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Online Appendix for “Equilibrium Allocations under Alternative Waitlist
Designs: Evidence from Deceased Donor Kidneys Kidneys”

Nikhil Agarwal, Itai Ashlagi, Michael Rees, Paulo Somaini, Daniel Waldinger.

A Detailed Estimation Results

Positive Crossmatch Probability

Not all accepted offers result in transplantation because additional testing may yield a positive
crossmatch indicating that the patient is likely to develop an immune response to the donor’s
kidney. These transplants are not carried out, and if possible the organ is placed with
another patient. To account for positive crossmatches when computing value functions and
conducting counterfactual simulations, we estimate a probit model to predict the probability
that a patient has a positive crossmatch with an organ they have accepted. The specification
includes interactions between the patient’s CPRA and the number of HLA mismatches with
the donor, in addition to controls for patient age and number of years on dialysis. We use a
subset of the variables included in the CCP model to avoid overfitting. Coefficient estimates
and standard errors are displayed in Table A.I. The results are intuitive and consistent
with medical knowledge. For example, higher CPRA is associated with a higher positive
crossmatch probability, as are more tissue-type dissimilarities (as measured by DR or HLA
mismatches). This is consistent with the view that patients with more sensitized immune
systems may be more likely to test positive against foreign antibodies, even if they have not
tested positive in the past.

Maximum Number of Offers and Discards

Some organs are not offered to all compatible patients in NYRT. This usually occurs either
because an organ becomes unsuitable for transplantation or because the organ is accepted
by a patient in another OPO. We call these events “timeouts.”

We model the maximum number of offers that can be made for a given organ using a censored
exponential hazards model. Duration is the number of observed offers. Censoring occurs if
the organ is placed, or if it is discarded after being offered to all compatible NYRT patients.
The hazard function is
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Table A.I: Positive Crossmatch Model
CPRA 1.025 (0.152)

0 or 1 HLA Mismatches -1.374 (0.474)

2 or 3 HLA Mismatches 0.199 (0.0856)

0 DR Mismatches -0.449 (0.0930)

CPRA x 1{0 or 1 HLA Mismatches} -0.590 (0.684)

CPRA x 1{2 or 3 HLA Mismatches} -0.477 (0.169)

CPRA  0 -0.587 (0.0827)

CPRA - 0.8 if CPRA > 0.8 -3.389 (0.811)

Log Dialysis Time at Registration (Years) -0.0325 (0.00846)

Log Dialysis Time at Registration x 1{Over 5 Years} 1.035 (0.0812)

Patient Age at Registration (Years) 0.0108 (0.00490)

Age at Registration - 35 if Age > 35 -0.0272 (0.00628)

Constant -0.254 (0.170)

Observations 3876

Notes: coefficient estimates from a probit regression of positive crossmatch on 
patient CPRA, the number of tissue type mismatches, patient age, and years on 
dialysis at registration. The sample is all offers accepted by NYRT patients 
between 2010 and 2013. Positive crossmatches are identified by the appropriate 
refusal code in the PTR data. CPRA is measured on a [0,1] scale.

λo (z) = λo exp (zβ) (A.1)

where z are characteristics of the donor, β is a vector of coefficients, and λ0 is the constant
baseline hazard rate. We allow the hazard to depend on geography and indicators of donor
quality. Specifically, we control for whether the donor is an expanded criteria donor (ECD);
the donor’s cause of death (DCD); and whether the donor was recovered in NYRT, as well
as interactions among these variables. The estimated timeout hazards are inputs in the
counterfactual exercises.

Kidneys that reach the maximum number of offers can be discarded or allocated to a patient
outside NYRT. We model the probability that a donor’s unallocated kidneys are discarded
using a probit model that includes the same set of covariates used to estimate the maximum
number of potential offers. This part of the model does not influence allocation and incentives
for patients in NYRT. It is used to properly account for changes in discards for kidneys not
allocated to patients in NYRT.
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Table A.II: Survival Model Estimates

Gompertz Weibull Cox

(1) (2) (3)

Diabetic Patient 0.0812 0.0739 0.0850

(0.0336) (0.0336) (0.0336)

Bloodtype A Patient 0.159 0.127 0.165

(0.0437) (0.0436) (0.0438)

Bloodtype O Patient 0.00394 0.00400 0.00385

(0.0392) (0.0392) (0.0392)

Calculated Panel Reactive Antibodies (CPRA) -0.000126 -0.000211 -0.000275
(0.00150) (0.00150) (0.00150)

CPRA = 0 0.190 0.179 0.181

(0.0738) (0.0738) (0.0739)

CPRA - 80 if CPRA>=80 -0.0230 -0.0204 -0.0225

(0.00650) (0.00650) (0.00650)

Age (at Registration) -0.0418 -0.0363 -0.0361

(0.0150) (0.0151) (0.0151)

Age - 18 if Age>=18 0.0399 0.0356 0.0348

(0.0184) (0.0186) (0.0186)

Age - 35 if Age>=35 -0.00988 -0.0121 -0.0104

(0.00966) (0.00966) (0.00966)

Age - 50 if Age>=50 0.0236 0.0231 0.0242

(0.00729) (0.00728) (0.00729)

Age - 65 if Age>=65 0.0241 0.0233 0.0238

(0.00927) (0.00926) (0.00929)

Prior Transplant 0.0513 0.0590 0.0546

(0.0552) (0.0550) (0.0552)

Body Mass Index (BMI) -0.0155 -0.0145 -0.0156

(0.00639) (0.00639) (0.00640)

Missing BMI -0.0680 0.0736 -0.104

(0.199) (0.199) (0.200)

BMI >= 18.5 -0.0382 -0.0450 -0.0356

(0.106) (0.106) (0.106)

BMI >= 25 0.00882 0.00346 0.00918

(0.0492) (0.0492) (0.0492)

BMI >= 30 0.0509 0.0429 0.0513

(0.0595) (0.0595) (0.0595)

Total Serum Albumin -0.163 -0.160 -0.156

(0.0549) (0.0550) (0.0548)

Missing Total Serum Albumin -0.533 -0.461 -0.490

(0.189) (0.189) (0.189)

Total Serum Albumin >= 3.7 -0.0645 -0.0630 -0.0681

(0.0591) (0.0592) (0.0591)

Total Serum Albumin >= 4.4 0.0512 0.0405 0.0505

(0.0510) (0.0509) (0.0510)

On Dialysis at Registration -0.149 -0.169 -0.142

(0.113) (0.113) (0.113)

Log Years on Dialysis at Registration -0.00139 0.00451 -0.00291

(0.0185) (0.0185) (0.0185)

Log Years on Dialysis at Registration x 1{Over 5 Years} 0.187 0.181 0.181

(0.110) (0.110) (0.110)

Constant -5.870 -5.308
(0.342) (0.352)

Gompertz Shape Parameter 0.0000922
(0.0000210)

Weibull Shape Parameter -0.0785
(0.0143)

Observations 9623 9623 9623
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Detailed CCP Estimates

Table A.III: Conditional Choice Probability of Acceptance (Detailed)

Base Specification Unobserved Heterog. Waiting Time  + UH

(1) (2) (3)

Constant -3.70  (0.02) -4.47  (0.03) -4.49  (0.05)

Patient Diabetic -0.06  (0.01) -0.05  (0.02) -0.03  (0.02)

Calculated Panel Reactive Antibody (CPRA) 0.60  (0.05) 0.68  (0.06) 0.58  (0.09)

CPRA >= 0.8 0.27  (0.05) 0.10  (0.06) 0.12  (0.08)

CPRA = 0 -0.10  (0.02) -0.02  (0.03) -0.02  (0.03)

CPRA - 0.8 if CPRA >= 0.8 -0.37  (0.37) -0.37  (0.48) -0.56  (0.50)

Patient had Prior Transplant 0.38  (0.02) 0.36  (0.02) 0.14  (0.03)

Donor Age < 18 0.27  (0.10) -0.09  (0.19) -0.04  (0.20)

Donor Age 18-35 0.59  (0.12) -0.06  (0.19) 0.02  (0.19)

Donor Age 50+ -0.83  (0.16) -0.77  (0.21) -0.87  (0.22)

Donor Cause of Death Anoxia -0.04  (0.02) -0.12  (0.06) -0.10  (0.06)

