Online Appendix for "On Money as a Medium of Exchange in Near-Cashless
Credit Economies" by Ricardo Lagos and Shengxing Zhang

A  Proofs

A.1 Bargaining and portfolio problems

The second-subperiod value functions can be written as

Wi(as,al, k) = ¢ma™ + ¢fas + ab — ky + W/ (128)
WP (ar, af, k) = ¢ al" + diai + a) + ke + WP (129)
W (ay) = ¢)"a}" + ¢ia; + WE, (130)

where

11 — ~m S~8
Wy =T+ max |:_¢t gy1 — Pplpyq
@y .a7,,)€ErRY

4 BB [ VA [t + (1 1) 4°,e] dGiE) (131)

WP = _,max. [_ ¢t — ¢7a7 +ﬁEtV£1(&?}r17ﬁd§+1)] (132)
(871,871 1)ERY

= max (= aity — d7ai + PEVE (@, nag )] - (133)

@y ,.a5,,)€ER2

Proof of Lemma [1} In a nonmonetary economy, (128]) reduces to
Wi (as,al, k) = ¢ja + af — ke + W

(7)(a). In a nonmonetary equilibrium (3 implies @jy,(af,€) = arg maxo<as<a; (€Yt + &) @5

(7)(b). In a nonmonetary economy, (4 implies

0
b b 1-6
[aou(af,e), ko1t (af,s)} = arg max (at — k:t) k7.
—Ap3as<a?<0,0<k;

(i)(¢). In a nonmonetary economy, implies [ajy, (af,€),aly, (af,€), ki1e (af,€)] is the

solution to 6
(E;?,kt)nelﬂ%%(,a?eﬂ{ [(Eyt + (bf) (Ef o af) + E? - kt} ktl_e
s.t. dra; +a; = a; (134)
—\$ia; < ay. (135)
Notice that the first-order condition with respect to k; implies

e (6f,€) = (1= 0) { ey + 67) [a514 0t €) — af] +abla o)} (136)
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so the bargaining solution can be found by solving the following auxiliary problem

max (syt+¢§)(a§—af)+aﬂ s.t. (134), and (I35).

aseRy,aleR
Since ([134)) implies @’ = ¢; (af — a@3),

a3y, (af,€) = argmax (e — }) @} s.t. 0 <@ and (¢; — A\¢}) @} < ;a;.
a

The problem has no solution (for & > e?) if ¢, — A¢§ < 0. Provided ¢; — A¢§ > 0, the solution
exists for all € and is given by . Given @y, (a,¢), a3y, (a3,€) = ¢, [aj — @y, (af, )] as in
, and k11t (af, €) is given by , or equivalently, (L7).

(ii) In a nonmonetary equilibrium, a bond broker’s problem in the OTC is identical to that
of an investor who is able to contact only the bond market.

(éi1) In a nonmonetary equilibrium, an equity broker’s problem in the OTC is identical to

that of an investor who is able to contact only the equity market. m

Proof of Lemma [2.
(i)(a). With ([128]), it is easy to show that the solution to the optimization problem in ({3

given by and .
(i)(b). With (128]), can be written as

0
max mam 4+ a@b — ky — ¢a| kLC
(@ ke)€R? @b eR

s.t. gar = a —al

—\pjai <al.

Notice that the first-order condition with respect to k; implies k; = (1 — ) [qﬁ? (ay* —ay) + Eﬂ ,

so the @, (as, ) and @j, (as, €) can be found by solving the following auxiliary problem

max [ mam af] st. @ =a” —a@" and — Aglal <@ (137)
ameRy aleRr

and given [al}, (at, ), @y, (at,€)], the fee is
kout (at€) = (1= 0) { 6" [ati, (ar,€) — a}"] + @y (ar,€) } (138)
Thus the solution to is given by and , and .
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(i)(c). With (128), can be written as

0
max {(Eyt + ¢%) [@ — @y (ar, )] + o7 [@" — @b (ay, €)] +ab — kt} k1o
(@7 a3 ke ERY TR

s.t. EQ” —i—ptﬁf + qtﬁi’ = a;" + ptaf (139)
—A\¢ia@; < ay. (140)

Notice that the first-order condition with respect to k; implies so the bargaining solution

can be found by solving the following auxiliary problem

max ey + 00) a7 — @orlare)] + 6" [a)" — af(an,2)) + af |
(a,a5)€R? @b eR

s.t. (39), and (T40).

Once the solution @, (ay, €), @5y, (ay, €), and @3, (ay, €) to this problem has been found, k11, (ay, ¢)
is given by . If we use (139) to substitute for 6% , the auxiliary problem is equivalent to

1 1
max Keyt + @] — pt> a; + <¢;” — > ai”] (141)
(@y,ag)ery qt qt
s.t. 0 < af* +prai —ai* — (pr — A\q93) @ (142)

This problem has no solution if p; < Ag:¢7. To see this, assume p; < Agr¢;. Set aj* = aj* + pra
(a feasible choice), and notice (142) is satisfied by any aj € Ri. Thus the value of (141) is
bounded below by

1
<¢;n _ > (ai* + prai) + max [ey, + (1 — N) 7] @,
qt a; R+

which is arbitrarily large. Hence condition is necessary for the bargaining problem to have
as solution. The Lagrangian corresponding to the auxiliary problem ((141)) is

1 1
L= (5% + ¢; — Pt> a; + (@ﬁ? - > ay"
qt qt
+E [ + peal — @ — (pr — Mg ) @) + EME + €T,

where £°, €™, and £° are the multipliers on the constraints (142)), 0 < a;’, and 0 < @y, respec-

tively. The first-order conditions are

1
eyt + ¢ — apt + &6 — (p— M) € =0
1

o =~ +Em—g =0,
qt
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By working out the eight possible binding patterns for the multipliers (f bem ¢ S) and collecting
the optimal allocations along with the inequality restrictions implied by each case, we obtain
9)- G0,
(ii). From , it is easy to show the solution to is the same as the solution to .
(ii1). The optimization problem (1)) is the same as withe =0.m

A.2 Value functions

In this section we derive the value functions for brokers and investors, in a monetary economy

(Lemma [3)), and in a nonmonetary economy (Lemma [4)).

Lemma 3 Consider an economy with money. (i) The value function of a bond broker who

enters the OTC round of period t with portfolio a; is

VP (ar) = v’ + vyt +Z+ WP, 3
where
m 1 m
Vg, = a [1 + (g — 1) H{1<qt¢ln}]
Ve = [14+ M @) — 1) Tncgepy] oF

[1]

t = / [af kot (@1, €) + afi kg (@e, )] dH g (G, €) -

(ii) The value function of an equity broker who enters the OTC round of period t with
portfolio a; is
Vi (ar) = vEia]" + via; + W, (144)
where

1
Vg = ¢ — EH{5T0t<O}€>{Ot%

S — m
Vgt = PtVE:-

(iii) The value function of an investor who enters the OTC round of period t with portfolio
a; and valuation € is
V! (ar,€) = off (¢) af + vj; () af + W, (145)
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where

m m * 1
v (€) = ¢ +laro +an (1 =) L.y (e~ c10) v

1
+ (o1 + o11) Ollgg, gm <1y <(]t - ¢;n>

i 1
Fonblyg <} © v — 0

Vi (€) = ey + ¢f + [aro +an (1 =0, 3 (Tor —€) v
1
+ (o1 +a11) 0 <<Z>;n - Qt> Licqer i Aaedi
Gy — H{Kg»fu}pt
Pr — A ¥y
Proof. With (129), (130), and (128), the value function becomes

VP (ar) = ¢7"ah, (ar) + dia; + aly, (ar) + ¢ + WP

+ o116 (e — €114) Ut

with Z; as defined in the statement, the value function @ becomes
V;tE (ar) = ¢i"alg, (ar) + ¢rag, (ar) + WtEa
and the value function becomes
Vil (ar,6) = W/ + aoo [(eye + 67) af + ¢ ay"]
+ a0 [(eye + &) @loi(ar, ) + ¢/ aly; (ar, )]
+aor | (eye+ 67) @} + ¢ (an,2) + gy (ar,2) — ko (ar,2)|
+at [(eye + 0F) iy (a1, ) + 67'al, (ar,2) + @by (ar,€) — ke (ar,8)| . (146)

(i) With Lemma [2, V,” (a;) can be written as . (i1) With Lemma [2, V;¥ (a;) can be
written as . (@ii) Substitute ki1; (a, €), koi (at, €), aglt (at,e), and Ezll’lt (at,e) with (31)),
, aby, (at,e) = —% [agi; (at,€) — aj*], and , respectively, to obtain
Vi (ar,e) = Wi + (eye + 1) af + f"a”
+[awo + an (1= 0){(ey: + ) [ato:(ar, €) — ai] + &/ [aey (ar, €) — "]}

1
t o <¢;:” - q) (@ (ane) — o]

1 1
T aub { (eyt - qtpt) @ (ane) — af] + (w - qt) @l (ane) — am} |
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Then use Lemma [2] to replace the post-trade allocations afy,(at,¢), afy, (at,€), agi, (at,€),

ajy, (at,€), and afj, (at, €), and rearrange terms to arrive at (145). m

Lemma 4 Consider an economy without money. (i) The value function of a bond broker who

enters the OTC round of period t with equity holding aj is

Vil (a7) = ¢fai + 2 + WP, (147)
where
W = max [—¢fag,, + BEVE (nag,,)] (148)
at+1€R+

and ¢y = o [ ki1 (a3,€) dHp (a5,€). (i) The value function of an equity broker who enters

the OTC round of period t with equity holding a; is

VtE (af) = ¢ia; + Wt ) (149)
where
Wr = ~Sm%X+ (=77 + BBV (nag )] - (150)
Ai4q

(iii) The value function of an investor who enters the OTC round of period t with equity holding

ai and valuation € is

Vi (af,€) = {y Lot anb(e— <)y [x (F,e) 2t _ 1} } Wl (151
P
where
Wi = |~etain + 08 Vi it - - a0dac@]. s
i1

Proof. In a nonmonetary economy, ([128))-(133)) reduce to

WtI(afvagv k) = ¢jai + at ki + th (153)
WE(aj, al, ki) = ¢ia; + al + ky + WP (154)
WE(af) = ¢jai + WE, (155)

where Wt , Wt , and Wt are given by , ., and . ) With -D and Lemma
reduces to ([147). (ii) With and Lemma [1} (9) reduces to (149). (wi) With (153),
and Lemma reduces to 1) |
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A.3 Euler equations

In this section we derive the Euler equations that characterize the optimal portfolio choices

in the second subperiod, in a monetary economy (Lemma [5) and in a nonmonetary economy
(Lemma [6]).

Lemma 5 Consider an economy with money. Let (CNLZ,?_,’_l, dzt_H) denote the portfolio choice of
an agent of type k € {B, E, 1} in the second subperiod of period t. The portfolio (&ﬂﬂ, dztﬂ)
is optimal for k € {B, E, I} if and only if it satisfies
(0" — BEOf 1) g1 = 0 < ¢ — BBy (156)
(@f - 6T7Et@]§t+1) dzt.u =0 S QZ)ZQ - ﬁnEtﬁlng-la (157)

where ﬁitﬂ = vitﬂ for k € {B,E} and j € {m, s},

Vi1 = ¢41 + (01 +a11) 0 ( - gb?}rl) L gram <1}

qt+1
en . 1
+ [a10 + 11 (1 = 0)] / (& = lora) Y1 —dG(e)
ors Dt+1
L T ) (¢)
+ a6 / € — €] Yr41dG(e),
Pt+1 — )\Qt+1¢f+1 €l1e41 e

and
_ _ 1
’U?t+1 =E&Yi+1 + ¢§+1 + (0401 + a11) 0 <¢?}rl — qt+1> H{1<Qt+1¢ﬁ1})\%+1¢§+1

€T0t+1
Hlaw+an (1=0) [ (Eosr —2) wndG @

€L

+ o116

El1e41 N )\Qt+1¢s el .
/ (eT1e41 — €) Ye41dG (€) + v / (e = €T1e41) Yer1dG ()
£L Pt+1 — )\qt+1¢t+1 11641

Proof. With (143) and (132)), the portfolio problem of a bond broker in the second subpe-

riod can be written as

WP = BE; (B + WEi) +  max L [BEwE 1 — o) afiy + (BnEwpey — 0F) Gi4a] -
(@ ,.a7,,)€ErRY

With ((144]) and (133)), the portfolio problem of an equity broker in the second subperiod can

be written as

W =BEW[, +  max L L(BEWE 1 — o) @iy + (BB — ¢F) Gi4a] -

dﬁ_l,df+1)€R+
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With (145) and ([131)), the portfolio problem of an investor in the second subperiod can be

written as

Wi =T, + BE, Wiy + 05y (1 - 1) A°]

+ max [(BEOFy — o) afty + (BRI — 0F) a5

(@y,.a5, ) ER

where 0§, = [vf,, | (€)dG(e) for k € {m,s}. =

Lemma 6 Consider an economy with no money. Let aj, , denote equity holding chosen by an
agent of type k € {B, E,I} in the second subperiod of period t. Then a3,  is optimal if and
only if it satisfies

(61 — BuEediy1) Gisr = 0 < &) — BnBedyy, for k € {B, E} (158)

and
s _ s S} n
— @] + BnEiq Eyer1 + ¢ q + 110 / (61 — €) Ye+1dG(e)
€L
APy /aH
T € — &¢41) Y1+1dG(e)
¢t+1 - /\d)t-i-l Y ( i )
<0, with“= " if @,y > 0. (159)

Proof. With (147)), (148]), (149), and (150)), the portfolio problem of a bond broker or of
an equity broker in the second subperiod can be written as MaXgs, | ek, [—gf)‘; + BnE.o; +1] ag, ;-
With (151)) and (152)), the portfolio problem of an investor in the second subperiod can be

written as

_max
aj 1 €ERy

+ )‘¢§+1 /6H (6 e ) yt+1dG(5)
=S S - 1
d)t-l—l - )‘th-i-l e "

€1
—¢F + BnEt{gyt+1 + ¢j1 +anb [/ (81 — €) yi1dG(e)

€L

-

A.4 Market-clearing conditions

In this section we derive the market-clearing conditions for equity and bonds in the OTC round,

in a monetary economy (Lemma @ and in a nonmonetary economy (Lemma .
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Lemma 7 In a monetary equilibrium, the market-clearing conditions for equity, ASEt + A3, +

A3y = A%y + (oo + a11) A3y, and bonds, A%, + A%, + Ab,, =0, in the OTC round are:

ATy + pe AL AT + pe AL
At a1 -G ()] ———=
o [ (e112)] Py
— [A% + (10 + a11) AT (160)

1
0= =x e Afe =X (1, 6d") A AL

0=ai[l — G (eln,)]

1
¢ ooy {[1 X (L] AT~ (1) Ao} }

- au{ {1 —Tpcgomy — Lgom=1y [1 — x (1, ¢:07")]} G (e71)

I LY CTE) }

ATy + peAL,
Pt — A9}

161

” (161)
Proof. By Lemma [2| the aggregate post-trade holdings of equity for agents who trade in

the equity market in the OTC round of period t are

Ay + P Aty

bt

1), = an Ny / @1u(an, ) dHp(ag, ) = on [1 — G ()]

15, = Ng / @ (ar) dFpr (@) = X (€100, 0) ~0

A% + Ay
Pt — Ay
A a AT+ prAj
ot = alON[/ai()t(atag)dHlt<at75) =aio[l — G (7)) %
¢
and the the aggregate post-trade holdings of bonds for agents who trade in the bond market in

the OTC round of period ¢ are
Al = NB/abBt (ar) dFpt (ar) = [1 = x (1, qu9}")] ;Agt =X (1, q:0f") Adf A,
Ab = allNI/alflt(at,g)det(at,a)
= Oéu{ {1 —Tpcgory — Lgemey [1 — x (1, q0f")]} G (e11)
Agtdy

v [1 =G (e11y)] }

AZL + ptAf—t
qt

_ 1
Ay = a1 Ny /agu(at’ﬁ)dﬂltmm@ = a1 {[1 —x (1, q:0i")] ;A?i —x (1, ¢t9") Ag§ ?t} :
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Lemma 8 In a nonmonetary equilibrium, the market-clearing condition for equity, ASEt+A‘{0t+
A3y = A%, + (cao + ann) A3, (or bonds, A%, + A8, + Ab,, = 0) in the OTC round is:
1=[1-G(e})] 75(;57: (162)
br — AP}
Proof. By Lemma [l the aggregate post-trade holdings of equity for agents who trade in
the equity market in the OTC round of period ¢ are

Ay = Ni [ ab (o) AP (o) = Ay

Ay = anV; / @1o(as, €)dHy(a €) = / a (] €) &A G (2)

/_l‘lq()t = 19Ny /afOt(at,E)dHIt(at, £) = a0y,
and the the aggregate post-trade holdings of bonds for agents who trade in the bond market in
the OTC round of period t are

Al = Np / ap; (ar) dFpy (a) =0
Q_ﬁs

Af,dG
DY ©)

Allt = allNl/ant(ata e)dHpi(ar, €) = /0411555 [1 —x (et €) =s—+—

Aglt = aOlN[/aglt(atag)dHIt(at;E) =0.

