wi(S, t)

@S
`i(t)dt

+ e�
R S
x0

r+µi(j)dj⌧(1� P i(S))wi(S, S)`i(S). (D.34)

By plugging (D.34) into (D.26) we have

Z !

x0

e�
R t
x0

r+µi(j)dj @ci(t)

@S
dt�

Z Ri

S

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, t)
@`i(t)

@S
dt

=

Z Ri

S

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))
@wi(S, t)

@S
`i(t)dt

� e�
R S
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, S)`i(S).
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Using the fact that the left-hand side of (D.25) and (D.31) are equal, then

e�
R S
x0

⇢+µi(j)dj ⌘ � ↵iv(`i(S))

�a(x0)

=

Z Ri

S

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))
@wi(S, t)

@S
`i(t)dt

� e�
R S
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, S)`i(S). (D.35)

Now, differentiating wi(S, t) w.r.t. S gives

@wi(S, t)

@S
=
@w̄(t� S)

@S
hi(S) + w̄(t� S)

@hi(S)

@S

= �
1

w̄(t� S)

@w̄(t� S)

@t
wi(S, t) +

1

hi(S)

@hi(S)

@S
wi(t, S). (D.36)

Third, we use (D.36) in (D.35)

e�
R S
x0

⇢+µi(j)dj ⌘ � ↵iv(`i(S))

�a(x0)

=
@hi(S)
@S

hi(S)

Z Ri

S

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, t)`i(t)dt

�

Z Ri

S

e�
R t
x0

r+µi(j)dj
@w̄(t�S)

@t

w̄(t� S)
(1� ⌧ + ⌧P i(t))wi(S, t)`i(t)dt

� e�
R S
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, S)`i(S). (D.37)

Therefore, after rearranging terms, the optimal length of schooling satisfies the following condition

@hi(S)
@S

hi(S)

Z Ri

S

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, t)`i(t)dt

=

Z Ri

S

e�
R t
x0

r+µi(j)dj
@w̄(t�S)

@t

w̄(t� S)
(1� ⌧ + ⌧P i(t))wi(S, t)`i(t)dt

+ e�
R S
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, S)`i(S)

+ e�
R S
x0

r+µi(j)dj ⌘ � ↵iv(`i(S))

�a(x0)
. (D.38)

Defining human capital at age S net of effective labor income taxes as

Wi(S,Ri) =

Z Ri

S

e�
R t
S r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, t)`i(t)dt (D.39)

and dividing both sides of (D.38) by Wi(S,Ri), multiplying by e
R S
x0

r+µi(j)dj , we obtain the optimal
length of schooling condition

rhi (S) = r̄i(S,Ri) +
⌘ � ↵iv(`i(S))

U 0(ci(S))Wi(S,Ri)
. (D.40)
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rhi (S) is the return to education at age S for an individual of type i

rhi (S) =
1

hi(S)

@hi(S)

@S
, (D.41)

r̄i(S,R) is the rate of return lost from not working at age S or the marginal cost of the Sth unit of
schooling for an individual of type i

r̄i(S,Ri) =

Z Ri

S

@w̄(t�S)
@t

w̄(t� S)
 i(t)dt+  i(S), (D.42)

where

 i(t) =
e�

R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(S, t)`i(t)R Ri

S e�
R u
x0

r+µi(j)dj(1� ⌧ + ⌧P i(u))wi(S, u)`i(u)du
. (D.43)

From (D.42) and (D.43) we have
R Ri

S  i(t)dt = 1 and limS!Ri r̄i(S,Ri) = 1.

D.3 Optimal retirement age (Ri)

Similar to the previous subsection we start assuming that the optimal length of schooling Si is
given. Then, we differentiate the expected utility Vi(x0) w.r.t. the optimal retirement age R and
equate the result to the derivative of the lifetime budget constrain w.r.t. to the optimal retirement
age.
Proof. Given an optimal length of schooling Si we first differentiate the expected utility Vi(x0)

w.r.t. R and making it equal to zero
Z !

x0

e�
R t
x0

⇢+µi(j)djU 0 (ci(t))
@ci(t)

@R
dt� ↵i

Z R

Si

e�
R t
x0

⇢+µi(j)djv0 (`i(t))
@`i(t)