Donor Cause of Death Stroke 0.01  (0.02) 0.02  (0.06) 0.04  (0.07)

Donor Cause of Death CNS 0.17  (0.09) -0.16  (0.32) -0.16  (0.36)

Donor Creatinine 0.5-1.0 -0.06  (0.03) 0.02  (0.11) -0.01  (0.11)

Donor Creatinine 1.0-1.5 0.01  (0.03) 0.00  (0.11) -0.04  (0.10)

Donor Creatinine >= 1.5 -0.13  (0.03) -0.21  (0.11) -0.23  (0.11)

Donor Pancreas Offered 0.36  (0.03) 0.54  (0.09) 0.56  (0.09)

Expanded Criteria Donor (ECD) -0.14  (0.02) -0.53  (0.08) -0.53  (0.10)

Donation from Cardiac Death (DCD) -0.10  (0.02) -0.51  (0.06) -0.50  (0.09)

Donor Male 0.01  (0.01) 0.05  (0.05) 0.06  (0.04)

Donor History of Hypertension 0.01  (0.02) -0.01  (0.05) -0.01  (0.05)

Perfect Tissue Type Match 2.33  (0.31) 2.92  (0.43) 2.89  (0.44)

2 A Mismatches -0.08  (0.02) 0.00  (0.02) 0.00  (0.02)

2 B Mismatches 0.06  (0.02) 0.02  (0.03) 0.03  (0.03)

2 DR Mismatches -0.06  (0.02) -0.05  (0.02) -0.05  (0.02)

ABO Compatible -0.35  (0.05) -0.40  (0.09) -0.41  (0.09)

Regional Offer -1.38  (0.06) -2.90  (0.19) -2.92  (0.19)

National Offer -1.54  (0.04) -3.05  (0.12) -3.11  (0.11)

Non-NYRT Donor, NYRT Match Run 1.23  (0.02) 2.02  (0.05) 2.08  (0.05)

Patient Blood Type A -0.17  (0.02) -0.28  (0.07) -0.28  (0.07)

Patient Blood Type O -0.32  (0.02) -0.38  (0.06) -0.39  (0.06)

Patient on Dialysis at Registration -0.02  (0.02) -0.10  (0.02) -0.09  (0.02)

Patient Age at Registration 0.04  (0.01) 0.10  (0.01) 0.10  (0.01)

Patient Age - 18 if Age >= 18 -0.05  (0.01) -0.11  (0.01) -0.11  (0.01)

Patient Age - 35 if Age >= 35 0.01  (0.00) 0.02  (0.01) 0.02  (0.01)

Patient Age - 50 if Age >= 50 0.00  (0.00) 0.00  (0.00) 0.00  (0.00)

Patient Age - 65 if Age >= 65 -0.01  (0.00) 0.00  (0.01) -0.01  (0.01)

Log Waiting Time (years) 0.09  (0.06)

Log Waiting Time x 1{Over 1 Year} -0.15  (0.07)

Log Waiting Time x 1{Over 2 Years} -0.13  (0.12)

Log Waiting Time x 1{Over 3 Years} 0.30  (0.11)

Patient BMI at Departure -0.07  (0.03)

Patient BMI - 18.5 if BMI >= 18.5 0.03  (0.03) 0.07  (0.04) 0.06  (0.04)

Patient BMI - 25 if BMI >= 25 0.02  (0.01) 0.02  (0.01) 0.02  (0.01)

Patient BMI - 30 if BMI >= 30 -0.01  (0.01) -0.02  (0.01) -0.02  (0.01)

Patient Serum Albumin -0.02  (0.03) -0.01  (0.03) -0.01  (0.03)

Serum Albumin - 3.7 if >= 3.7 -0.04  (0.05) -0.07  (0.06) -0.06  (0.06)

Serum Albumin - 4.4 if >= 4.4 0.12  (0.05) 0.16  (0.06) 0.16  (0.06)

Log Dialysis Time at Registration (Years) 0.04  (0.00) 0.05  (0.01) 0.05  (0.01)

Log Dialysis Time at Registration x 1{Over 5 years} 0.49  (0.03) 0.44  (0.04) 0.43  (0.04)

Perfect Tissue Type Match x Prior Transplant -0.44  (0.19) -0.39  (0.27) -0.29  (0.27)

Perfect Tissue Type Match x Diabetic Patient 0.03  (0.16) 0.06  (0.23) 0.06  (0.23)

Perfect Tissue Type Match x Patient Age -0.01  (0.01) -0.02  (0.01) -0.02  (0.01)

Perfect Tissue Type Match x CPRA 0.85  (0.35) 1.35  (0.48) 1.53  (0.48)

Perfect Tissue Type Match x 1{CPRA above 80%} -0.50  (0.30) -0.30  (0.40) -0.38  (0.41)

Perfect Tissue Type Match x ECD Donor -0.63  (0.16) -0.72  (0.23) -0.72  (0.23)

Perfect Tissue Type Match x DCD Donor -0.46  (0.33) -1.03  (0.47) -1.05  (0.47)

Perfect Tissue Type Match x NYRT Donor 0.44  (0.18) -0.02  (0.26) -0.02  (0.26)

Perfect Tissue Type Match x ABO Compatible 0.02  (0.17) 0.09  (0.24) 0.08  (0.24)

NYRT Donor x 1{2 A Mismatches} 0.16  (0.03) 0.06  (0.04) 0.05  (0.04)

NYRT Donor x 1{2 B Mismatches} -0.02  (0.03) -0.05  (0.04) -0.05  (0.04)

NYRT Donor x 1{2 DR Mismatches} -0.03  (0.03) -0.01  (0.04) -0.01  (0.03)

NYRT Donor x 1{Donor Age < 18} -0.05  (0.06) 0.18  (0.22) 0.19  (0.25)

NYRT Donor x 1{Donor Age 18-35} 0.13  (0.04) 0.24  (0.15) 0.25  (0.15)
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NYRT Donor x 1{Donor Age 50+} -0.45  (0.03) -0.69  (0.13) -0.68  (0.12)

Patient Age x 1{Donor Age < 18} -0.01  (0.00) 0.00  (0.00) 0.00  (0.00)

Patient Age x 1{Donor Age 18-35} -0.02  (0.00) 0.00  (0.01) 0.00  (0.01)

Patient Age x 1{Donor Age 50+} 0.02  (0.00) 0.02  (0.01) 0.02  (0.01)

Patient Age - 35 if Age >= 35 x 1{Donor Age 18-35} 0.02  (0.01) 0.00  (0.01) 0.00  (0.01)

Patient Age - 35 if Age >= 35 x 1{Donor Age 50+} -0.01  (0.01) 0.00  (0.01) -0.01  (0.01)

Log Waiting Time x Prior Transplant 0.23  (0.02)

Log Waiting Time x Patient Diabetic -0.03  (0.02)

Log Waiting Time x Patient Age 0.00  (0.00)

Log Waiting Time x CPRA 0.08  (0.05)

Log Waiting Time x 1{CPRA >= 80} 0.00  (0.05)

Log Waiting Time x Patient Serum Albumin -0.01  (0.01)

Log Waiting Time x Patient BMI at Departure 0.00  (0.00)

Log Waiting Time x 1{Patient Blood Type A} 0.01  (0.03)

Log Waiting Time x 1{Patient Blood Type O} -0.01  (0.03)

Patient BMI Missing -1.27  (0.61)

Patient Serum Albumin Missing -0.05  (0.12)

Donor Unobservable Std. Dev. 1.02  (0.03) 1.04  (0.04)

Idiosyncratic Shock Std. Dev. 1.00 1.00 1.00

Acceptance Rate 0.140% 0.140% 0.140%

Number of Offers 2713043 2713043 2713043

Number of Donors 5642 5642 5642

Number of Patients 9494 9494 9494

Table A.IV: Out-of-sample Model Validation

Relative Mean-Squared Prediction Error of CCP Estimator

Estimation Sample Validation Sample

Sparse Specification 87% 88%

Baseline Specification 81% 86%

Richer Specification 77% 89%

Richest Specification 73% 136%

Note: Validation sample includes offers made between January 1, 2014 and June 30, 2014. The relative mean squared error

normalizes the MSE relative to a baseline estimator that predicts a constant CCP in each period. The sparse specification

reduces the interactions and knots in the piecewise linear terms included in χ (·) from our baseline specification so that we

estimate about one fourth of the co-efficients. The richer specification increases the number of interactions and knots in the

piecewise linear terms by a factor of four from the baseline, and the last specification further increases the number of terms by

another factor of three.
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B Counterfactuals

B.1 Computation Details

B.1.1 Counterfactual Scoring Mechanisms

Our algorithm to compute steady-state equilibria for counterfactual scoring mechanisms uses
a discrete time grid t = t0, . . . , tl, tl+1, . . . , T , arbitrary initial beliefs π0, and a sample of
patients and donors as inputs. In the baseline results, the type space is given by a random
sample of 300 patients and 500 donors drawn from our dataset. We discretize time into
quarters for the first 15 years after registration, then every 2 years until year 25, and every
25 years thereafter. These results are not sensitive to a larger set of patient and donor types
or finer time partitions. Details are provided in section C.