A.5 Equilibrium conditions

In this section we state the operational definitions of monetary and nonmonetary equilibrium

that are used in the analysis.

A.5.1 Sequential nonmonetary equilibrium

Definition 4 A (sequential) nonmonetary equilibrium is an allocation (A§t+1)j€{B7E7[} and a

sequence of prices, {(bf,&f}fio, that satisfy the three optimality conditions, and
(with ELQ‘-}H = flftﬂ), and the market-clearing conditions ASBtH + flSEtH + flftﬂ = A% and

.

Definition [4] follows from Definition [I] after recognizing that all agents of the same type j €
{B, E, I} choose the same end-of-period portfolio that is characterized by the Euler equations

93



derived in Lemma [6] and using the explicit version of the market clearing condition for equity

and bonds in the OTC round derived in Lemma [§| Given the equilibrium objects in Definition

[ the bargaining outcomes, which are part of Definition [I] but not Definition [] are immediate

from Lemma [1l

According to Definition [4] a nonmonetary equilibrium can be characterized by sequence of

prices, {¢f, ¢; }5°, and an allocation (fljt 11)je{B,E,1} that satisfy the market-clearing conditions

A% = Ay + A + A
ny _ O
1=[1-G()] ==
by — APy
and the optimality conditions

(¢F — BnEedy 1) ASpyy =0 < ¢f — B}y, for j € {B, E}

and

S
—¢f + BﬁEt{th + @1 +anb [/ (ef1 — €) Yer1dG(e)

er

APt /EH

= € — €¢v1) y+1dG(e)
Prp1 — APiy1 Jep, (£ =)

<0, with“ =" if A3,,; >0,

where £} is given by (L3)).

A.5.2 Recursive nonmonetary equilibrium

(163)

(164)

(165)

(166)

The following result summarizes the conditions that characterize a recursive nonmonetary equi-

librium (RNE).

Lemma 9 A recursive nonmonetary equilibrium is a vector (g™, ¢°, (Ai)ke{BE,I}) that satisfies

the following conditions

0= A% + A5 + A5 — A°
€n+¢s
e+ (1-2)¢°

n

1=[1-G()

n

& > Bn {g+¢8 +anb [/ (" — &) dG(e) + MW/:H (g—sn)dG<€)H

€L (1 - )‘) ¢S
with “="if A3 >0, and (1 — Bn) A3 =0 for k € {B, E}.
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Proof. The equilibrium conditions in the statement of the lemma are obtained from —
by using ¢; = ¢y, ¢ = @'y, A3 = A3 for j € {B,E, I}, and & = (¢; — ¢}) & =
- =c" m

The first equation in the statement of Lemma [J is the second-subperiod market-clearing
condition for equity. The second equation is the first-subperiod market-clearing condition for
equity (or bonds). The remaining three conditions are the Euler equations for equity corre-

sponding to investors, bond brokers, and equity brokers, respectively.

A.5.3 Sequential monetary equilibrium

Definition 5 A (sequential) monetary equilibrium is an allocation ((A§t+1)k€{m’s}>je{8 2
and a sequence of prices, {pt, qe, ¢, ¢}, that satisfy the siz optimality conditions, —
(with &?tﬂ = flftﬂ), and the four market-clearing conditions, flthH + ASEHI + flit_ﬂ =

A%, Ay + Ay + A = AT and :

Definition [5] follows from Definition [1] after recognizing that all agents of the same type j €
{B, E, I} choose the same end-of-period portfolio that is characterized by the Euler equations
derived in Lemma [5] and using the explicit version of the market clearing condition for equity
in the OTC round derived in Lemma Given the equilibrium objects in Definition [5| the
bargaining outcomes, which are part of Definition [I] but not Definition [5] are immediate from
Lemma [2

According to Definition[5] a monetary equilibrium can be characterized by sequence of prices,
{pe, ae, o1, 67172, and an allocation <(f~1ﬁ+1, A?t-}-l)kG{m,s}) that satisfy the following

JE€{B,E.I}
market-clearing conditions

0= AthH + AsEt+1 + A?tﬂ - A°
0= A%Ltﬂ + Agtﬂ + A%H — Al

ATl + peAg, AT, + A7
+ a1 1-— G E* t ¢
Dt | (i) Pt — AP

1
0=[1-x(1q¢") aAth — X (L, q:9{") Ap; Ay

0=aio[l -G (e]p)] — [A% + (a10 + a11) A}y

1
+ oo {[1 X (L) AT (1) 3] }

Ay ¢f

g Al + e AL
bt — )\Qtﬁbf

qt

+ a1l { [1 - H{1<qt¢?‘} - H{qtqbznzl} (1—- Xll)] G (e111) — 1-G (5T1t)]}
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and optimality conditions
(¢t - 5EtUBt+1) Bi+1 =0 < " — B]EtUBtJrl
(67 — nEtUBt+1) Btr1 = 0 < ¢f — BnEivp,
(67" — BEWg,41) Ay =0 < 6" — BEOF, 4
(65 — BNE0Ey 1) Alpyr = 0 < ¢f — BE@,,
(67" — BEe 1) ATy =0 < ¢} — BE
(67 — BnEvF, 1) A5 =0 < ¢f — BB,y

where €7, is given by 1) €714 is given by 1.' 1= =z d,m -1,
1 1
~Mm — t+1
UBt+1 = —— 1—- S —— I m
t+ Qis1 ( 1+ Z?—ll—l {Zt+1<0}
e =(1— )\LH #°
Bt+1 = 1+, {iy <0} ) Pt+1
1
—=m — m *
v = - —e Iy .
Et+1 = P11 Pt 106+1Yt+18ex ) <0}

~S — =m
Vg1 = Pt+1VEe+1

and
) 1
Urir1 = G + (o + a11) 0 (qm - ¢ﬁ1> Yo, <1}

EH 1
+ 10 + 11 (1 = 0)] / (e — €lots1) yey1——dG(e)
€ Pt+1

*
10t+1

1

€H
+anf / € = €l1p11) Ye+1dG(e)
P41 — AG419¢4 €141 ( * )

1

€10t+1 N
+ [a10 + a11 (1 — 6)] / (510t+1 — 6) yr+1dG ()

€L

El1t+1 by S €H
+ a116 / (11441 — €) Ye41dG (e) + G101 / (e = €l1e41) Ye+1dG ()
15

S
er Pre1 = M1y Jer,,

A.5.4 Sequential monetary equilibrium with credit

The following result states that the credit market would be inactive if the net nominal interest

rate on bonds, 7} = ﬁ — 1, were negative.
t
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Lemma 10 Consider a monetary equilibrium. If the bond market is active in period t, then
qdy" < 1.

Proof. In an equilibrium with 1 < ¢;¢}", the market-clearing condition ((161)) becomes

g}
Dt — At ¢t

This condition can only hold if A%, = A}, = [1 — G (¢];,)] (AT} + ptA},) = 0, i.e., if the bond

market is inactive. The condition 1 < ¢;¢;" implies bond demand is nil, so the bond market

0= X¢; (Af; + a01Ay) + aonn—————= [1 — G (e11)] (AT + peAT,) .

can only clear with no trade. m

According to Lemma a monetary equilibrium with an active bond market can be charac-
terized by sequence of prices, {p:, q¢, ¢, ¢} }72, and an allocation ((flft“, A?tﬂ)kze{m,s}) -
j e K b
that satisfy the following market-clearing conditions

0=AB1 + A + Al — A°

0= A%+ AR + Al — AT

AT + ptAS * AT + ptAs

o [1 - G (eg)] o
bt Pt — Aqtdy

1
0= (1—1Igger=13XB) ;Agt

0=aio[l — G (eln)] — [A% + (10 + an) AR

+ o1 {( XOlH{Qt¢m_1}) A]t H{qt¢?:1}X01A¢fA?t}

Ay ¢f
- )‘Qtﬁbf

ATy + pe Ay

+ 11 { [1-— Ligeprm=1y (1 — x11)] G (11) — a

En)

and optimality conditions

(o= o) Ay =0 < o - oL
qi+1

(¢t ﬁnEt¢t+1) SB t41 =0 < o7 — ﬁnEt¢f+1
()" — BEUE 1) Z}t+1 =0< ¢ — BEUg;
(¢f — nEtUE‘t+1) Etr1 = 0 < ¢f — BnEvg,
(67" — BET; 1) ATy = 0 < )" — BE}

(65 — BE;, 1) Afyy =0 < ¢ — BB},
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where
Vi1 = Ory —Lé* Ys1l
Ft+1 t+1 Dot 1061 Y18 e <0}
=S — =m
VEt+1 = Pt+1VE11

and

_ 1
Vi1 = Opyq + (a1 +ai11) 0 ( - ¢ﬁ1>

qt+1
EH 1
+ a0 + a1 (1 - 6)] / (e — €Tor41) Yrr1——dG(e)
€lot41 Pt+1
0 ! / (e etiye) peandG(e)
+ o E—¢
e — A7 e neet) Y

~S — = S
Urtp1 = EYr1 + Qi

elot+1 .
+ [0 + a1 (1 = 0)] / (lorr1 — €) Ye+1dG (e)

€L

el1e41 N Ag gbs €H .
+ ant / (511t+1 - €) Ye+1dG (g) + et / (5 - 511t+1) Yi+1dG () | -
15

S
cL Pre1 = Aer19iy1 Jey,,

A.5.5 Recursive monetary equilibrium with credit

The following result summarizes the conditions that characterize a recursive monetary equilib-
rium (RME).

Lemma 11 A recursive monetary equilibrium is a vector (€3¢, €31, ¢°, Z, (AZ, Zy)ke(B,E,1}) that

satisfies the following conditions
0= A% 4+ A5 + A5 — A°
0=2Zp+Zg+ 21— 2

* S Z AS
0= {anli- Gl +anh -] L (I )

— [AE + (a10 + o11) AJ]
_ _ s _ s _ 5>{0 + d)s S AS
0= (1 H{Efozefl}XEg) Zpd” + a0 {(1 XOlH{Efozefl}) ZiA H{Efozsfl}X01 €] + ¢° AP AI}
Ap®
e+ (1=A)¢°

Fan {6 1Ty 0= )] - - GED) bizids 4 (eio + ) a1
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Mz =0<T7Z
545 =0<T%,

where X g, Xo1, X11 € [0,1], and

m B 5T1+¢8
={1-21 ey
I { u[ +(a01+a“)6<6’{o+¢3

oo+ (1=0) s [ =<l dG(e

*
10

et r LT }

€>{0+¢S 51(1_{'(1 — X

§ = {qﬁs — 677{5 + ¢° + [a10 + a1 (1 —0)] /810 (€10 —€) dG (e)

€L

+and [ [ Eh—ade o+ i [ e e

*
€L €11 + (1 - 1

I

Proof. The equilibrium conditions in the statement of the lemma are obtained from the
ones in Section by using ¢f = ¢°ys, PPl = Pror = PloYe, Pt/ Gt = Pr1r = P11Yes Al = Aj

with A3 = nflj forj € {B,E}, A3 =nA5+ (1 —n)A°, and Z > 0.

for ] € {ByEaI}7 QS?A?Z = ZASyta gb:nA;?f = ZjASytv fOI‘j € {BaEvl}a 6{01‘, = (ptﬁb{n - qblf) i -
— % % _ . N * +¢s Am s
¢i0 —¢° = €l €l = (pt/Qt—¢f)y*1t = ¢ — ¢ = €11, Pt = %7 ot = Zﬁ;nyt,

E* +¢.§ A’VTL —_ — - i
= ma Gir1/P; = Pror41/P1or = Prre1/P11e = Ver1s Pe1/Pe = p, and ¢ /¢y =

Qe1/q = 11/ Vipr- ™

The first and second equations in Lemma are the second-subperiod market-clearing
conditions for equity and money, respectively. The third and fourth equations are the first-

subperiod market-clearing condition for equity and bonds, respectively. The remaining six

99



conditions are the Euler equations for money and equity, corresponding to bond brokers, equity

brokers, and investors, respectively.

Corollary 6 Consider the economy where brokers do not hold assets overnight. A recursive

monetary equilibrium (with credit) is a vector (€3, €51, ¢°, Z) that satisfies

* S Z
0= {anlt = G el +on 1 6 e o=} (2 1) — (om0 v an)
B e* 4 qbs .
0=oan [(1 B XOIH{ETOZEE}) Z- H{ayfo:ql}xmh)\gb ]
>\ S
-Hm{G@nh—%%ﬁﬁu—nﬂ—u—G@m%ﬁ+JLM¢}w+amw%

where Xop, X1y € [0,1], and

i = (a0 +a )9(571%3 1>+[a o (1— 6)] — /sH(e £0) dG(e)
= (a1 +an)0 | 5 — 0 —0)] ———5 -
1 S0t é 1 11 ot 0 ) 10
e* +¢S 1 EH
+ a2 S/ e—¢ej1)dG(e
A (VT AR
1—0 1o
L PO 0)}/ (e — ) dG (o)
Bn €L
9/5{1(* )dG (e) [ e—aia
+a €11 — € €)+ = 3 E—¢ €)] -
H €L H €1 + (1 - )‘) ¢ €71 H

A.6 Continuous-time limiting economy

In this section we derive the equilibrium conditions for the continuous-time limiting economy

(as A — 0) in which brokers are assumed not hold assets overnight.