@R
dt

= e�
RR
x0

⇢+µi(j)dj (↵iv (`i(R)) + '(R)) . (D.44)

Substituting the FOCs in the previous equation gives
Z !

x0

�a(t)
@ci(t)

@R
dt�

Z R

Si

�a(t)(1� ⌧ + ⌧P i(t))wi(Si, t)
@`i(t)

@R
dt

= e�
RR
x0

⇢+µi(j)dj (↵iv (`i(R)) + '(R)) . (D.45)

Using the envelope conditions on assets, which gives �a(t) = �a(x0)e
�

R t
x0

r+µi(j)dj , dividing both
sides of the equation by �a(x0) and rearranging terms gives

Z !

x0

e�
R t
x0

r+µi(j)dj @ci(t)

@R
dt�

Z R

Si

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(Si, t)
@`i(t)

@R
dt

= e�
RR
x0

⇢+µi(j)dj↵iv (`i(R)) + '(R)

�a(x0)
. (D.46)
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Second, we differentiate the budget constraint (10) at age x0 w.r.t. R

Z !

x0

e�
R t
x0

r+µi(j)dj @ci(t)

@R
dt =

Z R

Si

e�
R t
x0

r+µi(j)djwi(Si, t)
@`i(t)

@R
dt

+ e�
RR
x0

r+µi(j)djwi(Si, R)`i(R) +
@SSWi(x0)

@R
. (D.47)

Differentiating (B.7) at age x0 with respect to R gives

@SSWi(x0)

@R
= �

Z R

Si

e�
R t
x0

r+µi(j)dj⌧(1� Pi(t))wi(Si, t)
@`i(t)

@R
dt

� e�
RR
x0

r+µi(j)dj⌧(1� Pi(R))wi(Si, R)`i(R)

+

Z R

Si

e�
R t
x0

r+µi(j)dj⌧
@Pi(t)

@R
wi(Si, t)`i(t)dt. (D.48)

Now, by differentiating (5) with respect to R we have

@Pi(t)

@R
= Pi(t)

✓
1

fi(R)

@fi(R)

@R
+

1

Ai(R, r)

@Ai(R, r)

@R
+ r̃ + µ̃(R)� (r + µi(R))

◆

= Pi(t)

✓
1

fi(R)

@fi(R)

@R
�

1

Ai(R, r)
+ r̃ + µ̃(R)

◆
. (D.49)

Given that fi(R) depends on both R and pp, the total derivative of fi(R) with respect to R is

@fi(R)

@R
=
@fi(R)

@R

����
pp

+
@fi(R)

@ppi(R)

@ppi(R)

@R
. (D.50)

Thus, from (15) and (D.50), Eq. (D.49) can be rewritten as follow

@Pi(t)

@R
= Pi(t)

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ r̃ + µ̃(R)

!
� Pi(t)"i

1

ppi(R)

@ppi(R)

@R
. (D.51)

Substituting (D.51) on (D.48) we get

@SSWi(x0)

@R
= �

Z R

Si

e�
R t
x0

r+µi(j)dj⌧(1� Pi(t))wi(Si, t)
@`i(t)

@R
dt

� e�
RR
x0

r+µi(j)dj⌧(1� Pi(R))wi(Si, R)`i(R)

+

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ r̃ + µ̃(R)

!Z R

Si

e�
R t
x0

r+µi(j)dj⌧Pi(t)wi(Si, t)`i(t)dt

�
1

ppi(R)

@pp(R)

@R

Z R

Si

e�
R t
x0

r+µi(j)dj⌧Pi(t)"iwi(Si, t)`i(t)dt. (D.52)
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Using the relation Pi(t) = Pi(R)e
RR
t r̃+µ̃(j)�(r+µi(j))dj in the last two terms of (D.52), and rearrang-

ing terms, we have

@SSWi(x0)

@R
= �

Z R

Si

e�
R t
x0

r+µi(j)dj⌧(1� Pi(t))wi(Si, t)
@`i(t)

@R
dt

� e�
RR
x0

r+µi(j)dj⌧(1� Pi(R))wi(Si, R)`i(R)

+ e�
RR
x0

r+µi(j)dj

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ r̃ + µ̃(R)

!
Pi(R)

ppi(R)