An equilibrium is computed by iterating through the following steps until convergence:

1. Compute the value function V k
x (tl), given beliefs πk−1, via backwards induction from

V k
x (tl+1). This calculation also yields patient strategies σkx (Γ, t) = 1

{
Γ ≥ V k

x (t)
}
and

departure rates κkx (t) .

2. Compute the queue composition mk given departure rates κkx (t).

3. Compute πk (t;x, z) using the queue composition and the accept/reject strategies σkx (Γ, t).

4. For step k > 1: Terminate if the largest change in value functions and queue length/composition
between iterations – supx,l

∣∣∣V k
x (tl)− V k−1

x (tl)
∣∣∣, supx,l

∣∣∣mk
x (tl;x)−mk−1

x (tl)
∣∣∣, and Nk −

Nk−1 – are uniformly below a tolerance level. Otherwise, repeat steps 1-4.

If this algorithm terminates, the resulting accept/reject rules yield an equilibrium (up to
the threshold tolerance). Because the equilibrium we compute may not be unique, we tried
different starting values for π0. Our experiments at the estimated parameters did not find
multiple equilibria. Pseudo-code is provided below.

Value Function Computation (Backwards Induction):

For a small h, the value function derived in equation (3) can be approximated as

(ρ+ δx (t))Vx (t) ≈ λ
∫
πx (t; z)

∫
max {0,Γ (t;x, z) + ε− Vx (t)} dGdF + Vx (t+ h)− Vx (t)

h
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Because the right-hand side is monotonically decreasing in Vx (t) , there is a unique value of
Vx (t) that satisfies the equation. We will use this expression to obtain the value function by
backwards induction. At iteration k, given V k

x (tl+1) we use the bisection method to calculate
the value of v that solves:

(ρ+ δx (tl)) v = λ
∫
πkx (tl; z)

∫
max {0,Γ (tl;x, z) + ε− v} dGdF + V k

x (tl+1)− v
tl+1 − tl

(B.2)

Because this problem can be written as finding v = f (v) where f (·) is strictly decreasing,
we can take any initial guess v0 and set the lower bound to min (v0, f (v0)) and the upper
bound to max (v0, f (v0)) . We use the initial guess v0 = V k

x (tl+1).

Offer Probabilities, πx,z (t):

Section B.1.2 derives a computationally tractable approximation to offer probabilities given
a scoring rule s, a large waitlist N∗, and an acceptance policy function. The expression in
equation (B.5) below can be simplified and solved for analytically. We use that solution in
our algorithm.

Waitlist Size/Composition, m,N :

We use κx (t) and γx to update the queue composition. Solving the ODE in Definition 1,
part 3(a), we get that for any h > 0,

mx (t+ h) = mx (t) exp
(
−
∫ h

0
κx (t+ τ) dτ

)
,

where mx (0) = λx. Approximating κx (t+ τ) = κx (t+ h) for all τ ∈ (0, h), we have that

mx (tl+1) = mx (tl) exp (−κx (tl+1) (tl+1 − tl)) . (B.3)

Finally, we scale the output so that mx (tl) is a probability measure.

The size of the waitlist, N , is determined by part 3(b) of Definition 1.

B.1.2 Approximating Offer Probabilities

Fix a particular agent i with priority score s. Ties are broken randomly, so wlog consider
each agent’s tiebreaker to be drawn from a uniform distribution. Let 1−αi be the tie-breaker
for agent i.

An offer may be the last one because it may be accepted or because the kidney may expire
after the offer. This model, specified in equation (A.1), yields a probability, p0 = λo (z) , the



8

Algorithm 1 Steady State Equilibrium
1: Inputs: Patient and donor characteristics, scoring rule s, parameters Γ, δ, ρ, and patient

age grid {t0, . . . , tL = T}. Let tl0x be the arrival time for patient of type x.
2: Outputs: V ∗, π∗, m∗, N∗
3: Initialize k = 0 and beliefs πkx(t) for all x and t ∈ {t0, . . . , tL}
4: repeat
5: V k ← Backwards Induction(πk)
6: κkx(tl)← δx(tl) + λ

∑
z π

k
x,z(tl)P(Γ(tl;x, z) + ε > V k

x (tl))
7: mk, Nk ← Forward Simulation(κk) . Waitlist Composition
8: πk ← Compute Offer Probabilites(V k,mk, Nk) . Offer Probabilities
9: k ← k + 1
10: until k > 1, ‖V k − V k−1‖∞ < ε, ‖mk −mk−1‖∞ < ε, and Nk = Nk−1 . Convergence
11: V ∗ ← V k,m∗ ← mk, N∗ ← Nk, π∗ ← πk

12: function Backwards Induction(π)
13: for all x do
14: Set Vx(T ) = 0
15: for all x and tl = tL−1 to tl0x do
16: Compute Vx(tl) by solving for v in equation (B.2)
17: end for
18: end for
19: return Vx(tl) for all x and tl ∈ {tl0x , . . . , T}
20: end function
21: function Forward Simulation(κ)
22: for all x do
23: mx(tl0x)← λx
24: for all tl = tl0x+1 to T do
25: mx(tl+1)← mx(tl) exp(−κx(tl)(tl+1 − tl))
26: end for
27: end for
28: Nk ← ∑

x,tlm
k
x(tl)κkx(tl) . Waitlist Size: Definition 1, part 3(b)

29: mx(tl)← mx(tl)/Nk for all x and tl
30: return mx(tl) for tl ∈ {tl0x , . . . , T} and Nk

31: end function
32: function Compute Offer Probabilities(m,V,N)
33: pa(tl;x, z)← P(Γ(tl;x, z) + ε > Vx(tl)) for all x, tl
34: for all s = max s(tl;x, z) to min s(tl;x, z) do
35: Compute π using equation (B.5)
36: end for
37: return πk

38: end function
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probability of a timeout before the next offer for an object of type z. For simplicity, we fix
z and drop it from the notation.

An agent receives an offer if the total number of acceptances and timeouts after offers to
agents with a higher priority score than agent i is strictly less than the number of copies
of the object available. Consider waitlists that are composed of N agents randomly drawn
from distribution m. The probability that each drawn agent is ordered above i and that the
kidney is either accepted by the agent or times out is

p (s, α) = mH (s) pH (s) +mE (s)αpE (s) .

The first term represents the case when an agent with a higher priority (group H) is drawn.
The probability of the kidney becoming unavailable conditional on an agent drawn from a
higher priority group is:

pH (s) = p0 + (1− p0) 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s}P (Γ (t;x) + ε > Vx (t)) .

The second term is the probability that an agent with priority score s is drawn. The term
pE (s), representing the case when an agent in the same priority group is drawn, is defined
analagously as pH (s).

Therefore, the number of times a kidney would become unavailable after being offered to an
agent ordered above i is a binomial random variable X with parameters N and p (s, α). An
object is available to agent i if X < q, where q is the number of copies of the object. Hence,
the probability that i receives an offer is given by

∫ 1

0
P (X < q|s, α) dα, (B.4)

where we have integrated over the tie-breaker α, and explicit conditioning on N is subsumed
for simplicity.