A.6.1 Equilibrium conditions

Lemma 12 Consider the limiting economy (as A — 0) where brokers do not hold assets

overnight. A recursive nonmonetary equilibrium is a pair (", ) that satisfies

1_1—G(5")
D)
en Y el
¢:5+a119[/ (€ —e)dG(e)+ —— [ (e = ey da(e)] .
g = /.
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Proof. From Lemma [0} if the period length is A, an equilibrium for the economy where
brokers do not hold assets overnight is a pair (¢, ®° (A)) that satisfies
e" 4+ @° (A)
+ (1 =) Ps(A)

1=[1-G() 5

P (A) = Bn{é + ®° (A) + anb [/e" (e —€) dG(e)
AP (4) / " (e — e dc(e) }
SUA 4+ 35 (A) A

e+ (1 =X) P35 (A) Jon
e"A 4 (1—-X) P (A)A

This can be written as

1=[1-G (")

n

oM (A)A =Z+ o160 [/E (5” _6) dG(&)

€L

r+0—g-+giA
(1+gA)(1—-0A)

AD (A) A ew
+ e”AJr(l—)\)(I)S(A)A/En (£ =" dG(e)

Take the limit as A — 0 to arrive at the conditions in the statement of the lemma. m

Lemma 13 Consider the limiting economy (as A — 0) where brokers do not hold assets

overnight. A recursive monetary equilibrium (with credit) is a vector (€74, €11, ¢, Z) that satisfies

0= {am (L= G ()] +an [l — G )] 1_1A} <Z + 1) ~ (a0 + an1)

¥
zZ
0=an <1 - X01H{a;0:e{1}) o Wegomep, oA
Z

Fan {6 [1- 1y -] - -Gl 25 | (£41)

where xo1, x11 € [0,1], and

em
vp = (ao1 + a11) 0 (€71 — €7p) + [0 + a1 (1 — 0)] / (e — €10) dG(e)
6*
1 .- ) 10
+ a1191 Y /E (e —€11) dG(e)
€0 N
o=zt lan+an1-0) [ (- 2dG )
er
ey by €H
+ a6 / (] —€)dG (e) + —— (e —¢e71)dG (e)] .
€L L=A el
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Proof. If the period length is A, the equilibrium conditions in Corollary [6] generalize to

0= {Ouo 1 G o))+ om 1~ G )] jt 1*_@:)(32 5 } (8% i (@Aj( &7+ 1)

— (@10 + o11)
0=on [(1 B XOIH{ETOZET1}> Z(A) - {Elo—gll}xmm)\@s (A)]

+ Oén{G (e71) [1 - H{g;o:s;l} (1- Xll)}

(=) e B G } Z(2) + o + 2 ()

where Xg1,x11 € [0,1], and

* *
€11 — €10

P — g—11 =10
v (o1 + a11) ENRE SN

1 i
1_ _ *
+ [an0 + s e>1*q0+¢sm [, €= ciace)
el + @7 (A) H
] 11 / —¥YdG
o ) A, e
r+d—g+géA /
(1+9A)(1—5A)(I) (A)A_€+[a10+a11 810 (8)

+ a110

[ en-adce

€L

AP (A) o
S (-0 (A) / (E—e)de @)

These conditions can be rewritten as

O:{alo[l_G(E’{o)J+a11[1—G(sT1)] A+ 8 (A)A }( Z(A)A

1
A+ (TN (M)A [ \epA+ @ (M)A T >
— (1o + a11)

B B 510A +o°(A)A |

+ a11{G (71) [1 - H{qoze;l} (1- X“)}

) AD* (A) A
-1 -G ()] LA+ (1-N) D5 (A)A

} [Z (A) A + elgA + @° (A) A]
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where Xg1, x11 € [0,1], and

> €11~ €10
A~ o) b G A A
1 cH
+ (10 + 11 (1 — 0 e —¢ej9)dG(e
[0 + a1 ( )]€T0A+@8(A)A sfo( 10) dG(e)
e A 4 F (A) A 1 en

+ o160 (e —€11) dG(e)

E0A+ & (M)A AT (1 - NS (A)A L

r+0—g+giA
(I1+gA)(1-46A)

O°(A)A =2 + [a10 + a11 (1 — 0)] / e = 2)dG (&)

€L

el
+anb / (€1, — £)dG ()

€L

AD® (A) A en .
TS AT NP B)A /6{1 (e —el) dG (e)

Take the limit as A — 0 to arrive at the conditions in the statement of the lemma. m

Corollary 7 Assume G (¢) = Grlic, <cccpyy + Liepy<cy-  Consider the limiting economy (as
A — 0) where brokers do not hold assets overnight. A recursive nonmonetary equilibrium is a

pair (g™, ™) that satisfies

1 n
1= 1- Z Grx (", er) (167)
ke{L,H}
A
SOn =<+ a119 Z Gk (8” — €k) I:]I{Ek<5n} — ﬁﬂ{5n<5k} s (168)
ke{L,H}

together with a mized indicator function x (€™, ex) € [0,1] for ey € {er,en}.

Corollary 8 Assume G (¢) = Grli, <cccpyy + ley<ay- Consider the limiting economy (as
A — 0) where brokers do not hold assets overnight. A recursive monetary equilibrium (with

credit) is a vector (¢]y,€71, ¢, Z) that satisfies the market-clearing conditions for equity and
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bonds

Z * *
0= <<p + 1> {0410 [Grxio (€i0,62) + Grxib (€0, €m)]

S * S * ]'
+ a1 [GLX1% (ei1,e0) + Guxit (g1, 5H)} 1_)\}
— (a10 + 11)
Z
0= an [(1 B XOIH{Efozaﬁ}) E B H{STOEE}XOl)\]

Z A
ran(Z+1) GL{ - H{Em—su} (=) T ceny = T 7 o)
+ [H{Ey{0<5’1‘1} (1 - Xil) Xll 1-— {EL 511}}

Z bH A
ran(Z+1) GH{ LRLTENES! (1 = X) e cer} = T 5 etncen)

+ []I{E,{()Qﬁ} (1- Xt ) - Xit 1 i ] {en= a11}}
and the Euler equations for equity and money
o= 2+ oo + ot (1— 0)] [GLH{ELSaIO} (€10 —er) + Gl <oy (€10 —€m)
+ a119{GL (e11 —er) [H{ELQE} B li)\]l{quL}]

. A
+ Gy (511 - 6H) |:H{5H§6{1} - 1— )\H{6{1<€H}:| }
wp = (o1 + a11) 0 (€11 — €1p)

+ [a10 + a11 (1 - 0)] {GLH{ETOQL} (er —¢lo) + Grlyy ooy (61 — Eio)}

+andy— [Gilp; <o,y (E0 i) + Gl oy G = <01

where xo1, X35, X35, X8 X3 € [0,1], and xTo (), X35 (5, XG55 (4 0) and X358 (-, +) are “mized

indicator functions”.

Since the distribution G (¢) = Grl{c; <c<cyy + [fe, <) consists of two mass points, an

equilibrium may involve sets of agents with strictly positive measure who are indifferent between

a pair of assets. For example, if €], = €7, then the nominal interest rate on inside bonds is
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zero, and type 01 investors are indifferent between holding bonds or money. For this reason,
in general we introduce the variable x(; that represents the fraction of beginning-of-period
financial wealth that an investor of type 01 chooses to hold in the form of bonds. Similarly, for
je{L,H}, X{O(afo, g;) is the fraction of beginning-of-period financial wealth that an investor
of type 10 and valuation ; chooses to hold in the form equity by the end of the OTC round,
Xﬁ (€71,¢€5) is the fraction of beginning-of-period financial wealth that an investor of type 11
and valuation €; chooses to hold in the form equity by the end of the OTC round, Xlﬁ (e11,€5)
is the fraction of beginning-of-period financial wealth that an investor of type 11 and valuation
€j chooses to hold in the form bonds by the end of the OTC round, X‘;Jl = Xﬁ (¢j,€5), and
eI

A.6.2 Existence of equilibrium

Proof of Proposition The conditions and in the statement of the proposition
are the equilibrium conditions derived in Lemma Clearly for any A € [0, 1] there is a unique
€™ that satisfies , and given €™, the normalized equity price ¢ is given by . ]

Lemma 14 In a RNE,
de™ 1
> oae

do™ 1 /6H
—— =ap—— e—e")dG(e) > 0.
A\ 11 (1_)\)2 n ( ) ()

Proof. The first result is obtained by implicitly differentiating . For the second result,
differentiate :

%(‘On — 04110 |:/‘E (g” — 5) dG({;‘) + ﬁ iH (5 _ En) dG(E):|
oy de” A g dE™ 1 €H "
:a110|:G(€)d)\_1—>\[1_G(€ )]CM+(1_A)2Ln (€—€)dG(€)

_ allea—lx)? /H (e — ") dG(e).

Proof of Proposition [2| Set ap; = 0 in the equilibrium conditions reported in Lemma [13] to

obtain
0= {am 11— Gl +on [l - () 1_1A} (j . 1) Clawton)  (169)
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. DY
0=G i) |1 =gy ey A=) — =G T (170)
eH
wp = anb (17 —€1g) + [a10 + a1 (1 — 0)] / (e — €1p) dG(e)
E*
1 . 10
+and / (e — e1,) dG(e) (171)
1=\ L
1o N
p=ctlan+an1-0) [ (-6 E)
€L
el A €H
+and / (51— )G (&) + 25 [ (= h)dG E) (172)
€L el

where x1; € [0, 1]. These are four equations in four unknowns. The unknowns are (¢3,,¢7;, ¢, Z)
if ey < €7y, or (€%, x11, 9, Z) if €] = €] = " (recall and Lemma [10]imply €}, < €}, in a
monetary equilibrium with credit). We consider each case in turn.

(i) Suppose €7y < €7;. In this case, implies €], = ", where €" € [er,ep] is the unique
solution to G (¢™) = A. Combined, conditions and imply a single equation in the

unknown €7, that can be written as 7" (¢],) = 0, where

EH 1

T (2) = anf (" — 2) + [a10 + ar1 (1 — 6)] / (¢ — ) dG(e) + a0 /H (c — ") dG(e)

_ L{E—i- [a1p + 11 (1 — 0)] /I (x —e)dG (e)

€L

€H

+anf [/ (" — £)dG (e) + % (5—5”)dG(5)} }

£ en

Differentiate T" and evaluate the derivative at x = €7, to obtain
T’ (e10) = —{emb + [0 + a1 (1 = O)J{[1 = G (1p)] + G (1) }} < 0.

Hence if there is a e}, that satisfies T (¢3,) = 0, it is unique. Notice that

T(er) =anb (" —ep) + oo+ ann (1 —6)] (E—er) + 041191 i S /iH (e — ™) dG(e)

€H

€L en
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so 0 < T (er) if and only if ¢ < 7(\), where 7 () is defined in the statement of the proposition.
Also,

T (") = {Oqo + o (1 + Hli)\ﬂ /:H (e — ") dG(e)

n

€H

e™ A
—L{€+(a1o+a11)/ (E"—a)dG(a)—i—aH@l_)\/

(e —e")dG (E)} ,
€L n
so T (") < 0 if and only if 7 (A) < ¢. Thus if i (A) < ¢ < 7(\), there exists a unique €7, that
satisfies T'(¢7,) = 0, and €} € (e,€"). Given £}, and €};, ¢ is given by (172). Finally, given
€10s €11, and ¢, Z is given by , which can be written as . From this expression, it is
clear that 0 < Z < aj9 > 0 and ¢, < €}, (and the latter condition is implied by ¢ < 7 (\)).

(7) Suppose €], = €]; = ¢*. In this case, (169))-(172)) become

ajg+app =1 — G (7] <a10 + o1 1 i )\> <i + 1) (173)
Xu =g A X 1 GZS*) (174)

o = [oqo + o (1 . ellAﬂ /H (e — &) dG(e) (175)

¢ =€+ (oo + a11) /Si (e —e)dG (e) + a1191 i 3 /:H (e —€")dG (g). (176)

Conditions (175 and (176) imply a single equation in the unknown * that can be written as
T (e*) = 0, where

T(c") = {am +aur {1 F (1) 91—)\)\] } /H (e — ) dG(e)

*

€+ (0410 + 0411) /E (6* — 8) dG (6)

€L

— L

Differentiate 7 and evaluate the derivative at the €* that solves T (¢*) = 0 to obtain

T (8*) -, {5+(a10+a11)f€€: (e*—€)dG(e)

[TH (e—e*)dG(e) [1—G(Ee)] + (a0 + an) G(s*)} <0,

with “=" only if ¢« = 0. Hence if there is a ¢* that satisfies 7 (¢*) = 0, it is unique. Notice that

T (eq) = —t[E+ (1o + an1) (eg — &)],
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so T (eg) < 0 if and only if 0 < ¢. Also,

T (") = {alo +aun {1 + (1= el_AA] } /:H (e — ") dG(e)

E’n
— 1 |:§+(0610+Ck11)/ (En—s) dG(E):| ,
er
s0 0 < T (¢")if and only if « < 7(N). Thus if 0 < ¢ <7 (\), there exists a unique * that satisfies
T (") =0, and e* € [e",ep) (with e* = ™ only if « = (\)). Given €%, x; € [0,1] is given by
(174]) and ¢ is given by (176). Finally, given £* and ¢, (173)) implies Z. m

Lemma 15 The real asset price in the RME is higher than the real asset price in the RNE,
1.€.,
(i) If i (X\) < ¢ <7 (N), then

*

0 < [a10 + an (1 — 0)] / (€% — ) dG (£) < @ — ", (177)

eL
(ii) If 0 < v < T (N), then

*

0 < [ar0+ a11 (1 —10)] /E (e"—e)dG (e) < p— ™. (178)

€L

Moreover, in any RME, ¢ < =&+ (10 + a11) (eg — &), with “=” only if 1 = 0.

Proof. (i) If 1 (X\) < ¢ <7 ()), (L77) is immediate from ([d5)). (i) If 0 < ¢ < i (A), use (A1)
and the expression for ¢ in part (i7) of Proposition [2| to write

*

90—90n=0410/6 (" —¢€)dG (¢)

€L
.

€ A -
+OZ11/ (5* —E) dG (E) + a116 / (6—5*)dG (5)
. 1-x /.

€ A €H
— a6 [/ (e" —e)dG(e) + (e—¢") dG(a)] .
. 1A Jon
Define
x by €H
T (2) = / (@ —2)dG(E) + —— [ (e — ) dG(e) (179)
€L I-A T
and notice that for all z € [e",eq],
Y () =G (z) — % [1—G(z)] >0, with “=" only if x = &". (180)
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Thus, since 0 < ¢ < i (A) implies " < &*, we have

80—@”20410/8 (e* —¢e)dG (¢)

€L

*

-i-OtH/E (5*—€)dG(E)+a1191i)\/jH(6—5*)dG(€)

€L

ot l/ (e -0 daE) + 2 [ (e—edaE)]

€L 1_)\ e*

which implies (178)).

To show that ¢ < &+ (a9 + a11) (eg — ), we again consider two cases. First, suppose
1 (A) <t <7(A). In this case,

0 — 1 = ap [/alo(efo—e)dG(e)—(6H—é)]

€L

+ a11
er

07 (") + (1 - 0) / e = £)dG () — (en — 5)]
< 0.

Second, suppose 0 < ¢ <7 (A). In this case,

€L

=1 =ajg [/g (5*_5)dG(€)—(€H—E)]

+ a1

/S (5*—s)dG(E)%—Gli/\/;H(5—5*)dG(E)—(aH—a)]

er

< atg [/ (" = £)dG () — (e —2)| +an [T (%) - (1 — )

€L

<0.

To conclude, notice the last inequality is strict unless ¢+ — 0, which implies €* — g, and

therefore p — . =

Proof of Proposition |3 Part (i) is an immediate corollary of Lemma For part (i), we
consider two cases in turn.

If2(N) <t¢<i(A), then

. oT(=3)
defo _  —o - _ —? <0
du T’ (€10) —{anf + oo +an (1-0)]{[1 -G ()] + G (1)}
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where T (+) is the equilibrium map defined in part (i) of the proof of Proposition Then, from

&) d de;
% E
%2~ g+ an (1-0)]G () =2

du 0 < 0.
If 0 <t <7(A), then
* oT (e*
et T L, By
dv T <€*) E+(aro+air) fs* (e*—)dG(e) )
- { I =G [1—G(e*)] + (10 + a11) G(e¥)

where T (-) is the equilibrium map defined in part (ii) of the proof of Proposition Then,
differentiating the expression for ¢ in part (i7) of the statement of Proposition

d de*
di(f = |:(O£10+0111)G(6*) —011191_)\ [1 —G(€*)]:| d .
Notice that
A
0 = (Oﬁl() =+ Ckll) |:G (En) — ﬁ [1 — G (€n)]:|
* A *
< (ot an) [G () - 125 1= G ()]
A
< (oo + a11) G (e%) — a1191 — 1-G ()],
where the first inequality follows because G (z) — 25 [1 — G (2)] is increasing in z, and " < &*

for all 0 < ¢ <i(A). Hence, dp/dt < 0. m

Proof of Proposition [4. A nonmonetary equilibrium of this economy is a pair (", ¢™) that
satisfies (167)) and (168]), together with a function x (¢",ex) € [0,1] for € € {eL,en}. For any
¢ € R, define
1-G(e) = Z Gjx (g,€5)
je{L,H}

=lece,y + (GLXp + Gu) Ly + Gulie ) cocepy + GaXplie=c )

where ¥;,Xy € [0,1]. For any ¢ € R, define the mapping T (¢, x7, xz) = A — G (¢), with
X =1—x; for k€ {L,H}. More explicitly,

A ife<eg
) A =Gy ife=¢p
Tlexwxm) =4 \_gq, if e <e<em

/\_GL_GHXH ife’;‘:é‘H.
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An equilibrium can now be described by a triple (", x 1, X), With x,, Xz € [0, 1] that satisfies
T (", x,xXg) = 0. Given ", ¢" is obtained from . There are three possibilities: either
A< Gp, or G, < A\, or A\ = G. First, if A < G, then the equilibrium is (¢, x;, xy) =
(er, X7, xm) and xg € [0,1], where R
XL =G

To see this, verify that T (¢', xr, xg) < T (e, X5 xm) =0 < T (", x, xp) for all €’ < ey, all
e’ > ¢ep, and any x7,xg € [0,1]. Second, if Gy < A, then the equilibrium is (", x, xy) =
(em, X1, X3) and xr, € [0,1], where

. A-Gy

To see this, verify that T (eq, x1, X}y) =0 < T (¢/, xp, xg) for all & < ey, and any x,xg €
[0,1]. Finally, if A = G, then an equilibrium is any (¢", x,xy) with €” € (er,eqy) and
X, xm € [0,1], as well as (¢",xz,xy) = (¢r,1,xg) and xy € [0,1], or (", xp,xn) =
(em,x1,0) and x; € [0,1]. m

Proof of Proposition [5l The equilibrium conditions are given in Corollary [8l An equilibrium
can take one of seven forms: (Al) e;, = €y = €, < €m, (A2) e, < €}y = €}, < €m, (A3)
e <éejg=c¢l, =¢€m, Bl)ep =€y <€l <em, (B2) ep =¢fy <efy =em, (B3) er <€y <
€1 <em, (B4) e, <ejy < ey =en. We consider each in turn.