�

� e�
RR
x0

r+µi(j)dj @pp(R)

@R

Pi(R)"i
�

. (D.53)

Now, from (B.2) we differentiate the total pension points at age R with respect to R, i.e. @pp(R)
@R ,

which gives

@ppi(Ri)

@S
=

Z R

Si

e
RR
t r̃+µ̃(j)dj�⌧wi(S, t)

@`i(t)

@R
dt

+ (̃r + µ̃(R))ppi(R) + �⌧wi(Si, R)`i(R). (D.54)

Plugging (D.54) in (D.53) and rearranging terms gives

@SSWi(x0)

@R
= �

Z R

Si

e�
R t
x0

r+µi(j)dj⌧(1� Pi(t)(1� "i))wi(Si, t)
@`i(t)

@R
dt

� e�
RR
x0

r+µi(j)dj⌧(1� Pi(R)(1� "i))wi(Si, R)`i(R)

+ e�
RR
x0

r+µi(j)dj

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ (̃r + µ̃(R))(1� "i)

!
Pi(R)

ppi(R)

�
. (D.55)

Next, plugging (D.55) in (D.47) gives
Z !

x0

e�
R t
x0

r+µi(j)dj @ci(t)

@R
dt�

Z R

Si

e�
R t
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(Si, t)
@`i(t)

@R
dt

= e�
RR
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(Si, R)`i(R)

+ e�
RR
x0

r+µi(j)dj

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ (̃r + µ̃(R))(1� "i)

!
Pi(R)

ppi(R)

�
. (D.56)

Using the fact that the left-hand side of (D.3) and (D.56) are equal, we obtain

e�
RR
x0

⇢+µi(j)dj↵iv (`i(R)) + '(R)

�a(x0)
= e�

RR
x0

r+µi(j)dj(1� ⌧ + ⌧P i(t))wi(Si, R)`i(R)

+ e�
RR
x0

r+µi(j)dj

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ (̃r + µ̃(R))(1� "i)

!
Pi(R)

ppi(R)

�
. (D.57)
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Multiplying both sides of (D.57) by e
RR
x0

r+µi(j)dj gives

e(r�⇢)(R�x0)
↵iv (`i(R)) + '(R)

�a(x0)
= (1� ⌧ + ⌧P i(t))wi(Si, R)`i(R)

+

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ (̃r + µ̃(R))(1� "i)

!
Pi(R)

ppi(R)

�
. (D.58)

Defining the implicit tax rate on retirement ⌧GW
i (R) as

⌧GW
i (R) = ⌧(1� P i(t))

�

 
1

fi(R)

@fi(R)

@R

����
pp

�
1

Ai(R, r)
+ (̃r + µ̃(R))(1� "i)

!
Pi(R)ppi(R)

�

wi(Si, R)`i(R)
, (D.59)

where the first term is the implicit tax paid by working one additional period and the second term
is the relative change in the social security wealth caused by postponing the retirement age.

Then, using (D.59) and the fact that U 0(ci(R)) = e�(r�⇢)(R�x0)�a(x0) we obtain that the opti-
mal retirement age condition satisfies

↵iv (`i(R)) + '(R) = U 0(ci(R))wi(Si, R)`i(R)(1� ⌧GW
i (R)), (D.60)

which coincides with (18).
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E Additional simulated data

Length of schooling Si.

Table 6: Optimal length of schooling by income quintile (Si), US male birth cohorts 1930 and
1960

Defined Contribution (NDC) Defined Benefit
Avg. LT Corrected i–th LT Non– Progressive Progressive

Avg. LT progressive Corrected
NDC-I NDC-II NDC-III DB-I DB-II DB-III

Cohort 1930
Quintile 1 11.5 11.5 11.6 12.0 11.4 11.4
Quintile 2 11.8 11.9 11.9 12.4 11.8 11.8
Quintile 3 12.3 12.3 12.3 12.8 12.3 12.3
Quintile 4 14.1 14.1 14.1 14.5 13.0 13.0
Quintile 5 16.1 16.1 16.0 16.3 15.0 15.1

Cohort 1960
Quintile 1 11.3 11.3 11.3 11.6 10.7 10.7
Quintile 2 12.3 12.4 12.5 12.9 12.1 12.4
Quintile 3 14.7 14.8 14.8 15.4 14.7 14.8
Quintile 4 17.6 17.6 17.5 18.5 16.3 16.4
Quintile 5 18.9 18.8 18.8 19.8 17.9 18.0
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Retirement ages Ri.