For large N and small p (s, α), the distribution of X approaches the distribution of a Poisson
random variable with parameter Np (s, α). Therefore, the expression in equation (B.4) yields
the following expression for πx (t):

πx (t) =
∫ 1

0

∑
q′<q

e−Np(s,α) (Np (s, α))q
′

q′! dα,

where we use the Poisson approximation to re-write P (X < q|s, α). As a reminder, the
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object type z is dropped from the notation for simplicity as it is fixed, although the offer
probabilities depend on it. This integral can be solved for in closed form for q ∈ {1, 2}:

πx (t) = e−Np(s,0) − e−Np(s,1)

N (p (s, 1)− p (s, 0)) + 1 {q = 2} (1 +Np (s, 0))e−Np(s,0) − (1 +Np (s, 1))e−Np(s,1)

N (p (s, 1)− p (s, 0)) .

(B.5)

B.2 Optimal Assignments and Optimal Offer Rates

The objective functions for these two problems are identical. It is given by:

∑ 1
V̄M0
x (λ0)

[
γx
ρ
Vx (0) +

∑
l

Nmx (tl) (tl+1 − tl)Vx (tl)
]
,

where V̄M0
x (λ0) is defined in equation (11) and V are choice variables interpreted as in the

rest of the paper. The constraints on the two problems differ and each has a separate, third
choice variable. For the optimal assignment mechanism, we choose assignment policies µ.
For the optimal offer mechanism, we choose offer rates π. We describe these variables and
constraints below. The nonlinear problem is solved using the KNITRO optimizer interfaced
with MATLAB.

B.2.1 Optimal Assignments

This allocation maximizes the objective function above by assigning an object of type z
to agents currently on the list. The social planner knows the payoffs Γxzt as well as the
idiosyncratic shocks ε. The planner also knows the steady state distribution of agents waiting
for an assignment but not the future arrivals of objects or agents. The choice variable is the
probability µzxt with which a compatible object of type z is allocated to an agent of type x
who has waited for t periods. Given µ, the assignment is made to compatible agents of type
x that have waited for t periods and have the highest draws of ε. Choosing µ is equivalent
to choosing a cutoff εxzt such that µxzt = P (a (ε;x, z, t) = 1) =

∫
1 {ε > εxzt} dG, where the

integral is taken with respect to ε.

There are three constraints:

1. Value Function: The agent’s net present value Vx (·) from the expected stream of as-
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signments under the policy µzxt is defined by(
1 +

(
ρ+ δx (tl) + λ

∑
z

fzµxztlcxz

)
(tl+1 − tl)

)
Vx (tl) = (tl+1 − tl)λwx (tl) + Vx (tl+1) ,

where
wx (t) =

∑
z

fzcxz

∫
(Γxzt + ε) 1 {ε > εxzt} dG,

fz is the probability that the object type is z, integrals are over ε, and cxz is the known
(estimated) compatibility probability. These expressions for V and w are obtained by
solving the value function from following the policy of accepting offers with ε above
εxzt, with offers made whenever an object arrives. The term wx (t) denotes the expected
value to an agent of type x conditional on an object arriving.

2. Feasibility: The total mass of type z objects that are assigned upon arrival must not
exceed the mass of objects that arrive. Specifically, for each z, we impose the constraint

∑
x,l

Nmx (tl) (tl+1 − tl) cxzµzxtl ≤ qz.

The left hand side is the cumulative product of the (discretized) masses of each type
of agent on the waitlist, Nmx (tl) (tl+1 − tl), multiplied by the assignment probabilities
cxzµxztl for each agent. This quantity cannot exceed the mass of objects that arrive, qz.

3. Steady-State Composition: The measure of agents of type x that have waited for
t periods is in steady state. This constraint is analogous to equation (B.3) above.
Specifically, for each x and l > 0, we have that

Nmx (tl+1) = Nmx (tl) exp
(
−
(
δx (tl) + λ

∑
z

fzcxzµxztl

)
(tl+1 − tl)

)
,

Nmx (t0) = γx.

The term λ
∑
z fzcxzµxztl is the cumulative assignment rate across objects for an agent

of type x at time tl. This, when added to δx (tl+1), yields the total departure rate.

In addition, we impose that each µxzt belongs to unit interval.
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B.2.2 Optimal Offer Rates

This problem maximizes the objective function above by choosing a probability of offering
an object of type z to agents currently on the list. The social planner has full information
about the payoffs Γxzt, but does not know the idiosyncratic shocks ε. She knows the steady-
state distribution of agents waiting for an assignment but not the future arrivals of objects
or agents. The choice variable in this problem is the probability πzxt with which an arriving
object of type z is offered to an agent of type x who has waited for t periods. Agents optimally
choose which offers to accept given π.

As before, there are three constraints:

1. Value Function: The agent’s net present value Vx (·) from the expected stream of as-
signments under the policy πzxt is defined by

(1 + (ρ+ δx (tl)) (tl+1 − tl))Vx (tl) = (tl+1 − tl)λwx (tl) + Vx (tl+1) ,

where
wx (t) =

∑
z

fzπxztcxz

∫
max {0,Γxzt + ε− Vx (t)} dG,

fz is the probability that the object type is z, and integrals are taken with respect to ε.
As in the optimal assignment problem, wx (t) is the expected value to an agent of type
x conditional on an object arriving. However, in this problem, the agent makes optimal
decisions and offers do not depend on the payoff shocks. Therefore, an assignment
occurs only if the agent is offered the object and the agent accepts. Acceptance occurs
if the payoff shock exceeds Vx (t)− Γxzt.

2. Feasibility: The total mass of type z objects assigned must not exceed the mass of
objects that arrive. Specifically, for each z, we impose the constraint

∑
x,l

m̃x (tl) (tl+1 − tl) πzxtl
[
cxz

∫
1 {Γxztl + ε > Vx (tl)} dG+ p0,z

]
≤ qz,

where the integral is over ε. This constraint is analogous to the feasibility constraint
in the optimal assignment problem. The difference is that the assignment rate cxzµxzt
is replaced by the term

πzxtl

[
cxz

∫
1 {Γxztl + ε > Vx (tl)} dG+ p0,z

]
.



13

The term πzxtl denotes the probability that an agent of type x receives an offer for
an object of type z after she has waited for tl periods. The term in brackets is the
probability that any such offer is the last offer for the object that can be made. It is
the sum of the probability that object is compatible and transplanted,

cxz

∫
1 {Γxztl + ε > Vx (tl)} dG,

and the probability that no more offers can be made after the current one. This term
arises from the technological constraint on the number of offers that can be made for
an object. The model used to determine p0,z is described in Appendix A.

This constraint only restricts the expected number of assignments. Therefore, the
offer rates πxzt may not be implementable for a specific sequence of donor and patient
arrivals.

3. Steady-State Composition: The measure of agents of type x that have waited for t
periods is in steady state. Specifically, for each x and l > 0, we have

m̃x (tl+1) = m̃x (tl) exp
(
−
(
δx (tl+1) + λ

∑
z

fzµxztl

)
(tl+1 − tl)

)
,

m̃x (tl) = γx,

where
µxzt = πzxtcxz

∫
1 {Γxzt + ε > Vx (t)} dG.

This constraint differs from its analogue in the optimal assignment problem because
here the assignment probability µxzt depends on agents’ acceptance decision.

In addition, we impose that each πxzt belongs to unit interval.
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C Robustness and Supplementary Evidence

C.1 Robustness

Table C.V: Outcomes under Alternative Modeling Assumptions

Waitlist Transplanted Donors

Age Obs. Unobs.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Panel A: Patient Unobserved Heterogeneity

Pre-2014 Priorities  -- 5166.5 -- 2.80 44.2 15.6% 46.1% -- -- --

Post-2014 Priorities -1.1% 5108.3 0.3% 2.78 44.2 15.5% 46.1% -0.3% -0.8% 94.7%

First Come First Served 1.7% 5317.5 -1.8% 2.84 44.3 15.8% 46.1% 1.0% 0.7% 91.0%

Last Come First Served -50.9% 3399.7 20.9% 4.28 46.9 14.4% 51.1% -45.2% -5.7% 14.0%

Pre-2014 Priorities  -- 5150.4 -- 2.76 44.8 16.4% 47.0% -- -- --

Post-2014 Priorities -1.3% 5084.4 0.4% 2.74 44.8 16.2% 47.0% 0.0% -1.3% 96.7%

First Come First Served 2.6% 5304.5 -2.0% 2.81 44.9 16.5% 47.0% 1.2% 1.4% 90.3%

Last Come First Served -59.1% 3465.1 18.6% 4.13 46.9 14.9% 50.8% -53.4% -5.7% 9.7%