(A1) If e, = €]y = €] < €m, the Euler equations for money and equity imply

@ZE—G—O&HH?TH (EH—EL)

1—A

and also ¢ = 7 (), so this case is of measure zero in the space of parameters.

(A2) If ef, < ]y = €]; = €* < ep, the equilibrium conditions specialize to

Z 1
O0=—+41) a0+ an Gu — (a0 + agp) A® (181)
© 1—A
Z A Z
O = Q1 |:(]_ — XOl) ; — XOl)‘:| + <O[11GLXI{% — OéllGHl_)\> <g@ + 1) (182)
A
L = {a10+a11 |:1+0 <1—A>:|}GH (€H—E*) (183)
A
o=+ +a1(1—-0)]Gr(e" —er) +anb [GL (" —er)+Gu(eg — &%) 1_)\] . (184)
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Conditions (183 and (184]) imply and , and condition ([181)) implies . Condition
(182) (together with (181)) implies that x,; and x4 must satisfy x4 = 9 (xq;), where

a1 (o1 + o + o11) G — ao (a1 + an1) G,

a1 (a0 + a11) G,

Q01 {041() [1 — GH (1 — )\)] + OéllGL}
a1 (a0 + a11) G,

9 (Xo1)

+

01-

Any xo; € [0, 1] is consistent with equilibrium as long as ¥ (xq;) = x%¥ € [0, 1]. Notice that

o1 {alo [1 -Gy (1 — )\)] + allGL}

> 0 with “=" only if ag; = 0.
aip (a0 + a11) G,

g (Xo1) =

Hence 9 (0) < 9 (xo1) = x4 < 9(1). Tt follows that this equilibrium configuration does not
exist if either ¥ (1) < 0 or 1 < ¥ (0), since in this case there does not exist x4 =9 (xq;) € [0, 1]
for any xo; € [0,1]. Equivalently, the equilibrium exists if we have both, 0 < ¥ (1) and ¥ (0) < 1.
The condition 0 < ¢ (1) is equivalent to

_ o (ao1 + @10 + a11) Ga 25 + agra1oGa A
B a1 (o +a11) G,

Y

which always holds. The condition ¥ (0) < 1 is equivalent to parametric restriction A < A.
The equilibrium is then fully described by and , and a pair (Xm,xl{f) such that
X8 = f(xo1), and xq; € [Xy1> Xo1] N [0, 1], where x, is the solution to f(x,,) = 0 and Xq is
the solution to f (Yy;) =1, i.e.,

aot (a1 + a11) G — a1 (a1 + aio + a11) Gu 2y

XOl - a0l {Oél[) [1 — GH (1 — )\)] + allGL}
_ (o +an) (a0 + a11) G — anx (ao1 + a1 + 1) Guly
Xo1 api {ao[1 =Gy (1 —N)] + anGr}

N < leaotan)Gr e

For the equilibrium to be monetary, we need 0 < Z, or equivalently, w100t

this condition is implied by the parametric restriction A < A. The conjectured conditions
e, < €* < ey are equivalent to the parametric restrictions 0 < ¢ < i (A). Hence this equilibrium

configuration exists for (¢, \) € .
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(A3) If e1, < €]y = €]; = €m, the equilibrium conditions specialize to

Z 1
0= <(p + 1> <OZ10GHX11% + allGHXﬁ{l_)\> — (0110 + 0411) (185)
Z A Z
0= aon (1= x0) 2 = xod| +an (Goth -Gl 25 ) (241) aso)
o 1-X/) \¢p
=0 (187)
g0=<§+(0410+0z11)GL(6H—€L). (188)

The equilibrium consists of any (Z , X{%, X015 leji , X‘i{{ ) that satisfies l} and 1 , as well as
Z> 07 and X{{%XODX{I){/:XT{{ < [07 1]

(B1) If e, = €} < €11 < €m, the equilibrium conditions specialize to

Z
0= (s@ + 1> [Oqo (GLxio + Ga) + allGHl — )\] — (10 + a11) (189)
Z Z A
O=apr—+a1 | —+1 G, —-Gyg—— (190)
¥ ® 1—-A
= (apr+a11)0 (el —er) + o+ a1 (1 —0)] Gy (eg —er)
1
+ a1101 — )\GH (eg —e7y) (191)
A
Y= g+ 05110 |:GL (6?1 — EL) + GH (EH — 5;1) H:| . (192)

Conditions and imply and . From , Z is given by , and from
, X%o is given by . For this configuration to be a monetary equilibrium equilibrium we
need to check: (a) 0 < x¥) <1, (b) e, < &%, < en, and (¢) 0 < Z. The conditions in (a) are
equivalent to the parametric conditions G < A < ). The conditions in (b) are equivalent to
the parametric conditions i (A\) < ¢ < 7. Condition (c) is implied by (a). Hence this equilibrium
configuration exists for (¢, ) € £3".

(B2) If ef, = €} < €} = €m, the equilibrium conditions specialize to

Z 1
0= (so + 1) [0410 (Grxio+Gu) + OénGHXﬁ{H] — (@10 + a11) (193)
Z Z 1
Lp = {(0401 + 0411) 0+ [0410 + a1 (1 — 9)] GH} (<€H — z’:‘L) (195)
o=+ anbGyr (eg —er) . (196)
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Condition ([196|) gives ¢. Condition (194)) implies

H_1
z a1 (GHX‘E = — 1)
— = . (197)
Y ap —an (GHXﬁqﬁ - 1)
Given Z /¢, then (193) is a single equation in the two unknowns X1LOa Xiq{{ € [0,1], namely

1
ool + a11) (a1p + oq1) — agaGy (@01 +awo +onn) onGr—
o= - TG

apraoGr apraoGrL

The complete characterization of equilibrium requires to find (Z,Xfo,xﬂq ) with 0 < Z and

xho, X3 € [0,1] that satisfy (197) and (198). Notice that conditions (195)) and (196] imply the

parametric restriction ¢ = 7, , so this case is of measure zero in the space of parameters.

(B3) If ef, < €}y < €11 < €m, the equilibrium conditions specialize to

Z 1
0= <90+1> Gy <a10+&111_)\> f(OéloJrall) (199)
Z Z A
0=ap— + a1 <+1) (GL—GH> (200)
% % 1—-A
vp = (o1 +a11) 0 (€11 — €]p) + [0 + 11 (1 = 0)] Gy (e — €1p)
—1—041101_/\GH (e’:‘H—ETl) (201)
o=+ [aro+ a1 (1 —-60)]Gr (el — 1)
A
+ o116 |:GL (ely —er) + Gu (eg —€11) 1_/\:| . (202)

Conditions 1D and |i imply the parametric restriction A = ), so this case is of measure
zero in the space of parameters.

(B4) If ef, < €7y < €1 = €m, the equilibrium conditions specialize to

Z 1
0= (QO + 1> Gy <Oé10 + Ozuxﬁ—ll_)\) — (011() + Oé11) (203)
Z Z s 1
O:amg—i-an <90+1) [GL—I—GH (1—)(1{{1_)\)} (204)
Lp = {(Oz(n + Oql) 0+ [Ozlo “+ a11 (1 — (9)] GH} (é‘H — ETO) (205)
p =€+ [OélO + 011 (1 — 9)] Gy, (STO - SL) + 110G, (5H — 6L) . (206)

Conditions (205]) and (206) imply and . Conditions (203]) and (204]) imply and

a1 (ap1 + a0+ a11) + a10001GL
arr (o1 + a0+ a11) G

Xit = (1=
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For this configuration to be a monetary equilibrium equilibrium we need to check: (a) 0 <
iH <1, (b) e, < €}y < e, and (¢) 0 < Z. The conditions in (a) are equivalent to the
parametric condition A < \. The conditions in (b) are equivalent to the parametric conditions
0 < ¢ < 7. Condition (c¢) is implied by the fact that ¢ > 0. Hence this equilibrium configuration
exists for (¢, \) € E]". m

A.7 Cashless limits

Proof of Proposition [6] Without loss of generality, we compute the relevant limits along
a trajectory starting from any economy indexed by the (A,¢) such that ¢ € [ (\),7(N\)]. As
A — 1, the mapping T defined in part (i) of the proof of Proposition [2| converges uniformly to
the mapping Th—1 defined by

en

Tyt (2) = and(en =) + o+ an (1=0)] [ (6= )dG(o)

T

_L{E—i—[0410‘1'0411(1—9)]/x(l’—5)dG(€)+a110(SH—5)}.

€L

(This follows from the fact that limy_,; 25 JE (e — €M) dG () = limy s G,(E(i)) = 0.) Differ-

entiate Th—; and evaluate the derivative at x = €], to obtain
T5=1 (g10) = = {om10 + [0 + 11 (1 = O)]{[1 = G (¢Tp)] + ¢G (€10) }} < 0.
Hence if there is a €} that satisfies T' (¢3,) = 0, it is unique. Notice that
Ta=1(er) =E+anb(eg —&)][c(1) — ¢,
s0 0 < T (er) if and only if + <7(1). Also,
Th—1(ex) = —t[E+ (o + an) (g — &)]

so T (eg) < 0 if and only if 0 < ¢. Thus if 0 < ¢ <7 (1), there exists a unique €7, that satisfies
T=1(¢}y) = 0 (or equivalently, (64)), and €, € [er,en]. The limiting expressions and
are immediate from and . Finally, is the limit of the upper branch of . [

Proof of Proposition Without loss of generality, we compute the relevant limits along a

trajectory starting from any economy indexed by the (A,¢) such that ¢ € [i(\),7(N\)]. From
part (i) of the proof of Proposition we know that €], — €1, as ¢ = 7 (), so implies ,

implies , and the top branch of implies (66). m
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Proof of Proposition 8. With a9 = asa a11 = as (1 — a), can be written as

as {a[l—G(ai‘O)]—&-l—oz} [aG(ETO)—&-(l—a))\]
aG(afo)

if ¢ (a) <t <35 ()

V= adert-o) o )i-6) F0<r (o) (207)
aG(e*)+(1—a) 25 [G(e*) =] 1 Lt < S ().
First, notice that ¢ (a) < ¢(a) for all @ € [0,1], with “=” only if A = 0. Hereafter, assume

)
A > 0, and fix some ¢ € (0,

~I

(0))-
(i) For ¢ € (¢(0),5(0)) and o small enough, part (i) of Proposition [2] implies the monetary
equilibrium is a vector (&7,€3;, ¥, Z), where

n

gpzé+as{(1a)9[/€ (e™ —e)dG(e) 1_)\ i (e —e")dG(e)

Yo+ (1—a)(1l—0) / (e — ) dG (2) } (208)
aG (‘STO) © (209)

all-G(efy)]+1—a

€5, = €, and €], is the unique €}, € (e1,e") that satisfies T(s’{o;a) = 0, where for any

€% € [en,en], T (+;a) is a real-valued function defined by

T(efi) = (1— ) 0" — i) +fa+ (1= ) (1-0)] [ (e = i) dG(e)
1

+(1-a) Hﬁ /E:H (e —e™)dG(e)

—L{j+[a+<1—a><1—9>1/5” (¢t — ) 4G ¢)

S €r,

n

F(1—a)f [/ (5”—5)dG(8)+% - (5—5")dG(s)] }

€L en

As o — 0, the function T (-; ) converges uniformly to

~ €H
T(Sio,o):9(5n510)+(19)/ (57510)dG +91)\/ 5*5 dG )
€70 - en

—L{g+(1 ) / (el — £) dG ()

Qg eL

n

o[- 2 [e-vae] |
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Then is equivalent to T (€70;0) = 0, while , , and (71)) are obtained from (209)),
(207), and (208)), respectively, by taking the limit as o — 0.

(7)) For ¢ € (0,$(0)] and « small enough, part (i) of Proposition [2 implies the monetary

equilibrium is a vector (e*, x, ¢, £) that satisfies y = % 124?5(*6)*)7

*

o =E+as /(E (6*—€)dG(€)+(1—O€)9% jH (e —€")dG (¢) (210)
_ aG () + (1-a) L [G (") — )\]90, (211)
1-GE)] |a+(1-a) ]

and €5, = €]; = ¥, where ¢* € [¢",ep) (with ¢* = " only if ¢ = ¢ (0)) is the unique solution

to T (e*; ) = 0, where for any &* € [e1,en], T (-;a) is a real-valued function defined by

T (e a) = {a—i— (1-a) [1 (- L)el_AA} } /:H (e — ) dG(e)

*

*

5

+/6 (" — £)dG (&)

Qg eL

—

As o — 0, the function 7 (-; &) converges uniformly to

*

€+/6 (£* — £)dG (e)

Qg €L

F(e%:0) = [1+ (1- L)el_x] /H (e — ") dG(e) — 1

Then is equivalent to 7 (¢*;0) = 0, while while , , and (75) are obtained from
(211]), , and (210)), respectively, by taking the limit as « — 0. m

Proof of Proposition [9} The limits for £5,, ¢, Z/¢, and V in part (i) are obtained from

, , , and . The limits for e*, ¢, Z/p, and V in part (ii) are obtained from ,
64, ©3), and (60).

A.8 Capital accumulation

Definition 6 A sequential nonmonetary equilibrium for the economy with investment is an
allocation {Xt,Aerl}Zo and a sequence of prices, {e, ¢F, 9122, that satisfy: ¢; = etys + b5,

the law of motion for the capital stock,

Al =1 (A7 + Xo),
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the market-clearing condition for bonds

2

=[G 5,

and the individual optimality conditions
X = X (%)

and

&1
o = /BnEt{E?JtH + ¢f1 + onrb [/ (et41 — €) yer1dGle)

o

Notice that the structure of the equilibrium conditions in Definition [6] is recursive, i.e.,

N A /EH (e — £741) ver1dG(e)
¢t+1 - )‘¢t+1 R

one can solve for {e}', ¢ }72, independently of {X;, Af +1}Zo’ and then given {¢;}7°, one gets
{Xe}i2o = {Xe (¢7) }i2p, and given {X;}7°, {A§+1}Zo follows from the law of motion for the
capital stock. Moreover, notice the equations that characterize {e*, ¢; }{2 in this economy with
endogenous capital accumulation are identical to the conditions that characterize {7, ¢;}7°,

in the baseline economy that assumes A7 = A° for all ¢.

Definition 7 A sequential monetary equilibrium for the economy with investment is an allo-
cation {Xt, A§+1}z0 and a sequence of prices, {€50;: E314s Dt Q> Prs D5 1520, that satisfy: €51, =

(ptq% — gbf)i, o = (10" — b}) i, x11 = x (1,1) € [0,1], the law of motion for capital,
Al =n(4] + X)),

the market clearing conditions for equity and bonds,

AP+ po A o AT A
SRR [ = Gegy)] SR

0=ay[l —G (e —_—
10} (o) bt Pt — Aoy

— (1o + a11) Af

s
0= 11Tz pm=1 (1 — Gely) — —————=[1 -G (e714)],
[ {a:47 _1}( Xll)] (e114) Pt — Ao [ (e110)]
and the individual optimality conditions,
X = Xt (7)),
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and

ot = 5Et{¢ﬁ1 + (o1 +a11) 0 <1 - ¢ﬁ1>

gt+1
el . 1
Hlaw+an(@=0)] [ 7 (e i) v dGE)
€fot41 Pt+1
1 T ) 1 dG(E)
+ o110 / € — e} Yyr11dG (e }
Pea1 = M1y Jer, R

€lot+1
¢ = ﬁ"ﬂEt{EytH + @i + 10 + a1 (1 = 0)] / (etot41 — €) wi41dG ()

€L

i AG+19741 o
+ anb / (5T1t+1 - 5) Ye+1dG (€) + o s / (5 - 6,{1t+1) Y1+1dG (e)
cL Prr1 = Aqey1deia Jer,

b

Notice that the structure of the equilibrium conditions in Definition [7] is recursive, i.e., one
can solve for prices and marginal valuations independently of {Xt, A7 _H}:ZO, and then given
{67122, one gets {X¢};2 = {X¢ (6) 152, and given {X};°, {47, :Zo follows from the law

of motion for the capital stock.