Table 7: Optimal retirement age by income quintile (Ri), US male birth cohorts 1930 and 1960

Defined Contribution (NDC) Defined Benefit
Avg. LT Corrected i–th LT Non– Progressive Progressive

Avg. LT progressive Corrected
NDC-I NDC-II NDC-III DB-I DB-II DB-III

Cohort 1930
Quintile 1 61.4 61.4 61.7 63.9 63.3 63.4
Quintile 2 61.7 61.8 61.4 64.2 63.6 63.6
Quintile 3 62.1 62.2 62.2 64.5 63.9 64.0
Quintile 4 63.4 63.5 63.3 65.0 63.8 63.8
Quintile 5 64.8 64.8 64.5 65.5 64.9 64.8

Cohort 1960
Quintile 1 60.9 60.9 61.4 62.9 62.0† 62.0†

Quintile 2 61.8 62.0 62.3 64.6 63.1 64.6
Quintile 3 63.9 64.1 64.0 66.5 65.9 66.0
Quintile 4 66.1 66.0 65.7 69.2 66.5 66.4
Quintile 5 66.9 66.7 66.4 69.6 67.7 67.5

Notes: Symbol ‘†’ represents cases in which individuals exit the labor market before they start claiming
retirement benefits. In particular, individuals subject to the mortality regime of the 1960 cohort retire on
average at age 60.7 in the DB-II system and at age 60.5 in the DB-III system.
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Present value of lifetime benefits.

Table 8: Present value of lifetime benefits at age 50 by income quintile and pension system, US
males, birth cohorts 1930 and 1960 (in $1 000s)

Defined Contribution (NDC) Defined Benefit (DB)
Avg. LT Corrected i–th LT Non– Progressive Progressive

Avg. LT progressive Corrected
NDC-I NDC-II NDC-III DB-I DB-II DB-III

Cohort 1930
Quintile 1 121.14 132.10 140.65 131.18 130.44 140.90
Quintile 2 143.23 154.27 160.84 158.53 151.42 159.75
Quintile 3 161.60 167.89 171.11 180.16 169.95 174.93
Quintile 4 210.66 207.91 204.48 237.64 193.46 188.46
Quintile 5 276.77 255.63 241.26 307.96 232.82 212.61

Cohort 1960
Quintile 1 101.96 135.24 153.90 96.99 103.51 132.05
Quintile 2 137.69 171.77 188.27 144.39 139.19 177.13
Quintile 3 214.28 228.64 230.16 251.80 232.15 238.26
Quintile 4 330.44 305.37 290.96 446.24 298.78 265.81
Quintile 5 389.47 346.37 328.62 538.19 343.82 294.86
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Lifetime wealth.

Table 9: Distribution of lifetime wealth (LW) at age 14 by income quintile and mortality regime in
the NDC-III system (in $1 000s)

Cohort 1930 Cohort 1960
SSW HK LW SSW HK LW

I II III=I+II I II III=I+II

Quintile 1 -16.80 541.45 525.65 -18.14 521.38 503.24
Quintile 2 -19.51 630.52 611.01 -23.56 679.61 656.05
Quintile 3 -21.23 686.83 665.60 -32.55 933.29 900.74
Quintile 4 -26.62 871.88 845.26 -45.77 1 312.79 1 267.01
Quintile 5 -33.64 1 113.04 1 079.39 -53.38 1 543.85 1 490.47

Notes: SSW stands for social security wealth, HK denotes the stock of human capital, and LW is the lifetime wealth.

Table 9 reports the lifetime wealth (detrended by productivity) by income quintile relative to
that obtained for the income group q3 under the mortality regime 1930. We can see in Tab. 9
that the higher income quintiles q3–q5 experience an average increase over twenty percent in
their lifetime wealth with the more unequal mortality regime, q2 experiences an increase of seven
percent in the lifetime wealth, and q1 has five percent less wealth. Moreover, since the NDC-
III system provides the same internal rate of return across income groups, we have that the ratio
between the social security wealth and the stock of human capital is the same across income group.
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