Panel C: Larger Patient and Donor Type Space

Pre-2014 Priorities  -- 4440.0 -- 2.58 44.9 23.2% 43.0% -- -- --

Post-2014 Priorities -0.9% 4365.4 0.6% 2.54 44.9 23.2% 43.0% 0.1% -1.0% 98.8%

First Come First Served 1.5% 4567.0 -1.7% 2.61 44.7 23.4% 42.8% 0.7% 0.8% 93.4%

Last Come First Served -43.0% 2385.8 22.6% 2.69 47.0 20.8% 48.2% -35.2% -7.8% 5.0%

Panel D: No Limit on Maximum Number of Offers

Pre-2014 Priorities   -- 4597.0 -- 2.55 45.0 15.8% 47.4% -- -- --

Post-2014 Priorities -0.9% 4553.0 0.4% 2.54 45.0 15.8% 47.3% 0.1% -1.0% 98.3%

First Come First Served 2.8% 4607.5 -0.2% 2.56 44.7 15.9% 47.1% 1.3% 1.5% 94.3%

Last Come First Served -28.2% 2876.8 20.8% 2.65 46.1 14.7% 49.5% -21.1% -7.1% 45.0%

EV
x

EV
x
 Decomp.

ΔV
x
(0)    

  > -5%Queue 
Length

Reduction in 
Discard Rate

Years on 
Waitlist

Head 
Trauma

Hyper-
tensive

Panel B: Annual Discount Factor of 10 Percent

Patient Unobserved Heterogeneity: We re-estimated the model allowing for two unob-
served patient types. Specifically, we re-parametrized the CCPs as follows:

Pijt = G (αi + χ (xi, zj, t) θ + ηj) ,

where αi ∈ {α1, α2} with the parameters α1 and α2 and the share of α1 to be estimated.
This parameterization allows patients to have systematically higher or lower values of all
transplants relative to their outside options. We abstract away from the initial conditions
problem, setting the proportion of each patient type in our sample to the population average.
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This latter assumption is appropriate for patients that registered during our sample period,
but ignores selection that should arise for patients that registered prior to the sample of offers
we consider.

Estimating this model requires another data augmentation step. This step draws each agent
i’s type given their observed decisions and the parameters α1, α2, and π1. Conditional
on (α1, α2, π1), the posterior probability that αi = α1 is proportional to the likelihood of
observing the decisions made by agent i multiplied by π1. This likelihood is the product of
the cumulative density functions of normal distributions. The parameters α1, α2, and π1 are
then updated using conjugate priors. We specify diffuse normal priors for α1 and α2 and a
Dirichlet prior for π1 (see Section 3.4, Gelman et al., 2014). As recommended in Gelman et
al. (2014), we check for re-ordering and impose the restriction that α1 > α2.

Table C.V Panel A presents the results for the steady states of benchmark mechanisms
considered in the main text.

Discount Factor: As discussed in Section 3, the discount faction ρ is not identified and
is set to 5 percent per year. Here, we evaluate sensitivity of our results to using an annual
discount rate of 10 percent. Only Steps 3 and 4 in Section 4.2 must be revised to obtain
estimates with an alternative discount rate. Panel B of Table C.V presents the counterfactual
results.

Larger Samples: The main text limits the number of types used in counterfactual calcu-
lations to 300 patient types and 500 donor types. To assess whether the results are sensitive
to the specific sample and number of types, we re-calculated the counterfactuals involving
scoring mechanism by drawing 1,000 patient types and 1,500 donor types. Panel C of Table
C.V presents the results.

Unlimited Offers: Our results could be sensitive to the limit on the number of offers,
especially if improvements in technology that allow the OPO to make many more offers
obviates the need for finding better mechanisms. Panel D of Table C.V presents results
calculated when this limit is removed.

C.2 Supplementary Evidence

Results analogous to Figure 1 and Table 3 in Agarwal et al. (2018) are presented in Figures
C.1 and Table C.VI respectively.
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Figure C.1: Offer and Acceptance Rate by CPRA
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Note: Sample includes all offers made to NYRT patients between 2010 and 2013, including offers that did not meet pre-set

donor screening criteria. Positive crossmatches are counted as acceptances. In each figure, the black line plots the mean among

offers to patients in each CPRA bin, and the shaded region represents pointwise 95 percent confidence intervals.

Table C.VI: Evidence of Response to Dynamic Incentives

Dependent Variable: Offer Accepted

(1) (2) (3) (4) (5)

Calculated Panel Reactive Antibodies (CPRA) 0.0148 0.00869 0.00822 0.00757 0.00770

(0.000764) (0.000889) (0.000879) (0.000831) (0.000833)

Variables Affecting Priority X X X X

Patient Characteristics X X X

Donor and Match Characteristics X X

Interaction between CPRA and # HLA Mismatches X

Mean Acceptance Rate 0.142% 0.142% 0.142% 0.142% 0.142%

Observations 2713043 2713043 2713043 2713043 2713043

R-squared 0.003 0.006 0.009 0.104 0.104

Notes: Estimates from a linear probability model of offer acceptance on patient Calculated Panel Reactive Antibodies 
(CPRA). The sample is offers made to NYRT patients between 2010 and 2013, including offers that did not meet pre-set 
screening criteria. CPRA is measured on a [0,1] scale at the time of the offer. Column 1 controls for a CPRA=0 indicator. 
Column 2 adds controls affecting patient priority: indicators for CPRA>=0.2, CPRA>=0.8, and age<18, as well as waiting 
time indicators and linear controls for 1-3, 3-5, and >5 years. Column 3 adds other patient characteristics. Column 4 adds 
controls for donor and match characteristics. Column 5 adds interactions between CPRA indicators and # HLA 
mismatches. Patient characteristics are indicators for age 18-35, 35-50, and 50-65; indicators for diabetes, blood type, 
and the patient's transplant center; linear controls and indicators for dialysis time 1-3, 3-5, 5-10, and >10 years; and an 
indicator for health status at listing. Donor controls are linear age; linear creatinine with indicators for 0.6-1.8 and >1.8; 
the donor's mean acceptance rate; and indicators for diabetes, donation after cardiac death (DCD), and expanded criteria 
donor (ECD). Match characteristics are linear # HLA mismatches; indicators for zero HLA mismatch, 0 and 1 DR mismatch, 
identical blood type, offer year, and local donor; linear controls for (+) and (-) age difference; and interactions between 
local and zero-HLA mismatch, and local and donor age, donor over 40 and pediatric patient, donor over 55 and patient 
age 18-35, and donor over 60 and patient age 35-50 and over 50. Standard errors, clustered by donor, are in parentheses.
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D Additional Theoretical Results

D.1 Existence of Steady-State Equilibria

This section proves that a steady-state equilibrium exists for sequential offer mechanisms
that use a scoring rule. We make the following assumptions:

Assumption 1. (i) The exogenous arrival rates λ and γx are finite

(ii) The exogenous departure rate δ (τ ;x) is bounded below by δ > 0 and bounded above by δ̄,
unifomly for t ∈ [0, T ) and all x ∈ χ

(iii) The conditional probability density function fΓ|t,x,z exists, and is uniformly bounded

(iv) The conditional moment,E [|Γ| |τ, x, z] =
∫
|Γ| dFΓ|τ,x,z where Γ = Γ (x, z, τ) + ε, is uni-

formly bounded in t, x, z

(v) The family of functions g
(
t;x, z, Γ̄

)
= FΓ|t,x,z

(
Γ̄
)
indexed by Γ̄, x, z is Lipschitz contin-

uous in t with a common constant

(vi) The object arrival rate λ is strictly less than the total agent arrival rate ∑ γx

(vii) The set of scores S = {s (t;x, z) : (t, x, z) ∈ [0, T ]× χ× ζ} is finite.

Most empirical models will satisfy the continuity and boundedness assumptions above. The
two substantive assumptions are parts (vi) and (vii). Part (vi) assumes that the objects that
need to be assigned are scarce in order to ensure that the queue is unlikely to be empty.
Part (vii) restricts the mechanisms for which we prove existence. The assumption is used
to ensure that the set of all functions πxz (t) is sufficiently small (more precisely, compact).
Other assumptions that yield this conclusion would also suffice.