Example 1 Suppose
fi (n) = wmn? (212)

for o € (0,1). Then the optimal amount of general goods that the investor devotes to the

production of capital goods is
1
9t (97) = (0w ¢]) T2 (213)

and the quantity of new capital created by an individual investor is

1

o S

o (¢F) = oTr ) 7 (¢5)T77 (214)

Assume
wr = (oy) 7. (215)
(i) Consider the baseline discrete-time formulation. Given ¢; = ¢°yy, and with
imply
9 (67) = o ()77
ze (6F) = ()77 . (216)
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(ii) Consider the generalized discrete-time economy with period length A. Given the asset price

is 7 (A) = O (A) y A, and with imply

gt (B (A)) = o [* (A) A] 77 y,
(85 (A)) = [@° (A) A]T7

and therefore, since lima_,o ®° (A) A = ¢°,

lim g (9] (A)) = 0 (677w (217)
Jim 7, (B} (A)) = ()77 . (218)

Thus, in the continuous-time approximation, and (@ are the effort rate devoted to

investment, and the investment rate, respectively.

Proof of Proposition Notice the equations that characterize prices and marginal valua-
tions in Definitions[6] and [7] are identical to the conditions that characterize prices and marginal
valuations in the baseline economy that assumes A = A® for all ¢ (and where only investors
carry assets overnight). Hence, the conditions that characterize prices and marginal valuations
in the recursive equilibrium, and in the recursive equilibrium with A — 0, are also the same in
the economy with endogenous capital accumulation as in the economy that assumes A7 = A°

for all ¢. Given the production function (212 with (215)), the aggregate investment rate is
immediate from (218)). m

A.9 Unsecured credit

In this section we develop the model with unsecured credit outlined in Section [5.2
The bargaining solutions for investors of type 10 are as before. The bargaining solutions for

investors of type 11 are summarized in the following two results.

Lemma 16 Consider the economy with no money. If the investor is able to contact both an

equity and a bond broker, the post-trade portfolio is

—8 S n S B
i (a,9) = x(efse) (a1 + 21 ) (219)
t

. B
ab, (ahse) = [ Cx(Ee) ( ; ¢)] (220)
t
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and the intermediation fee for the bond broker is
s n n s Bt s
ki (af,e) = (1= 0) (e — i) ye | x (eF,€) | af + ? — A - (221)
t
Proof. In a nonmonetary economy, implies [a3,, (af, ), @by, (af,€), ki1t (af,€)] is the

solution to

0
max (g + 67) (@ — af) +af — ke K
(a3, k¢)€R2 @b eR

s.t. dpa; +a; = dya; (222)
-B, <a. (223)

Notice that the first-order condition with respect to k; implies (136]), so the bargaining solution

can be found by solving the following auxiliary problem

max  |(ey; + ¢7) (@] — af) + Ef} s.t. (222)), and (223)).

aseR,,aleR
Since (222)) implies @ = ¢;(a — a;),

—s s _ n\ —s —s —s s t
asy (ag,e) = arg max (e—ef)a; s.t. 0<aj and @; < aj + =5.
¢ t

The solution is given by (219). Given @iy, (a7, ¢), @iy, (af,€) = ¢y [af — @iy, (af, )] as in (220),
and k114 (af,€) is given by ([136]), or equivalently, (221). m

Lemma 17 Consider the economy with money, and let €5y, = max (5q;,€714), where

1 s
Pt — &
€1 = =L (224)
Yi
and 7y s as defined in (@ Consider an investor who enters the OTC round of period t with

portfolio a; and valuation € in an economy with money. If the investor is able to contact both
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an equity broker and a bond broker, the post-trade portfolio is
aﬁt (a’t75) = {H{1<Qt¢§n} [H{€<5flt} + H{Ezgﬁt}x (ETM’E)]

Loy =nlyoczr, X (@0f", 1) } (af" + prai + a:By)

+Lggr=1{e—ey, y 0" (225)
A (ane) = {Iey, <o + [~ Loy Lesy, G ) | [af + plt (af" +aBy)

+ Lguop =1yl {—e;, 15 (226)
ajy(as,e) = —qlt {[afi:(at, ) — @] + pe [ain(ar, €) — a7}, (227)

where
(a,af) € {R% : a* + pay < af* + pya; + @By}
and the intermediation fee is
ke (ar,€) = (1= 0) { (eye + ¢7) [@ini(ar, €) — @ioe(ar, €)]

+¢f" [alhi(ar, €) — afiy(ar, )] + ajy(a, )} (228)

Proof. With ([128]), can be written as

0
max {<6yt + ¢%) [@ — @y (ar, )] + O [@ — @b, (ay, €)] +ab — kt} k1=t
(a3 ki) €RS abeR
st A+ pid; + ) = af + puo; (229)
~Bi<a. (230)

Notice that the first-order condition with respect to k; implies so the bargaining solution
can be found by solving the following auxiliary problem
max {(ey + 67 a7 — @orlar, )] + 67" [@" — @lh(ar,2)] + b |
(ay,a5)eR2 ;aeR

s.t. (229), and (230).

Once the solution @, (at, €), @3, (as, €), and @3, (at, €) to this problem has been found, k114 (ay, €)

is given by (31)). If we use (229)) to substitute for a?, the auxiliary problem is equivalent to

S 1 —S m 1 —m

max eyt + o7 — o) Tl —— | u (231)
t

(@ a;) eR2 a
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s.t. — @B < af' =" +pi(af — @) . (232)

The Lagrangian corresponding to the auxiliary problem (231)) is

1 1
L= <€yt +¢F — pt) a; + <¢?1 - > a”
qt qt

+ & [af — @ + pi (af — @) + @By] + £ma)" + &5,

where £°, €™, and £° are the multipliers on the constraints (232)), 0 < ay*, and 0 < @}, respec-

tively. The first-order conditions are

1
eyt + ¢F — Ept+§S—Pt§b:0
t
1

o — —+gm =g =0.
4t

There are eight possible binding patterns for the multipliers (fb,ﬁm,ﬁs). Case 1. Assume
0<E™ 0<E,0<E Then @ =a; =0 and a + piaj + ¢ By = 0. Since 0 < By, this kind of
solution has @’ = 0 and is only possible if a* = a™ = B; = 0. Case 2. Assume 0 < £™, 0 < £,
€ = 0. Then @ = @ = 0, ga = a + peaf, € = [(% —¢;§) 1 —5] yr, and €™ = L — g,
This kind of solution is only possible if ¢:¢;" < 1 and ey; < q%pt — ¢i. Case 3. Assume 0 < &™,
€ =0,0< £ Then a' =0, a; =aj + p% (QtBt + a;"), @ = —By, Pl = ey + o; — q—ltpt, and
€™ = ey + ¢f — pe@py*. This kind of solution is only possible if max (¢:¢;", 1) %pt — ¢} < eyy.
Case 4. Assume £" =0, 0 < &%, 0 < £°. Then ar = a + pal + @By, @ = 0, @l = —By,
&% = pdyt — i —eyy, and et = (g — 1) q—ltpt. This kind of solution is only possible if 1 < ¢;¢;"
and ey; < pid* — ¢f. Case 5. Assume 0 < €™, £5 =0, €2 = 0. Then a* = 0, £™ = ==,
and (@, a}) is any pair that satisfies (@, a}) € [0, 00) x [-By, 00) and ga} + pia; = af* + pa;.
This kind of solution is only possible if ¢:¢;* < 1 and ey = q—ltpt — ¢;. Case 6. Assume
" =0,8=0,0< ¢ Then pt® = (¢}" — 1) =pr = eye + ¢} — =i, (@, @) is any pair
that satisfies (a*,@;) € [0,00) x [0,00) and a® — @ + p; (af —@;) + ¢;B; = 0, and @’ = —B,.
This kind of solution is only possible if 1 < q¢;" and ey = pipy* — ¢;. Case 7. Assume
€™ =0,0< &, & =0. Then a; =0, & = ipt — ¢f — ey, and (62”,6?) is any pair that
satisfies (aj",a}) € [0,00) x [~ By, 00) and @ + q;a; = a}" + pai. This kind of solution is only
possible if ¢:¢" = 1 and ey < ipt — ¢5. Case 8. Assume £™ = 0, & = 0, £ = 0. Then
(@, @, a}) € [0,00) x [0,00) X [~ By, 00) is any triple that satisfies @ + p,a; + g:a} = a}" + pya;.
This kind of solution is only possible if ¢;¢;" = 1 and ey = ipt —¢;. By collecting the solutions
along with the inequality restrictions implied by the eight cases, we obtain —. [
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Next, we derive the market-clearing conditions for equity and bonds in the OTC round, in

a nonmonetary economy (Lemma , and in a monetary economy (Lemma .

Lemma 18 In a nonmonetary equilibrium, the market-clearing condition for equity, A%, +

A3op + ASqy = (10 + a11) AS (or bonds, A%, + A%, =0) in the OTC round is:

NIBt>

e (233)

1=[1-G ()] <1+

where

A; = Ny B,. (234)

Proof. The aggregate post-trade holdings of equity for agents who trade in the equity
market in the OTC round of period t are

AsEt = AsEt =0

_ N;B
Ailt = a11 Nt /a‘{lt(at,e)dH[t(at,s) = Q11 [1 -G (5?)] (AS + és t>
t

Ai()t = ozlgN[ /a‘iOt(at,e)dHIt(at,e) = OzloAs

and the aggregate post-trade holdings of bonds for agents who trade in the bond market in the
OTC round of period t are

A%t = NB/a%t (at) dFBt (at) = 0

n S s n s NB
Ay =y [ @ (anedHnlane) = and] |47~ 1= G ) (A i ;)]
t

Lemma 19 In a monetary equilibrium, the market-clearing conditions for equity, flSEt—f—/_lfOt—i—

A3y, = (10 + a11) A3, and bonds, /_X%t + fll{lt =0, in the OTC round are, respectively:

A+ p A’ . AT+ A5+ N[ B
t pt + ay [1 _ G (gllt)] t pt Qt 1Dt

0=oai[l —G (s}
10 (eTo0)] o o

— (a0 + a11) A®

0= {G (glklt) [H{1<qt¢>§”} + ]I{qm;":l}X (%nglv 1)] +1-G (Eﬁt)}

- (As+ At).
2

AT + piA® + ¢ N1 By
bt
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Proof. The aggregate post-trade holdings of equity for agents who trade in the equity
market in the OTC round of period t are
Apy + piAgy
Pt

Ay, = Np / @i (a) dFpt (a) = x (€500, 0) ~0

Afy = anlN; /af1t(at,€)dHlt(ata€) =an [l -G (E,)] |[A®+ plt (A7 + a:N1By)
AT+ pA?
bt
and the the aggregate post-trade holdings of bonds for agents who trade in the bond market in
the OTC round of period ¢ are

A3y, = ool / aoular, €)dHr(ay, ) = aro [1 - G (1o))

A — m 1 m m S AS
AbBt = NB/abBt (a) dFpi (a;) = [1 — x (1, ¢t9")] aABt —x (L, qt0y") \p; Ay = 0

n — b _x m
Al{lt = OéllN[/alilt(at,E)dH[t(at,E) = _qzall{{G(gllt) [H{1<qt¢>2"} +]I{Qt¢;‘,n:1}x (gt 71)]

m s R m
+1_G<€>{1t>}At +ptA +QtNIBt N (A3+At )}

bt E

The following result states that the credit market would be inactive if the net nominal

1

interest rate on bonds, " = T 1, were negative.
t

Lemma 20 Consider a monetary equilibrium. If the bond market is active in period t, then

aoy" < 1.

Proof. In an equilibrium with 1 < ¢;¢;", the bond-market clearing condition in Lemma

becomes

1 _ AT
0= |A°+ — (A;n+qtN[Bt):| — (AS + t> .
Pt bt

This condition can only hold if B; = 0, i.e., if the bond market is inactive at all dates. The
condition 1 < ¢;¢;" implies bond demand is nil, so the bond market can only clear with no

trade. m

In what follows, we focus on monetary equilibria with an active credit market, i.e., equilibria
with g;¢y* < 1. Notice this implies £},, = €]}, for all ¢ in any monetary equilibrium.
Next, we derive an investor’s value function in a nonmonetary economy (Lemma , and

in a monetary economy (Lemma .
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Lemma 21 Consider an economy without money. The value function of an investor who enters

the OTC round of period t with equity holding ai and valuation € 1is
V! (af,€) = |eye + ¢ + 010l jcceny (e} —€) yt} ai + W/ (e), (235)

where

- _ B
W/ (e) = W/ + anilip oy (e — &7) yt?g
t

WtI =  max |:_¢§di?+1 + BE, / Vt{i-l [ndf+1 +(1—n) AS,E] dG(s)] .

a;1 1 €Ry

Proof. With (153)), and Lemma [16] reduces to
V! (af,e) = W + (eye + 67) 0}
n s Bt s
+ o110 (e — )yt |Lep ey | @ + o)
t
which can be written as (235). =

Lemma 22 Consider an economy with money. The value function of an investor who enters

the OTC round of period t with portfolio a; and valuation € is

Vi (ar,e) = vft (e) a" + v, (€) af + W/ (e), (236)
where
m — m * 1
v (€) = ¢ + o +an (L =0)]Lr.. .y (e~ <ci0) 7
1

+ anf (e — &1y;) ytﬂ{ght@};t

1 .
+and (qt ~ % ) {Taor <1y + Tp<aom Loy, L = 20 2]}
vy (€) = eyr + ¢f + [aro + a1 (1 = 0)] (€10 — €) Ylecer )
+ a0 (811 — €) ytH{KgIlt}
I .
+ aq16 <qt — ¢ ) T<qorylfe=es ) [1—2x (E11s:€)] pe

~ - —* 1
Wl (e) =W/ + a119{ (e —&11r) ytﬂ{€§1t<s}17t

m 1 =% D
+ <¢t - qt> ]1{1<qt¢>§"} {1 + H{e:g;u} [2x (El14:€) — 1]} }QtBt-
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Proof. With (128]), the value function becomes (|146)), which after substituting k114 (a¢, €),

kot (atve)a aglt (at’€)> and C_llilt (atae) with " ‘ ’ aglt (at,g) = _qilt [agit (at?e) - a?]?
and (227)), respectively, becomes

V! (ar,e) = W/ + (e + ¢5) af + ¢} a}"
+ [a1o + aa1 (1 = 0)[ {(eye + %) [@lor(ar, €) — ai] + @i [l (ar, €) — ai]}

o { <y - ;p) (@ (@) — af] + <¢;z” - q1> all (ane) - am} .

Then replace the post-trade allocations @y, (as, €) and @y, (at, €) (using Lemmalf2), and a3y, (at, €),

and @}, (at, ) (using Lemma [17)), and rearrange terms to arrive at (236). =

Next, we derive the Euler equations that characterize the investor’s optimal portfolio choices

in the second subperiod, in a nonmonetary economy (Lemma|23)) and in a nonmonetary economy

(Lemma [24)).

Lemma 23 Consider an economy with no money. Let a7,,, denote equity holding chosen by

an investor in the second subperiod of period t. Then aj, | is optimal if and only if it satisfies

n
€41

¢§ Z BT]Et |:€yt+1 + ¢§+1 + alle/ (5?4,1 — E) yt+1dG(E):| with “=7” Zf d?t+1 > 0.
g

L

Proof. With (235)), the portfolio problem of an investor in the second subperiod (i.e., the

maximization on the right side of ) can be written as
s = s S n ~5
_max ¢ —¢7 + BNk |Eyry1 + @i + a110/ (et1 =€) yer1dG(e) | p agiq-
g1 €R €L
]
Lemma 24 Consider an economy with money. Let (dﬁH,EﬁtH) denote the portfolio choice

of an investor in the second subperiod of period t. The portfolio (EL%H, dftﬂ) s optimal if and

only if it satisfies

(o — BEO ) Ay =0 < @) — BEF (237)
(0F — BNE:07;41) a7p1 = 0 < ¢F — BnE 07,44, (238)

127



where

EH 1
Vi1 = piq + (1o + a11 (1 —0)] / (e — €lors1) Ye+1dG(e) —
elot+1 Dt+1
1 €H
+a11— / (e = El1e41) Ye+1dG(e)
pt+1 ET1i+l
- m
+ 16 (th <75t+1> H{qt+1¢;§rl<1}

and

€lot+1
Vi1 = EYt1 + G011 + (a0 + o1 (1 - 0)] / (Elots1 — €) Yer1dG ()

€L

€T1t+1 .
+ a119/ (511t+1 - 5) Yi+1dG (g) .
€

L

Proof. With (236)), the portfolio problem of an equity broker in the second subperiod (i.e.,
the maximization on the right side of ) can be written as

omax [—¢"aty — ¢iagy + BE (Uit + n074aai4)]
a1 €ERT

where 0§, = [vf, | (€)dG(e) for k € {m,s}. =

Next, we define sequential nonmonetary equilibrium and monetary equilibrium (with an

active credit market).

Definition 8 A (sequential) nonmonetary equilibrium is a sequence {eX, ¢, b, }52,, that satis-

fies

N B, >

0=[1-G() (A +-——12L ) — 4

-G (a0 o
€t

o7 = BnEy |:53/t+1 + ¢ + a119/ (i1 — €) ye+1dG(e)
g

L

&f = &lys + &}

The first condition in Definition [§] is the bond-market clearing condition (233)), the second
is the investor’s Euler equation from Lemma and the last is the definition of £} (13]).
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Definition 9 A (sequential) monetary equilibrium is a sequence {€3¢;, €514 Dt @t> Prs D% 1205
that Satisfy 5T1t = (ptqflt - ¢§)if 6T()t = (thS:fn _(bf) i? X% = X(171) € [Oa 1]7 the market

clearing conditions,

« AT+ p A . AT+ DA+ N B

0= a1l — G ()] S L 4 o [1— G (e8y,)] 22t qtN1 B¢
bt Dt

— (10 + aqp) A®

A + prA® + N By

0={G (ef1e) Lp<aer) + Laer—1yxz] + 1= G (e}

bt
_ <A5 + AT)
bt ’
the FEuler equations,
EH . 1
o1 = BELQ d41 + [ano + a1 (1 — 0)] / (e = €l0re1) Ye41dG(e) —
5T0t+1 Dt+1
1 €H .
+anf— (e — €l141) Ye+1dG(e)

Pt+1 e1e41

1 m
+ 116 <Qt+1 - ¢t+1> H{qt+1¢ﬁ1<1}}

€lot+1
¢f = BnEt{Eyt+1 + @i + 10 + a1 (1 = 0)] / (eTot41 — €) Ye4+1dG (g)

€L

€141 .
+ 0‘119/ (eT1441 — €) Y111dG (e) ¢-
er

Next, we define RNE and RME (with an active credit market). To this end, hereafter we
assume B; is as defined in . As before, a RNE is a nonmonetary equilibrium in which
real equity prices (general goods per equity share) are time-invariant linear functions of the
aggregate dividend, i.e., ¢ = ¢y, and ¢, = ¢y, for some ¢° ¢° € R,. Hence in a RNE,
ey = (q?)f — gbf) i = ¢° — ¢* = ". Similarly, a RME is a monetary equilibrium in which:
(i) real equity prices (general goods per equity share) are time-invariant linear functions of
the aggregate dividend, ie., ¢f = ¢y, pd" = Plor = Pioys, and pr/gr = b1y = Pryye for
some ¢°, ¢}, #1; € Ry; and (i) real money balances are a constant proportion of output, i.e.,

oA = Z A%y, for some Z € Ry ,. Hence in a RME, €]y, = (pt¢" — ¢7) i = @1y — ¢° = €lp,

— . E* +¢9 Am ZAS . .
i = (pe/ae — 07) 3, = 611 — 6" =efy, oo = % ¢} = g+, and g is given by ~
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Definition 10 A recursive nonmonetary equilibrium of the economy with borrowing limit ,
is a triple (€™, ¢%,¢°), that satisfies ¢° = " + ¢°,
0=[1-GE")](1+A) -1
1-p e
= 577¢5 =&+ 04119/ (e" —¢e)dG(e).
Bn €L

Definition 11 A recursive monetary equilibrium of the economy with borrowing limit , 18

a vector (5,41, 8%, Z,xP) that satisfies xP € [0,1], and

—anlt -G (1+ 2 ) +anli- G (14 4+ 1)

€l +¢° €10
— (0410 +0411)
A
0= {G e T+ 1= G} (1484 - 25)
A
—(1+—"—
< elp t ¢ )
| 1-6) . /”( ) dG(e)
1 = |aip T« —0) E—¢€ €
10 11 €TO+¢ ETO 10
+a Gl/eH(s—e* )dG(e) + « 9@]1
1 €50 + ¢° =2 1 1 €5 T ¢° {efo<ein }
1_Bn B clo . €11 .
- ¢>S:g+[a10+an(1—9)]/ (510—5)dG(5)+a119/ (€%, — ) dG (¢) .
677 €L €L

In a nonmonetary equilibrium, p;/q; = ¢; = el'y; + ¢f, and therefore the borrowing limit

becomes
(ePye + &) A
Ny ’

In a monetary equilibrium, p:/q: = €3,,yt + ¢{, and therefore the borrowing limit becomes

5 (11wt + 07) A®

By =A (239)

By =A N, (240)
In the discrete-time economy with period length equal to A, generalizes to
PYSIPCESE TV EL o)
and generalizes to
B, — AlEhumd + 2 (A) 4 o)

Ny
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In a RNE, e} =™ and @} (A) = " (A) y: A, so (241)) specializes to
. [e™ + D" (A)] A®
B (A)=A
t(A) N,

In a RME, €3, = ¢7]; and ] (A) = &° (A) y: A, so (242) specializes to

YA,

B, (A) = AT ‘I;I(A)] A

WA
Next, we report the equilibrium conditions for the continuous-time limiting economy as A — 0.

Lemma 25 Consider the limiting economy (as A — 0) with borrowing limit . A recursive

nonmonetary equilibrium is a pair (", ) that satisfies

n A
G = 1+A
En
g0:5+a119/ (" —e)dG(e).
eL

Proof. The first equilibrium condition is immediate from the first condition in Definition
The second condition is obtained by recognizing that, in a discrete-time economy with
period length A, the second condition in Definition [10] is

n

B (A)A =+ a0 / (e" — &) dG(e)

€L

r+0—g+géA
(14+gA)(1—-04)

and letting A - 0. m

Lemma 26 Consider the limiting economy (as A — 0) with borrowing limit . A recursive

monetary equilibrium is a vector (€7, €11, ¢, Z, Xf) that satisfies Xf € [0,1], and

0=aio[l —G ()] (1 + i) + a1 [1 — G (e]y)] <1 + A+ j) — (a0 + a11)

« " Z Z
0= {6t T + - GEn} (1444 2) - (14 2)
eH
4o = oo + ans (1 — 0)] / (e — elo) dC(e)
4
el
and |6 - o) ey + [ (€< dG(e)
€11
€7 €71
0 =&+ 10+ an (1—6)] / (€l — £) dG (2) + a119/ (€1, — £)dG (c).
€L, €L
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Proof. In a discrete-time economy with period length A, the equilibrium conditions in

Definition [11] generalize to

o Z(A)A
0=ai[l -G (e7)] <1+ i A + 05 (A)A)
+ a1 [1 = G (e7y)] [1 +A+ ETOAZLQ)S(AA) A]

— (10 + aa1)

0= {6 E0) gy meq, 1 + 1= G i} [1 At a’{OAZi%I))S(AA) A}

a <1 * a;OAZﬁA@l(AA) A)

A - A{ an+an(1-0) [ e~ dae)

O (A)A =2+ [arg + a1y (1 — 0)] /810 (% — ) dG ()

€L

el
+a119/ (€1, — &) dG (c) .

€L

*
10

€H

(elr —€lo) Iyor oo + (e —e11) dG(e)
{ 10 11}

.
€11

+ aq16

r+0—g+giA
(1+gA)(1-05A)

Take the limit as A — 0 to obtain the conditions in the statement of the lemma. m

Proof of Proposition As a — 0, the equilibrium conditions in Lemma [26] become

0=[L—G )] (1+A+‘Z> 1 (243)
0={G . . pd -G e (1 Ty i) - (1 + i) (244)
1o = as (1 0) /H (e — £1y) dG(e) + s /H (e — 1)) dG(e)
Fad (e~ el I ooy (245)
p=ctas(l-0) / (50— £)dG (<) + s / (5, — £)dG () (246)
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where x? € [0, 1]. These are four equations in four unknowns. The unknowns are (£}, €31, ¢°, Z)
if €3y < e}y, or (e*,xP,¢°, 2) if ey = €},. We consider each case in turn.

(i) Suppose €], < €7;. In this case, 1) and 1' imply % = 0 and ¢]; = ¢". Combined,
conditions (245)) and (246) imply a single equation in the unknown €3, that can be written as
T (9) = 0, where

EH €H
T () = o [9 (" —2)+(1— 9)/ (e — 2)dG(e) + e/ (e —em) dG(e)]
T en
T 87L
, [§+as(1—0)/ (x—e)dG(z—:)—l—ozSG/ (5”—e)dG(6)] .
559 €L
Differentiate T" and evaluate the derivative at x = €], to obtain
T’ (elg) = —as {0+ (1 = 0) [1 = G (e]p) + G (1))} < 0.
Hence, if there is a €7, that satisfies T' (¢7,) = 0, it is unique. Notice that
ex

T (1) = as [9 (e"—er)+(1—0)(—ep)+ 9/ (e—¢") dG(E)]

an

, [5+a119/8jn (" —2) dG(s)] ,

s0 0 < T (er) if and only if ¢ < p. Also,
EH em
T = [ e-enace) - [era [ -aa6 ).
en £r,

so T'(e") < 0 if and only if ¢g < ¢. Thus if g < ¢ < Gp, there exists a unique €] that satisfies
T (e79) =0, and €3, € (er,€™). Given €}, and €7, ¢ is given by (243).
(7) Suppose €]y = €71 = ¢*. In this case, (243)-(246]) become

. z
0=[1-G(e )]<1+A+(p>—1 (247)
O:{G(s*)xf+[1—G(e*)]}<1+A+i)—<1+i> (248)
' = ay / " e et dale) (249)
g0:£+as/€* (e —¢e)dG (¢). (250)
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Combined, conditions (249) and (250) imply a single equation in the unknown £* that can be

written as 7 (¢*) = 0, where
T@ﬂzaiém@%ﬁwﬂﬂd—b%+ai£?x—@dG@ﬂ.

Differentiate 7 and evaluate the derivative at x = £* to obtain
T (e") = —as [1 — G (%) +1G (¥)] < 0.

Hence, if there is a £* that satisfies 7 (¢*) = 0, it is unique. Notice that

n

T@%:aﬁ[m@—fwmx@—LF+ai/s@”—@da@),

n EL

so 0 < T (e™) if and only if ¢ < . Also,
T (en) = —t[g+as(eg —€)] <0, with “=" only if ¢ = 0.

Thus, if 0 < ¢ < &, there exists a unique £* that satisfies T (¢*) = 0, and ¢* € [¢",eq) (with
e* =¢" only if t = ¢p). Given €*, ¢ is given by (250)). Given £* and ¢, (247) implies

G(e*) — [1 - G ()] A

SR e

®.

Finally, given, ¢*, ¢, and Z, (248)) implies

This concludes the proof. m

A.10 Efficiency

Proof of Proposition The choice variable EL{E does not appear in the planner’s objective
function, so @ = 0 at an optimum. Also, must bind for every ¢ at an optimum, so the

planner’s problem is equivalent to

[e'e) cH EH
max Ky Zﬁt [(0410 + a11)/ ey (de) + (1 — a1 — Oé11)/ eyral dG (5)] Ny
=0

{a{+17a{}?i0 €L €L
g I
s.t. (96)), (O9), and a; (de) < a;.
€L
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Then clearly,
W* (yo) < [e+ (10 + an1) (eg —€)] A° <E0 Zﬁ@t) : (251)
t=0

The allocation consisting of @/ = A°/N; and the Dirac measure a! (E) = ]’?,—j]l{g nepy defined in

the statement of the proposition achieve the value on the right side of (251)) and therefore solve
the planner’s problem. Notice that Eg Y 2 By, = %yo, o)

W () = 125 e+ (ano -+ an) e — 2) A%
Hence in the discrete-time economy with period of length A, welfare is
14+gA _
w* Y) = ————~ €+ (10 +a11) (g — € ASyOA.
W) = 5 ) (enr —2)

Rearrange this expression and take the limit as A — 0 to arrive at (100). m

Proof of Proposition The choice variable @ does not appear in the planner’s objective
function, so @ = 0 at an optimum. Also, since (117)) must bind for every ¢ at an optimum, the

planner’s problem is equivalent to

0 , el s
max Eq Z B9 (10 + a11) / eyray (de)
t=0

P S e oo
{at+l7at hoy X3l €L

en
+(1—ap— an)/ 5yta{dG (e) — hét}NI

€L

EH
s.t. (114), (115), (116), and / al (de) < al.

L

Clearly,

W* (45, y0) < max Eo Y B' (VAjy: — hyyN1) st Ajyy =n[Af + fi (hyy) Ni],  (252)

2t S1=0 t=0

where v is defined in 1' Once {hét}zo has been found, we can use 1D to get X; =
fi (R%,) Nr, and (114) at equality to get a/,; = A EXe et W (Ao, yo) denote the value of the

Ny
right side of (252); it satisfies

W™ (A7, yr) = max [ Afy, — hNT + BEW™ (A1, yes1 )] (253)

st Aj =n[Af + fe (h) Np].
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It is easy to show the optimal value function that satisfies (253)) is W* (A3, y:) = (BA; + C) y,

where

B = 1/1_
1—pn
— 1
1 577 1—0o
C=——=(1- 8 N
- ( )
The decision rule implied by (253) is
B =
h(y) = U( 7 ¢> Yt (254)
1—pn
and the implied aggregate investment is
_( B \TT
felh (y)] Nr = =—1) Nr. (255)
1—pn
Hence,
_ 1
W™ (A3 = — A7 — (1 — — N . 256

The OTC-market allocation consisting of the Dirac measure a} (E) = %H{g wepy defined in the
statement of the proposition along with the decision rules and achieve the value on
the right side of and therefore solve the planner’s problem, i.e., W* (A$ y;) = W* (A3, ys).

Next consider the generalization to a time period of length A. In this case, becomes

W* (A7, ye) = max [VAjA — ARNy + BEW™* (A7, A Y1) ] (257)
s.b. Af A =n[Af + Afi (h) Ni]
where y;, h, and f; (h) are now the per-unit-time dividend, effort, and output, respectively. It is

easy to verify that the optimal value function is still W* (A3, ;) = (BA; + C) y; (proportional
to the dividend rate), but with

1 1 1+7rA
B =5, VA = T mmnmm YA T T — gt ogA Y
1+rA
— 1 1
1 Bn -7 1+7rA (1+gA)(1—-06A) |17
C=—"_(1- | yA)  NiA = 1— N,
1—ﬁ< U)<1—an ) ! r—g( o) r+5—g+g(5Aw !
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_ 1
The decision rule for the effort rate is h (y;) = o (BnB) 1-o 9, and the implied aggregate invest-
ment rate is f; [h (y:)] Nt = (BnB)é, or explicitly,

1
[ +gA)(1—-6A) |T=7
h(yt)_o[r—g—i—&—i-géA o
(1+gA)(1—5A) 177
N; = Ny.
Je[h (ye)] Ni [r—g+5+g5A¢ I
Hence
1
_ 14+7rA 1+7rA (1+gA)(1-6A) 17
*(AS — A? 1-— N, .
W* (A, ) {r+5—g+59A¢ ¢+ r—g ( U)[r+5—g+g5A L

Take the limit as A — 0 and let W* (A7, y:) = lima_0 W* (A7, y¢) to arrive at (119). m

Proof of Proposition From Proposition [2| we know that ej, = ¢j; = ¢* — ep, and
p—vYast—0.m

A.11 Equilibrium welfare

The following result characterizes equilibrium welfare for the economy with exogenous capital.

Lemma 27 Consider the limiting economy as A — 0 with exogenous capital. Along the path
of the recursive equilibrium, we have:

(i) If the equilibrium is nonmonetary, the welfare function is

n

V' (y) = T90_19Asyt (258)

with .