Our main result proves existence of a steady-state equilibrium.

Theorem 1. Suppose Assumption 1 is satisfied. Then a steady-state equilibrium for a se-
quential offer mechanism with a scoring rule exists.

Proof. The proof proceeds by applying the Brower-Schauder-Tychonoff Fixed Point Theorem
(Corollary 17.56, Aliprantis and Border, 2006). The proof proceeds in three parts.

Part 1, Definition of Ω: The equilibrium objects are defined by five types of functions:

1. The conditional choice probabilities, given t and the agent and object characteristics x
and z. We consider these choice probabilities as a function pσ : [0, T ]× χ× ζ → [0, 1].
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2. The value function V : χ × [0, T ] → R+. It is convenient to define this function,
although it is somewhat redundant with the choice probabilities above.

3. The offer probabilities π : [0, T ] × χ × ζ → [0, 1] where π (t;x, z) = Hz (sxz (t)) ×
P (cij = 1|x, z).

4. The distribution of agent types m : χ× [0, T ]→ R+.

5. The queue length N ∈ R.

We denote the tuple of these objects by ω = (pσ, V, π,m,N) .We endow each of the functions
in the first four objects with the supremum norm over its domain. The norm for ω is denoted
‖ω‖ = ‖pσ‖+ ‖V ‖+ ‖π‖+ ‖m‖+ |N |. Therefore, ω is an element of a Banach space.

We further restrict ω to belong to a subset Ω of this Banach space. Specifically, we restrict
its components as follows:

1. The functions Vx (t) are uniformly bounded by λT supτ,x,z
∫
|Γ| dFΓ|τ,x,zand are Lips-

chitz continuous with a common constant
(
1 + ρ+ δ̄

)
λ supτ,x,z

∫
|Γ| dFΓ|τ,x,z.

Note that the optimal value of Vx (t) satisfied this property. To see this, observe that
d
dtVx (t) = −λ exp (−ρ(τ − t)) p(τ |t, x)L(t) + λ

∫ T
t (−ρ− δx (t))L(τ)dτ where L(τ) =∫

πij(τ)
∫

max{0,Γij(τ) − Vi(τ)}dGdF . The result follows since L (τ) is bounded by
supτ,x,z

∫
|Γ| dFΓ|τ,x,z.

2. The functions pσ (t;x, z) are uniformly bounded by 1 and Lipschitz continuous with a
common constant K, where

K =
(
1 + ρ+ δ̄

)
λ sup
τ,x,z

(∫
|Γ| dFΓ|τ,x,z sup

Γ
fΓ|τ,x,z (Γ)

)
+ sup

Γ̄,x,z,t,t′

∣∣∣FΓ|t,x,z
(
Γ̄
)
− FΓ|t′,x,z

(
Γ̄
)∣∣∣ / |t− t′| .

Note that Assumption 1 implies that K is finite. That the equilibrium value satisfies
this assumption can be seen from part 1.

3. The functions πx,z (t) such that πx,z (t) = πx,z (t′) if sxz (t) = sxz (t′) with range [0, 1].

4. The term N ∈
[
N, N̄

]
, where N = (∑x γx − λ) /δ̄ and N̄ =

∑
x
γx

δ
. These bounds are

obtained by considering the extremal cases in which no agent is assigned and when every
kidney is assigned. Note that N > 0 because Assumption 1 requires that ∑x γx > λ

and δ (τ ;x) is uniformly bounded above.
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5. The functionsmx (t) are uniformly bounded by supx γx
N

and are Lipschitz continuous with
a common constant supx γx

N

(
δ̄ + λ

)
. The steady-state value satisfies this requirement

since Tγx is the maximum mass of agents of type x, and because

|ṁx(t)| = mx(t)κx(t) ≤ mx(t)
(
δ̄ + λ

)
.

Part 2, definition of A : Ω→ Ω: Denote AV [ω] as the V component of A [ω], where ω ∈ Ω.
Likewise, define Aπ, Apσ , Am and AN . This map is defined as follows:

AV [ω] (x, t) =
∫ T

t
exp (−ρ (τ − t)) p (τ |t;x)

(
λ
∫
π (τ ;x, Z)

∫
max {0,Γ− V (τ ;x)} dFΓ|τ,x,ZdFZ

)
dτ

Apσ [ω] (x, z, t) =
∫

1 {Γ ≥ AV [ω] (x, t)} dFΓ|x,z,t

Am [ω] (x, t) = γx exp
(
−
∫ t

0
δ (τ ;x) + λ

∫
π (τ ;x, Z) pσ (τ ;x, z) dFZdτ

)
/N

AN [ω] = max
{
N,min

{ ∑
x γx∑

x

∫ T
0 mx (t)κx (t) dt

, N̄

}}
Aπ [ω] (x, z, t) = Hz (sxz (t) ;Apσ [ω] , Am [ω] , AN [ω])× P (cij = 1|x, z) ,

where
p (τ |t;x) = exp

(
−
∫ τ

t
δ (τ ′;x) dτ ′

)
is the probability that an agent of type x departs the list prior to τ conditional on being
on the list at t. To ensure that the image is a subset of Ω, we need to show that A [ω] ∈
Ω for all ω ∈ Ω. We do this for each of the components separately:

1. AV : Since exp (−ρ (τ − t)), p (τ |t;x) and π (τ ;x, Z) are in [0, 1], and
∫

max {0,Γ− V (τ ;x)} dFΓ|τ,x,Z ≤
∫
|Γ| dFΓ|τ,x,Z ,

we have that AV [ω] is uniformly bounded by λT supτ,x,z
∫
|Γ| dFΓ|τ,x,z. Further, for any

t, t′ ∈ [0, T ], with t < t′, we have that

|AV [ω] (t)− AV [ω] (t′)|

=
∣∣∣∣∣
∫ t
′

t
exp (−ρ (τ − t)) p (τ |t;x)

(
λ
∫
π (τ ;x, Z)

∫
max {0,Γ− V (τ ;x)} dFΓ|τ,x,ZdFZ

)
dτ
∣∣∣∣∣

≤ λ |t′ − t|
(
1 + ρ+ δ̄

)
sup
τ,x,z

∫
|Γ| dFΓ|τ,x,z.
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Therefore, AV [ω] satisfies the necessary restrictions.

2. Apσ : Note that Apσ [ω] is uniformly bounded by 1. Moreover, for any x and z, and
t, t′ ∈ [0, T ], we have that

|Apσ [ω] (t, x, z)− Apσ [ω] (t′, x, z)|

=
∣∣∣∣∫ 1 {Γ ≥ AV [ω] (x, t)} dFΓ|x,z,t −

∫
1 {Γ ≥ AV [ω] (x, t′)} dFΓ|x,z,t′

∣∣∣∣
=
∣∣∣∣∫ (1 {Γ ≥ AV [ω] (x, t)} − 1 {Γ ≥ AV [ω] (x, t′)}) dFΓ|x,z,t

∣∣∣∣
+
∣∣∣∣∫ 1 {Γ ≥ AV [ω] (x, t′)} d

(
FΓ|x,z,t − FΓ|x,z,t′

)∣∣∣∣
≤
∣∣∣∣∣
∫ max{AV [ω](x,t),AV [ω](x,t′)}

min{AV [ω](x,t),AV [ω](x,t′)}
1dFΓ|x,z,t

∣∣∣∣∣
+
∣∣∣FΓ|x,z,t′ (AV [ω] (x, t′))− FΓ|x,z,t (AV [ω] (x, t′))

∣∣∣
≤λ

(
1 + ρ+ δ̄

)
|t′ − t| sup

τ,x,z

(∫
|Γ| dFΓ|τ,x,z sup

Γ
fΓ|τ,x,z (Γ)

)
+ sup

Γ̄,x,z

(∣∣∣FΓ|t,x,z
(
Γ̄
)
− FΓ|t′,x,z

(
Γ̄
)∣∣∣ / |t− t′|) |t− t′|

≤
[
λ
(
1 + ρ+ δ̄

)
sup
τ,x,z

(∫
|Γ| dFΓ|τ,x,z sup

Γ
fΓ|τ,x,z (Γ)

)
+ sup

Γ̄,x,z,t,t′

(∣∣∣FΓ|t,x,z
(
Γ̄
)
− FΓ|t′,x,z

(
Γ̄
)∣∣∣ / |t− t′|)] |t− t′| .