A [

Pl =+ o Uai (6"—5)dG()+ﬁ . (6—5”)dG(5)].

(ii) If the equilibrium is monetary, the welfare function is
V™" (Z,y) = L (ufz +2+ u‘f) A’y (259)
) r— g SO )

where

i 0410/ 6—810 dG( )+a11

I
el —€lot T / (e — e11) dG(e)
1-A /)

*
1

€H

/611 (e, — £)dG () + % (e —€l1) dG (e)

*
gL €11

0410/ (e —€)dG (g) + a1

us
Uy
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Proof. (i) Consider an economy with no money. From (151)), the beginning-of-period
expected discounted utility of an investor along a recursive equilibrium where he holds a®

equity shares at the beginning of every period is

/th (a°,2)dG () = {§+a119 [M /:H (e — ) dG (¢) — (g—s”)]}asyt

+ BE, / Vil (a°,2) dG(e).

Notice we can write [V (a®,¢)dG (¢) = VI (a®) y;, where VI (a®) is given by

(1=B) V' (a") = {g + a119[/8n (e" — £) dG (&)

€L

)\gbn EH n s
+M_A)¢n/£n (e—e )dG(s)]}a. (260)

Since there are Ny investors, along a recursive equilibrium path each investor is holding a® =
A® /Ny, and the sum of expected utility across all investors is NV (A% /Np)y, = VI (A%) y,.

The expected discounted utility of a bond broker at the beginning of a period is given by
. Since in this environment brokers hold no assets overnight, we have V;? (a§) = V,2 (0) =
VZ and WP = BE, V%, for all t, where V;P satisfies

VB =af / ki1t (af,€) dHry (a5, €) + BEVE,. (261)
Since there are Ng bond brokers, the sum of expected utility across all bond brokers is
NpV? = of Ng / ki1t (af,€) dHyy (a5, €) + BE:NpVS,
= OZHN[ / k/'llt (af, 8) dH[t (af, E) + BEtNBV;E-l-
From , Ny [ kit (af,e)dHp (af,€) = = (A®) yr, where
=y =0-0 [ [ @ -ai0e+ 38 [ emmaee] o e
EA)=(1-46 / " —¢€ dGE—I—n/ e—¢e")dG (e)| A®. 262
er e" + (1 - )‘) ¢ en
Hence, we can write NgV,” = VP (A4%) y; and therefore (261) implies

(1= B) VB (A%) = anE(4%). (263)
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Along a RNE path, total welfare can be written as Vi = >, cep 1y Vk (A%)y; (equity brokers
earn no fees so their utility is zero and they contribute nothing to welfare). Combine (260]) and

(263) to obtain

Vi= 115{5—1—0411 [/;" (" —¢e)dG (¢) + €"+()i¢j/\)¢n /;H (e—s”)dG(e)]}Asyt.

In the discrete-time economy with time-period of length A, the expression for V; generalizes to

—ﬂ g+« - e —¢ €
Vt_(r—g)A{ + HUEL (" =) dG (e)

AD™ (A) / o (e — ") dG (5)] }AsytA.

e+ (1—\) 0" (A) S

Take the limit as A — 0 and let V" (y;) = lima_ V; to arrive at .

(ii) Consider a monetary economy. From , the beginning-of-period expected welfare
of an investor along a recursive equilibrium where he holds portfolio (a}*,a®) at the beginning
of every period is

/ VI (@ a®, &) dG (¢) = Tal™ + 50 + W, (264)

where W/ is given by (131), and v7y and v§, are defined in Lemma |5/ and can be written as

1
vy = 07—
Tt : Yi
ﬁ;t = ﬁsytv
where
v* =¢ejo + ¢° +anb (el —€lp)
en
Hlaw+an(1-0) [ (i) 6o
€10
8* + ¢S EH
+ o116 11 / e —¢e)dG(e 265
11 €>{1 i (1 —A) ¢s 51‘1 ( 11) ( ) ( )

7 =2+ 6° + a0 + an (1 — 0)] / (e — ) dG (e)

+ a6 [/;n (e]; —e)dG () + < (>\1¢i NG /:H (e —e)1)dG (E)] . (266)

11
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Along the path of a recursive equilibrium an individual investor is holding portfolio (a}?}, a*) =
(A{’j_l/NI, AS/NI) at the end of period ¢ (and at the beginning of period ¢ + 1). Therefore,

A
Ny

AS
— iy, +ﬁEt/Vt£L1 (Af41 /N1, A* /Ny €) dG(e). (267)

WtI:Tt_Cb;n

Substitute (267]) into 1) and use the government budget constraint, N;7; = ¢;" (Aﬁ1 — A;”),

to get the sum of expected utility across all investors

1
Np / V! (A" /N1, A*/N1,) dG (¢) = @ZEAQ”yt + 0y A — G AP — GA

+BEtNI/‘/t{|-1 (Aﬁl/N],AS/N[,é“) dG(E)

(e1oto) Ay

Then, since in a recursive equilibrium, p; = ~=*=—— and ¢{" A" = ZA®y;, we have
v
Ni [ VAR N3 A% /N1, G 0) = ( - 1) ZA%y, + (5% — 6°) A%y,
10

+ BE.N; / Vi (A7 /N1, A% /Ny €) dG(e).
Hence we can write Ny [ V! (A7"/Ny, A°/Ny,e)dG (e) = VI (Z, A®) y, and therefore

VI(Z,A%) = <wz o - ¢8) A® 4+ BV (7, A%

e5o +¢°
SO
1-B)Vli(z, A® :<SZ+£+US>AS, 268
=P V@A) =7 (268)
where
u® =0° — (e]g + ¢°) (269)
u® =0° — (4 ¢°), (270)

with v% and v° given by and .

The expected welfare of a bond broker at the beginning of a period is given by .
Since in this environment ag, = ozggl = 0 and bond brokers hold no assets overnight, we have
VP (a;) = VP (0) = V;P and WP = BE, VB, for all t, where VP satisfies

V;B = OélBl / k11t (at, 5) dHp; (at, 6) + ﬁ]EtVtil. (271)
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Since there are Np bond brokers, the sum of expected utility across all bond brokers is
NgViZ = of Ng / ki1t (ar,€) dHpy (ag,€) + BENBVE,

= a11N1//<711t (at, ) dHp (ay,€) +BEtNB‘/t§-1'

From (BT),
Dt oH

Ny | ki1t (ay,e)dHp (ag,e) = (1 -0 8/
I/ 11e (0, £) dH (00, £) = (1 -0) Pt — Aqd} Jex,,

(e — <o) — / (c — £0r) G (e)

"
€10t

(€ —&71,) dG (¢)

€H

1
— (A" + peA®) yr.
bt

== (Z, A%) y;, where

In a recursive equilibrium, Ny [ ki1t (at,€) dHp (ay, €)

i+ / e e da ()

AN
A

1] A°. 272

(smw*) (272)

2(Z,A4%) = (1-0)

Heh—ei) - [ - edG )

*
10

VB (Z, A%) y; and therefore (271]) implies

*
11

Hence we can write NgV,® =
(1-B) VB (Z,A%) = an=(Z, A%). (273)
Notice that can be used to write and as
W = (10 + 1) / M e~ er)dG(e) + apf— =LA (274)
o (1-6) (NLH5 + As)
=44 (275)

€10
= (a10+a11)/ (1o — £) dG () + ani :
(1-6) (7 +4°)

er
Along a RNE, total welfare is V; = Zke{B,I} VE(Z, A%) y; (equity brokers earn no fees so their
utility is zero and they contribute nothing to welfare). With (268]) and (273)), we obtain

1 u? _
Vi = — Z+eE4u®)A° =(Z,A°
f 1—B[<eio+<bs +s+u> + o= ( ):|yt

and substituting (272)), (274)) and (275)), we arrive at

Vv, = _
t 1—ﬁ



with

e +¢°
e+ (1=

* *
€11 — €10 T+

[ e ace)

*
11

0 =« / (e —€]p) dG(g) + a1
&

10

i =a / (&l — £) dG ()

+ aq1

[Ten-aaes s [N

€11 ety

For the discrete-time formulation with time-period of length A, the expression for V; generalizes
to
Z(4A)

_ 28 e @A) A
s )]

1 A
V=l [

(T—Q)A uy (A)

with

@) =an [ -0 a6e)
g5+ 2% (A) e .
e [, e

11

* *
+ a11 €11 — €10 +

@ (A) = am/ (€% — £)dG (e)

o \A)
[ ie@ s e g ey [ G

+ a1

Take the limit as A — 0 and let V"™ (Z,y;) = lima_0 V; to arrive at (259). m

The following result characterizes equilibrium welfare for the economy with capital accu-

mulation with production technology given by .

Lemma 28 Consider the limiting economy (as A — 0) with capital accumulation. Along the
path of the recursive equilibrium:

(i) If the equilibrium is nonmonetary, the welfare function is

1
n 1 n n\ 1-o
(P—lAf + <(p711 - U) <SO> Nr|ye (276)
P r—g\¢ p

with ¢t as defined in part (i) of Lemma .

Vn (Afa yt) =
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(i) If the equilibrium is monetary, the welfare function is

1 P Z = i
VMEZ Ay = — 3 (L4 ) g3+ () TN o (Z) Ny
r—=g |\pe p P p
(277)

with ¢y = & +ui and uf and u as defined in part (i) of Lemma[27

Proof. (i) Consider an economy with no money. From (151)), the sum of expected dis-
counted utility across all investors at the beginning of period ¢ along a recursive equilibrium

where each investor holds A7 /Ny equity shares, is

n

NI/VtI (Aj/Nr1,€)dG (e) —N1{§+¢"+a119[/5 (" —¢e)dG (e)

€L

Ag" =H A; o
B _eh - N W.
+5n+<1—A>¢"/an ¢ ”dG(E)HNﬂ” e

where

Wi = max [¢"yifi (hat) — hat]
hot€R4

+ _max [—¢”ytdf+1 + BE / Vit (ndgiq€) dG@)] :
at+1€R+
_1
Along a RNE path with ¢§ = ¢"y:, we have hot = g¢ (¢;') = 0 (¢") =7 yt, fi (hat) = z¢ (¢}) =
(¢") T, ai, 1 = (A + Xt) /N1, and X; = Nyx; (¢7), as described in Section (where as in
Section , SO

S

Wi == oo + oyt s Vi [o (4284 0075 o] dGee)

Also, along a recursive equilibrium where each investor holds A /Ny equity shares at the begin-
ning of each period t, the sum of expected utility across all bond brokers in any given period is
NpaP = (A /Np) ys = Njann= (A3 /Np) ye, with = (+) as defined in (262). Hence in a RNE, total

welfare (the sum of expected utility across all investors and bond brokers), V' (Af, y;), satisfies
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the following recursion

n

V(A7 ye) :NI{5+¢n+a119[/€ (e" —¢e)dG (¢)

A" o A
+6n+(1_)\)¢n/6n (8_5 )dG(e):|}]\7]yt

= s n\T——- nAS
+ Njan = (At/NI)yt - [U (¢ )1; +¢ Nj] Nry:
+ BEV [77 (Af + (g7 NI) ,yt+1} -

Substitute the expression for = (A$/N;)y: to obtain

n

V(AL y) = {a+au [/L (e" — €)dG (¢)

el T C] }Afyt

— 0 (6") 7% Nyyi + BEV |n (47 +(6")77 Np) sy | (278)

It is easy to show V (A7, y;) = (BA{ + C) yt, where

n

(1-pn)B=¢t+an [/; (5”—5)dG(5)+6n+ g™ /:H(ge'”)dG(e)}

(1=X)¢" Jon
(1_/3)61:{1?77&77{54‘0611[/; (" —€)dG (¢)
)\gbn €H n nﬁ_ nﬁ
+€n_|_(1_)\)¢n/6n (5—€)dG(5)”(¢) o(¢") }Nz.

Hence

1—Bn

)\Cbn €H N 5
+5n_|_(1_)\)¢n/€n (e—¢ )dG(e):|}Atyt

(i vl [ -owe

WW‘ /H (e — &™) dG (s)} } (6")777 — o (") }%M

(1=B)V(Af,y) = -5 {5+0411[/6 (" —€)dG (e)

+5”—|—(1—
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In the economy where the period length is A, the recursion (278)) generalizes to

n

V(A y) = {5+a11 [/ (" — &) dG (o)

er

A" (A) - n s
en+ (1 —X\)®" (A) /5" (e —€")dG (5)} }AtytA

o (@ (A) A)TF Ny + BBV [ (47 + (@ (8) A)T7 NiA) iga)

where o (®" (A) A)ﬁ Y4 is the individual effort rate devoted to investment, and (" (A) A)T-7
is the individual investment rate. It is easy to show that the value function for this problem is
V (Af,yt) = [B(A) A7 + C (A)] y+ (proportional to the dividend rate, y;), with

B(A) = 1—Aﬁn {F:—I—ozn [/;" (e" —e)dG (¢) + En_i_()f)_n)(\)A;)n(A) /;H (5—5")dG(s)}}
=
Notice that

C(A) = [5773 (@™ (A)A)T7 — o (B" (A) A)T=7 | Ny

lim B (A) = 2L
A—0 p

1
g n 1—0o
lim C (A) = — (301 —a> (‘p) Ny
A—0 r—g \p" P

Hence, the limiting expression V (Af, y;) = lima—0 V (A7, y¢) is as in (276)).

(ii) Consider a monetary economy. From ([145]), the sum of expected discounted utility across

all investors at the beginning of period ¢ along a recursive equilibrium where each investor holds
AP /Np dollars and A§ /Ny equity shares, is

AP AY 1 AP Aj
— Ny [ 7*—y ot Ny 2
/‘/;f <N[ N[7€>dG(6) ]( ytN +’UytN>+ I t (79)
where v% and ©° are given in (265]) and (266]), and

Wl =T, + hgleaﬁr (&7 ft (hat) — hat]

+ max [ PGt +5Et/‘/}i1 (att1,¢) dG@)]-

Qi1 GR

1
Along a RME path, we have ¢} A7* = ZAjyy, &7 = &°yr, hor = g4 (¢]) = 0 () T=7 yy, fi (hoy) =
xe (F) = (d)s)ﬁ, ayy, = A /Nr1, i = (A + X¢) /N1, and Xy = Nrxy (¢7), as described in
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Section Also, the government budget constraint is N;T; = ¢} (A%, — Af*). Hence

WtI = — |:O' (gbs)ﬁ + (Z—i_d))Af] n

Ny
+ BB [ Vi [ A7 /N (4N + (6)757 ) ] dGe). (280)
Substitute (280) into (279]) and use the fact that p; = % to get
A A3 0¥ —ejg— ¢° 1
Ny [V~ te)dG(e) = — 052+ 0" —¢° | AJys — 0 (¢°) T N
I/ t (NI ’ N_[,E) (8) ( E>{0+¢s +v ¢ tyt U(¢ ) Yt
1 Aﬁl A? s
+BENT | Viey || o +(9°)T=7 | ,e| dG(e).
N N;

Also, along a recursive equilibrium where each investor holds portfolio (A" /Ny, Af/Nr) at the
beginning of each period t, the sum of expected utility across all bond brokers in any given
period is Nga 2 (Z A3 /N1, A3 /N1) yy = Njan1Z (Z A3 /Ny, A3 /Np) yi, with Z (-, -) as defined in
. Hence in a RME, total welfare (the sum of expected utility across all investors and bond
brokers), denoted V (Z A7, A7, y:), satisfies the following recursion

vF —efp — ¢°

€5 + ¢°

+ NianE (ZA; /N1, A} /Ni) yo = o ()77 Niy,

+BEV |20 (A7 + (%77 Np ) on (A7 + (67777 Np) e |

Substitute the expression for = (ZAf /Ny, A7 /Nr) to obtain

V(ZA}, Af ue) = ( Z+v° - ¢S> Ay,

S AS v7 — €] _¢S —s s s
V(ZAt7At7yt):< 15* fqbs Z+U1_¢>Atyt
10

— 0 (6") 77 Niye+ BEV [ 2n (47 + ()77 Np) on (A7 + (677 N1) g

where

el
ti=cio+ o ran [ (e-<io)dG(e)

.
€10

+ a1

* * ETI + ¢S /EH *
— o+ —ety)dG
€11 €10 €>{1 + (1 _ )\) (bs e, (E 611) (5)

€0
s=e+dran [ (-6 ()

€L

+ a1

“in * )‘¢5 o *
[ aice ey [ Eenae o).

11
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It is easy to show V (ZAj, A, yt) = (BA] + C) y4, where

_ =Z _ % __ S8
(1-Bp)B="_"Cl0" % Oz

€50 +¢°
2 _ /Bn 17f_51<0_¢8 =S 4§ S\ 125 o sﬁ
(1=5) € = 2 | S g 4 - ) )75 Ny = (69) 75

Hence

_ 1— /B 07 — E* _ ¢s
1= B)V (ZAS, 45, y) = —2 [ ML C10
( 6) ( tr 4t yt) 1— ﬁ’l’] |: ETO + ¢s
o[t ch
1—pn| ejo+¢°

1
— 0 (¢°)™=7 Nry:.

Z10- <z>8] Ay,

_l’_

Z + 0§ — <z>s] (¢*)T% Nyy;

In the discrete-time economy where the period length is A, this value function generalizes to

(r-—g)A
1+7rA
~Z * s (r—g)A
:{|:’01(A)_510_(I) (A)Z(A)—FUT(A)—(I)S(A)}ytA}{ 1+rA AS

* s r+d—g+gdA i
elo + & (4) 1A A

V(Z(A)AA, AL, ye)

(14 gA) (1 —6A)
(r+06—g+géA)A

— 0 [@° (A) A]T7 NyiA,

[@°(A) AT ANI}

with
el
5 (A) = £l + @° (A) + oo / (c — £19) dG(e)
1o

* * €T1+(I)s (A) /EH *
€11 — €10 + € —e71)dG(e
11 10 8;{1 + (1 - )\) ds (A) e ( 11) ( )

+ a1

*
11

7 (A) = 2+ ° (A) + ao / (e — £)dG (e)

€L

+Oé11

[ G @+ e [ e G

€L 11

As usual, o (®° (A) A)ﬁ y¢ is the individual effort rate devoted to investment (so the effort
accumulated over a period of length A is o (®° (A) A)ﬁ yA), and (9% (A) A)% is the in-

dividual investment rate (so (®°(A) A)ﬁ A is the investment accumulated over a period of
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length A). Notice thatlima_,o [0 (A) — ey — @°(A)] = uf, lima_yo [05 (A) — P (A)] = ¢4
(with uf and ¢, as defined in part (ii) of Lemma , and lima_,0 % = %, so taking the
limit as A — 0 and letting V (2, A7, y:) = lima_0 V (Z (A) AAZ, A7, yi), we arrive at (277). m

Proof of Corollary [1 The fact that V" () < V™ (Z, ), with “=” only if + = 7(\) is
immediate from part (¢) of Proposition[3and the fact that 0 < Z. To show V™ (Z,y,) < W* (yy),
use (107)) to rewrite V™ (Z,y;) as follows

1

r—g

Vm (Za Z/t) =

zZ
|:5 + (a0 + a11) (€79 — &) + <1 + (10) uf:| Alyy.
Then substitute (105)) to get

r—g
Asyy

V™" (Z,y;) = &+ (10 + a11) (€79 — &)

4 <1 + i) {am /:H (e — £1) dG(e)

*
10

b

EH
+ a1 el — €l + 7 3 / (e —e71)dG(e)
€11

}.

Next we consider two cases. Case 1: If i (A) < ¢ < 7()\), then Z /¢ is given by (46), and e}, = ",

and therefore

€H

Y (Zm) =+ (oot au) { 1-G (81‘004)1]00410 + a1 /5 (=) dG(e)

r—g
Ay

*
10

+

1-G (g;j)l]lam ¥ou [/E (e" —e)dG(e) + % ” (e —e™) dG(s)] }

€L en

- [1— G (elp)] o )
<e+(ap+a EH —E
(@10 +an) { [1— G (g5p)] 1o + an (en =2)
a1y < A o ]
+ e" —e)dG(e) + —— e—e")dG(e
[1 =G (e7p)] 10 + an |:/€L ( ) dG(E) IT=AJen ( ) dG(e)
_ r—g *
< w - Asyt W (yt) :
The last inequality follows from (179) and (180) that imply
en ey
/ (e" —e)dG(e) + T (e—e")dG(e) < epy —E. (281)
er - en

148



Case 2: If 0 < ¢ <7 (), then Z /¢ is given by the expression in part (i) of Proposition [2, and

€lg = €71 = €%, and therefore

"= 9ym (2 ) = &+ (10 + a11) [e* - %/H (5—6*)dG(5)]

<&+ (10 +an1) [E* —E+ 1_(1;(5*) /;H (eg —e¥) dG(e)}

where the inequality is strict unless ¢ = 0 (which implies e* =¢cp). m

Proof of Corollary [3| First, note that

1 r—
() V™ (2, A )~V (A )] =T

Z
CERTR
w4 e
. (@ ) ) <so> N,
¥ P
1
n n\ 1—g
- (‘p; - a> <90> N (282)
® P

The first term is strictly positive unless ¢ = 7 () (because ¢ < ¢, by Proposition and 0 < Z,
and both inequalities are strict unless ¢ = 7(\)). Hence to show V" (Af,y,) < V" (Z, Af,yr),
it is sufficient to show that the sum of the last two terms in is nonnegative (and positive
unless ¢ = 7(\) and 6 = 1). Define

Notice

<;) S0 (283)
|

7 <£> 77 > 0 if and only if x < y. (284)

Then

> Q(p,01) — Q" 01)
0

> Q" 01) = Q(¢", 1) = 0.
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The second inequality follows from and the fact that ¢ < ¢;. The third inequality
follows from and the fact that o™ < ¢ < ;. Thus, V" (45,y;) < V" (Z, A],y), with
equality only if ¢ =7 (\) and 6 = 1 (since in this case, Z =0 and ¢ = p; = " = ¢}).

To show that V™ (Z, A7, y:) < W* (A], y:), proceed as follows. From and (121,

(r— ) V™ (2, AL, ) — W* (A5, 41)] —

Yt
r—g .2 s
= ui— + ¢ —w)A
P (1<P ! ¢

" [(“153;“’1_0> <9;>11“’N1—<1_a> (fj)ll”z\h]. (285)

We first show the first term in (285)) is nonpositive (strictly negative unless ¢ = 0). To this
end, we consider two cases in turn. First, if 2 () < ¢ < 7(X), then Z/¢ is given by (46)), and

€], = €", and therefore

uii + oy = 2+ (10 +an1) { e (8,{2‘)1](’&10 — /OH (e — 2)dG(e)
=G, anTan U =90+ 25 [ - nace) }
<&+ (agg+a11) { ] _[IG—((S{ O()6]’{26)1]00100411 (e — &)
=G, anTan [/ @ =9doe) + 125 [ o= enacea) }
<,

where the last inequality follows from (179) and (180]) that imply (281]). Hence the first term
in (285)) is negative if 7(\) < ¢ < 7(\). Second, if 0 < ¢ < 7()\), then Z/¢p is given by the
expression in part (i7) of Proposition [2, and e, = €]; = ¢*, and therefore

L2 ] . 1 e
u1$+§01:5+(a10+a11) |:€ _€+]_—C;({—j*)/€* (5—8)dG(E):|

€H

<&+ (10 + ai11) [6*_84_1—(1}(5*)/* (EH—E*)dG(é‘)] =),

where the inequality is strict unless ¢ = 0 (which implies ¢* = ¢). Hence regardless of whether

t(A) <e<z(A)or0<t¢<i(\), we have uj{% + ¢, < ¢ (with “=" only if ¢ = 0), so to show

150



V' (Z, A5, y1) < W*(A],y:) it is sufficient to show the second term in (285) is nonpositive.

This can be shown as follows

uzg_i_(p ﬁ ﬁ Z
(1“’@1 — a> <i> —(1-o0) <1ﬁ) =0 <907Uf80 +901> —Q (4, 9)

Qe ¥) —Q (¥, ¥)

IN

The first inequality follows from 1) and u“f% + ¢; < 9. The second inequality follows from
(284) and ¢ <. Thus, V™ (Z, A7, y) < W* (A, y,), with “=” only if « = 0 (since in this case
Uf%"‘@l:@:w)-'

A.12 Effects of monetary policy

Proof of Proposition (i) The condition that characterizes e}, in part (i) of Proposition

Bl can be written as

pr = om0 — i) + oo +an (1= 0)] [ (e~ 1) dG ()
1 cH o
+ a1101 — /gn (e —€")dG(e).
Totally differentiate this condition with respect to ¢ to get
o+ = ot + fong +on (1-0)] 1 - G () B0 (286)
Totally differentiate with respect to ¢ to get
0 — oo+ an (1 - 0] € (c50) 10 (287)
Together, and imply
dpt L

de © o L+ a119+[a10+a11(179)][176'(5{0)] ’
[a10+a11(179)}G(5’1‘0)

(i1) The condition that characterizes * in part (i7) of Proposition [2| can be written as

o = [Oqo +ann (1 + el_xﬂ /H (e — £)dG(e).
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Totally differentiate this condition to get

o+ [Oqo + (1 + 9A>] [1-G () d;:. (288)

du 11—

Totally differentiate the expression for ¢ in part (ii) of Proposition [2| to get

d . A Y det
C;f:{(a10+a11)G(s)—allﬁl_)\[l—G(s )]} o (289)
Combine (288) and (289) to get
dor _ _ :
do o [ar0+a11 (140125 ) |[1-G(e*)]

(a104011)G(e*)—a110 25 [1-G(e¥))]

B Quantitative robustness

In this section we assess the robustness of the quantitative results of Section [§] to alternative
calibration strategies. In our baseline, the parameters «, 6, and X, are calibrated so that,
given the rest of the parametrization, the model is consistent with the following three facts:
(a) the real asset price falls by about 11 basis points in response to a 1 basis point increase
in the nominal policy rate, as in the high-frequency empirical estimates in Lagos and Zhang
(2019); (b) transaction velocity of money is 25 per day, which is the average daily number of
times a dollar turns over in CHIPS (Clearing House Interbank Payments System); and (c) the
median spread on margin loans is about 2.3%, which is the current spread (over the fed funds
rate) that a typical prime broker charges a large investor. This procedure delivers a = .0406,
0 = .1612, and . = 2.0784. Below, we report results for three alternative calibrations that
consider alternative target values for the spread on margin loans and/or velocity.

In the first alternative calibration, denoted (AC1), v, 6, and X, are calibrated so that, given
the rest of the parametrization, the model is consistent with the following targets: (a) the real
asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal
policy rate; (b) transaction velocity of money is 25 per day; and (¢) the median spread on
margin loans is about 1.20%. This procedure delivers o = .0389, 6 = .2979, and Y. = 2.3653.
Figure [12)reports S for economies indexed by (a, A) € [0,1] x {.50,.75,.90,.99}. The calibration
ensures that & = 11 for a = .0389 and A = .75. As in the baseline calibration, the response of

152



the asset price to nominal rate shocks is sizable for a wide range of values of « and A, and it is
significant even in the pure-credit limiting economy that obtains as a — 0. Figure [13|reports &
for economies indexed by (a, 6) € [0, 1] x {.10, .30,.70,.99}. The calibration ensures that S = 11
for a = .0389 and 6 = .2979. As in the baseline calibration, the response of the asset price to
nominal rate shocks is sizable for a wide range of values of a and 6, and it is significant even
in the pure-credit limiting economy that obtains as a — 0. Figure [L4] reports S for economies
indexed by (a, pP) € [0,1] x {.03,.04,.0447,.05}. The calibration ensures that S = 11 for
a = .0389 and pP = .0447. This exercise shows that for every level of «, the asset price response
is significant, and tends to be larger in environments with a lower background nominal policy
rate. Figures [I5] [I6] and [I7] offer a comprehensive summary of the magnitude of the effects
of monetary policy in limiting economies with v — 0. For a wide range of economies indexed
by a pair p? and A, Figure reports the value of S in the pure-credit limit that obtains as
a — 0. The level sets in the right panel show it is not easy to find reasonable parametrizations
that imply a value of S below 5. Figures [16|and [17] tell a similar story. Figure for example,
shows that, as predicted by the theory, S = 0 in the pure-credit cashless limit of economies
with no credit-market frictions or markups, i.e., economies with A = § = 1. In contrast, S is
positive and sizable in the pure-credit cashless limit of economies with 6§ < 1, even if 1 — 6 is
relatively small.

In the second alternative calibration, denoted (AC2), «, 6, and X. are calibrated so that,
given the rest of the parametrization, the model is consistent with the following targets: (a) the
real asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal
policy rate; (b) transaction velocity of money is about 6 per day; and (¢) the median spread
on margin loans is about 25 basis points. This procedure delivers o = .0966, 6 = .8337, and
Y. = 2.6429. Figure [L8[reports S for economies indexed by (a, A) € [0, 1] x {.50,.75,.90,.99}.
The calibration ensures that & = 11 for a = .0966 and A = .75. As in the baseline calibration,
the response of the asset price to nominal rate shocks is sizable for a wide range of values of
«a and A, and it is significant even in the pure-credit limiting economy that obtains as a — 0.
Figure [19)reports S for economies indexed by (e, 0) € [0,1] x {.10,.25,.83,.99}. The calibration
ensures that & = 11 for a = .0966 and # = .8337. As in the baseline calibration, the response
of the asset price to nominal rate shocks is sizable for a wide range of values of o and 6, and it
is significant even in the pure-credit limiting economy that obtains as a — 0. Figure [20| reports

S for economies indexed by (a, pP) € [0,1] x {.03,.04,.0447,.05}. The calibration ensures that
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S =11 for a = .0966 and pP? = .0447. This exercise shows that for every level of «, the asset
price response is significant, and tends to be larger in environments with a lower background
nominal policy rate. Figures[21] 22] and [23]offer a comprehensive summary of the magnitude of
the effects of monetary policy in limiting economies with e — 0. For a wide range of economies
indexed by a pair pP and A, Figure reports the value of S in the pure-credit limit that
obtains as a — 0. The level sets in the right panel show it is not easy to find reasonable
parametrizations that imply a value of S below 5. Figures [22] and [23] tell a similar story. Figure
for example, shows that, as predicted by the theory, S = 0 in the pure-credit cashless limit
of economies with no credit-market frictions or markups, i.e., economies with A = 6 = 1. In
contrast, § is positive and sizable in the pure-credit cashless limit of economies with 6 < 1,
even if 1 — 6 is relatively small.

In the third alternative calibration, denoted (AC3), we set o = 0, and A, 0, and X, are
calibrated so that, given the rest of the parametrization, the model is consistent with: (a) the
real asset price falls by about 11 basis points in response to a 1 basis point increase in the nominal
policy rate; (b) transaction velocity of money is about 25 per day; and (c) the median spread
on margin loans is about 25 basis points. This procedure delivers A = .9159, # = .8080, and
Y. = 3.0886. Figure [24] reports S for economies indexed by (a, A) € [0,1] x {.50,.75,.90,.99}.
The calibration ensures that & = 11 for a = 0 and A = .9159. As in the baseline calibration,
the response of the asset price to nominal rate shocks is sizable for a wide range of values of
«a and A, and it is significant even in the pure-credit limiting economy that obtains as @ — 0.
Figure 25| reports S for economies indexed by (a, 0) € [0,1] x {.10,.25,.80,.99}. The calibration
ensures that § = 11 for « = 0 and # = .8080. As in the baseline calibration, the response of
the asset price to nominal rate shocks is sizable for a wide range of values of o and 6, and it is
significant even in the pure-credit limiting economy that obtains as o — 0. Figure [26] reports
S for economies indexed by (a, pP) € [0,1] x {.03,.04,.0447,.05}. The calibration ensures that
S =11 for a = 0 and pP = .0447. This exercise shows that for every level of a, the asset price
response is significant, and tends to be larger in environments with a lower background nominal
policy rate. Figures [27] 28] and [29] offer a comprehensive summary of the magnitude of the
effects of monetary policy in limiting economies with « — 0. For a wide range of economies
indexed by a pair pP and A, Figure reports the value of S in the pure-credit limit that
obtains as a — 0. The level sets in the right panel show it is not easy to find reasonable

parametrizations that imply a value of S below 5. Figures 2§ and [29]tell a similar story. Figure
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for example, shows that, as predicted by the theory, S = 0 in the pure-credit cashless limit
of economies with no credit-market frictions or markups, i.e., economies with A = 6 = 1. In

contrast, § is positive and sizable in the pure-credit cashless limit of economies with 6 < 1,
even if 1 — 6 is relatively small.
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