Therefore, Apσ [ω] satisfies the necessary restrictions.

3. Aπ : Observe that Aπ [ω] (x, z, t) ∈ [0, 1] and Aπ [ω] (x, z, t) = Aπ [ω] (x, z, t′) if sxz (t) =
sxz (t′) by construction.

4. Am : Since exp
(
−
∫ t

0 δ (τ ;x) + λ
∫
π (τ ;x, Z) pσ (τ ;x, z) dFΓ|τ,x,Zdτ

)
≤ 1 and N > 0,

we have that Am [ω] is uniformly bounded by supx γx
N

. Further, the derivative at t of
Am [ω] (t) is equal to

(
−δ (t;x)− λ

∫
π (t;x, Z) pσ (t;x, z) dFZ

)
Am [ω] (t) .

This derivative is bounded in absolute value by
(
δ̄ + λ

)
supx γx
N

.

5. AN : By construction, AN [ω] belongs to
[
N, N̄

]
, satisfying the necessary restrictions.

Part 3, existence of equilibria: It is straightforward to verify that Ω is convex. Lemma 1
implies that the components ΩV , Ωm, and Ωpσ are compact sets. Lemma 2 shows that Ωπ is
compact. Assumption 1 (i), (ii), and (vi) imply that N > 0 and N̄ is finite, implying that ΩN

is compact. Therefore, Ω is compact. Lemma 3 shows that A is a continous map. Therefore,
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the Brouwer-Schauder-Tychonoff Theorem (Corollary 17.56, Aliprantis and Border, 2006)
implies that there exists ω∗ ∈ Ω such that A [ω∗] = ω∗.

To complete the proof, we show that any fixed point ω∗ = (p∗σ, V ∗, π∗,m∗, N∗) corresponds
to a steady state equilibrium. Observe that for each x,

V ∗ (t;x) =
∫ T

t
exp (−ρ (τ − t)) p (τ |t;x)

(
λ
∫
π∗ (τ ;x, Z)

∫
max {0,Γ− V ∗ (τ ;x)} dFΓ|τ,x,ZdFZ

)
dτ.

Therefore, V ∗ (t;x) is the value of declining an offer and following the optimal strategy given
the offer rate π∗. Therefore,

p∗σ (x, z, t) = Apσ [ω∗] (x, z, t) =
∫

1 {Γ ≥ V ∗ (t;x)} dFΓ|x,z,t.

For each (x, z, t), F−1
Γ|x,z,t (p∗σ (x, z, t)) = V ∗ (t;x). Therefore, σ∗ (Γ, t) = 1

{
Γ ≥ F−1

Γ|x,z,t (p∗σ (x, z, t))
}

is an optimal strategy, satisfying requirement 1 in Definition 1.

By construction, π∗ (x, z, t) = Aπ [ω∗] (x, z, t) = Hz (sxz (t) ; p∗σ,m∗, N∗)× P (cij = 1|x, z) sat-
isfies requirement 2 of Definition 1 because p∗σ equals the acceptance probability of a type z
object by an agent of type x at time t.

Finally, m∗ = Am [ω∗] and N∗ = AN [ω∗] together satisfy requirement 3 in Definition 1. The
restriction of AN [ω∗] to

[
N, N̄

]
cannot strictly bind because N and N̄ denote the smallest

and largest possible queue lengths given the exogenous arrival and departure rates.

D.2 Lemmata

Lemma 1. Suppose X ⊂ C ([a, b]) is the set of all functions on the bounded interval [a, b]
that are uniformly bounded by K1 and have a common Lipschitz constant K2. Then X is
compact.

Proof. Note that the set of functions X is uniformly equicontinuous. By the Arzela-Ascoli
theorem, any sequence of functions xn ∈ X has a uniformly convergent subsequence xnk .
Denote the limit of this sequence by x∗, i.e. for each t, x∗ (t) = limk→∞ xnk (t). Therefore,
supt |x∗ (t)| ≤ limk→∞ supt |xnk (t)| ≤ K1. Similarly, |x∗ (t)− x∗ (t′)| = limk→∞ |xnk (t)− xnk (t′)| ≤
K2 |t− t′| . Hence, x∗ ∈ X. Consquently, we have that X is sequentially compact, which is
equivalent to X being compact.
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Lemma 2. Assumption 1(vii) implies that the set Ωπ consisting of functions π : [0, T ]×χ×
ζ → [0, 1] endowed with the supremum norm such that πxz (t) = πxz (t′) if sxz (t) = sxz (t′) is
compact.

Proof. Assumption 1(vii) and finiteness of χ and ζ imply that the set of scores sxz (t) over
all χ, ζ, and t ∈ [0, T ] is finite. Therefore, π is an element of a finite dimensional Euclidean
space. Further, Ωπ is closed and bounded by definition. By the Heine-Borel theorem, Ωπ is
compact.

Lemma 3. Suppose Assumption 1 is satisfied. Then the map A : Ω→ Ω is continuous.

Proof. We do this for each component of A separately.

AV : Let Ω0 be an arbitrary subset of Ω. Consider ω ∈ Ω̄0, where Ω̄0 is the closure of Ω0.
Since ω ∈ Ω̄0, there exists a sequence ωn ∈ Ω0 such that ‖ωn − ω‖ = εn → 0. Denote
Ṽn = AV [ωn] and drop x from the notation as it belongs to a finite set. Now, consider

∣∣∣Ṽn (t)− Ṽ (t)
∣∣∣

=
∣∣∣∣∣
∫ T

t
exp (−ρ (τ − t)) p (τ |t)λ

(∫
πn (τ ;Z)

∫
max {0,Γ− Vn (τ)} dFΓ|τ,ZdFZ

)
dτ

−
∫ T

t
exp (−ρ (τ − t)) p (τ |t)λ

(∫
π (τ ;Z)

∫
max {0,Γ− V (τ)} dFΓ|τ,ZdFZ

)
dτ
∣∣∣∣∣

≤Tλ sup
t,z

∣∣∣∣πn (t; z)
∫

max {0,Γ− Vn (t)} dFΓ|t,z − π (t; z)
∫

max {0,Γ− V (t)} dFΓ|t,z

∣∣∣∣
≤Tλ sup

t,z

∣∣∣∣πn (t; z)
∫
|max {0,Γ− Vn (t)} −max {0,Γ− V (t)}| dFΓ|t,z

∣∣∣∣
+ Tλ sup

t,z

∣∣∣∣|πn (t; z)− π (τ ; z)|
∫

max {0,Γ− V (t)} dFΓ|t,z

∣∣∣∣
≤Tλ sup

t,z
|Vn (t)− V (t)|+ Tλ sup

t,z

∫
|Γ| dFΓ|t,z sup

t,z
|πn (t; z)− π (t; z)|

≤Tλ
(

1 + sup
t,z

∫
|Γ| dFΓ|t,z

)
εn.

Since εn → 0, Assumption 1(i) and (iv) imply that the right hand side converges to zero.

Apσ : Continuity follows by noting that AV is continuous in the sup-norm and FΓ|t,x,z is
absolutely continuous with respect to Lebesgue measure for each t, x, z (Assumption 1(iii)).

Am : It is sufficient to fix x because χ is a finite set. Lemma 4 implies that the map defined
by Aκ [ω] (t) = δ (t;x) + λ

∫
π (t;x, Z) pσ (t;x) dFZ is continuous. Moreover, suptAκ [ω] (t) is
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bounded above (Assumption 1(i)). Therefore, Aκ∗ [ω] (t) = −
∫ t

0 δ (τ ;x)+λ
∫
π (τ ;x, Z) pσ (t;x) dFZdτ

defines a continuous map from Ω to C ([0, T ]) . Since a composition of continuous functions
is continuous, and g (a) = γx exp (a) /N is continuous for all N > 0, Am is continuous.

AN : First we show that AN [ωn] is continuous. Lemma 4 implies that the map Aκ [ω] (t) =
δ (t;x) + λ

∫
π (t;x, Z) pσn (t;x, Z) dFZ is continuous for each x. A similar argument implies

that Aκ̄ [ω] = ∑
x

∫ T
0 mx (t)κx (t) dt is continuous because mx (t) is bounded by γx. Further,

Aκ̄ [ω] ∈ [δ,∞] since δ (t;x) is uniformly bounded below by δ (Assumption 1(ii)). Since a
composition of real-valued continuous functions is continuous, and the reciprocal function is
continuous for all arguments other than 0, AN is a continuous map.

Aπ: Denote Ã [ω] = (Apσ [ω] , Am [ω] , AN [ω]) . We have shown that Ã is continuous and
compact. Note that for any sequence ωn,

sup
x,z,t
|Aπ [ωn] (x, z, t)| ≤ sup

x,z,t

∣∣∣Hz

(
sxz (t) ; Ã [ωn]

)∣∣∣ ≤ sup
z,s

∣∣∣Hz

(
s; Ã [ωn]

)∣∣∣ ,
where the first inequality follows from the fact that P (cij = 1|x, z) ∈ [0, 1] and the second
inequality follows from set inclusion. Therefore, Lemma 5 and continuity of Ã imply that for
each z, sups

∣∣∣Hz

(
s; Ã [ωn]

)
−Hz

(
s; Ã [ω]

)∣∣∣ → 0 if ωn converges to ω. Since z belongs to a
finite set, we therefore have that supx,z,t |Aπ [ωn] (x, z, t)− Aπ [ω] (x, z, t)| → 0. Hence, Aπ is
a continuous map.

Lemma 4. Fix x. The map Aκ : Ω→ L∞ ([0, T ]), where Aκ [ω] (t) = δ (t;x)+λ
∫
π (t;x, Z) pσ (τ ;x, Z) dFZ

is continuous if λ is finite, and π and pσ are uniformly bounded by 1.

Proof. Let Ω0 be an arbitrary subset of Ω. Consider ω ∈ Ω̄0. Since ω ∈ Ω̄0, there ex-
ists a sequence ωn ∈ Ω0 such that ‖ωn − ω‖ = εn → 0. Now, consider Aκ [ωn] (t) =
λ
∫
πn (t;x, Z) pn,σ (τ ;x, Z) dFΓ|τ,x,Z .

‖Aκ [ωn]− Aκ [ω]‖ = λ
∥∥∥∥∫ πn (t;x, Z) pn,σ (t;x, Z) dFZ −

∫
π (t;x, Z) pσ (t;x, Z) dFZ

∥∥∥∥
≤ λ sup

z,t
|πn (t;x, z) pn,σ (t;x, z)− π (t;x, z) pσ (t;x, z)|

≤ λ sup
z,t
|πn (t;x, z) (pn,σ (t;x, z)− pσ (t;x, z))|

+ λ sup
z,t
|(πn (t;x, z)− π (t;x, z)) pσ (t;x, z)|

≤ λ sup
z,t
|pn,σ (t;x, z)− pσ (t;x, z)|+ λ sup

z,t
|πn (t;x, z)− π (t;x, z)| ≤ 2λεn.
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Therefore, Aκ
[
Ω̄0
]
⊂ Aκ [Ω0], implying that Aκ is continuous (Theorem 2.27, Aliprantis and

Border, 2006).

Lemma 5. Fix z. The map AH : Ω → L∞ (R) defined by AH [ω] (s) = Hz (s; pσ,m,N) is
continuous.

Proof. We omit z from the notation for simplicity as it is fixed. Equation (B.5) derives the
following expression for AH :

AH [ω] (t, x, z) =
∫ 1

0

∑
q′<q

e−Np(s,α) (Np (s, α))q
′

q′! dα,

where p (s, α) , pH (s) , and pE (s) are defined in Section B.1.2. We have P (Γ (t;x, z) + ε > Vx (t))
with the acceptance probabilities pσ (t;x, z). Recall thatmH (s) = ∑

t,xm (t;x) 1 {s (t;x) > s}
and mE (s) = ∑

t,xm (t;x) 1 {s (t;x) = s}. We prove continuity of AH by first proving conti-
nuity of the components mH , mE, pH and pE.

Continuity of mH and mE: Consider a sequence mn that converges in sup norm on x, t to m:

|mn,H (s)−mH (s)| ≤
∑
x

∫ T

0
|mn (t;x)−m (t;x)| 1 {s (t;x) > s} dt

≤ |χ|T sup
x,t
|mn (t;x)−m (t;x)| .

Because this bound is independent of s, sups |mn,H (s)−mH (s)| converges to zero. There-
fore, AmH : Ω → L∞ (R) defined by AmH [ω] (s) = mH (s) is a continuous map because
AmH

(
Ω̄0
)

= AmH (Ω0) for any Ω0 ⊆ Ω (Theorem 2.27, Aliprantis and Border, 2006). An
identical argument shows that AmE : Ω→ L∞ (R) defined by AmE [ω] (s) = mE (s) is contin-
uous.

Continuity of pH and pE: We show the argument only for pH because the argument for pE
is identical. Consider a sequence of ωn that converges to ω, and the map ApH : Ω→ L∞ (R)
defined by ApH [ω] (s) = p0 + (1− p0) 1

mH (s)
∑
t,xm (t;x) 1 {s (t;x) > s} pσ (t;x). Since p0 is

fixed, we need to show continuity of the map from ω to 1
mH (s)

∑
t,xm (t;x) 1 {s (t;x) > s} pσ (t;x).
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For each s,∣∣∣∣∣∣ 1
mn,H (s)

∑
t,x

mn (t;x) 1 {s (t;x) > s} pn,σ (t;x, z) − 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s} pσ (t;x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
mn,H (s)

∑
t,x

mn (t;x) 1 {s (t;x) > s} pn,σ (t;x) − 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s} pn,σ (t;x)

∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s} pn,σ (t;x) − 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s} pσ (t;x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
mn,H (s)

∑
t,x

mn (t;x) 1 {s (t;x) > s} − 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s}

∣∣∣∣∣∣ |pn,σ (t;x)|

+

∣∣∣∣∣∣ 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s}

∣∣∣∣∣∣ |pn,σ (t;x)− pσ (t;x)|

≤

∣∣∣∣∣∣ 1
mn,H (s)

∑
t,x

mn (t;x) 1 {s (t;x) > s} − 1
mH (s)

∑
t,x

m (t;x) 1 {s (t;x) > s}

∣∣∣∣∣∣+ |pn,σ (t;x)− pσ (t;x)|

= |pn,σ (t;x)− pσ (t;x)|

The first inequality follows from the triangle inequality. The second follows from the fact
that |pn,σ (t;x)− pσ (t;x)| is bounded by 1 and mH (s) = ∑

t,xm (t;x) 1 {s (t;x) > s} by
definition. The third follows from mn,H (s) = ∑

t,xmn (t;x) 1 {s (t;x) > s} and mH (s) =∑
t,xm (t;x) 1 {s (t;x) > s} for all s. If ωn converges to ω, then supt,x |pn,σ (t;x)− pσ (t;x)|

conveges to zero. Therefore, sups |ApH [ωn] (s)− ApH [ω] (s)| converges to zero. Hence, ApH
is continuous because ApH

(
Ω̄0
)

= ApH (Ω0) for any Ω0 ⊆ Ω (Theorem 2.27, Aliprantis and
Border, 2006).

Continuity of p (s, α): The map ApH : Ω → L∞ (R× [0, 1]) defined by Ap [ω] (s, α) =
mH (s) pH (s) + mE (s)αpE (s) is continuous because α is bounded by 1, the maps from
ω to mH (s), pH (s), mE (s), pE (s) are continuous.

Continuity of AH : The map from Ω to ∑q′<q
e−Np(s,α)(Np(s,α))q

′

q′! is continuous because the com-

ponents are continuous. This term is bounded by 1. Therefore,
∫ 1

0
∑
q′<q

e−Np(s,α)(Np(s,α))q
′

q′! dα
defines a continous map from Ω to the L∞ ([0, T ]) for each x.

E Additional Empirical Results
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Table E.VII: Acceptance Rates and Recent Offers

Dependent Variable: Current Offer Accepted

(1) (2) (3) (4) (5)

Time Since Last Offer (Years) 0.0765 0.0129 0.0127
(0.0127) (0.0119) (0.0119)

Time Since Last Two Offers (Years) 0.0229

(0.0131)

Time Since Last Five Offers (Years) 0.0590

(0.0205)

Variables Affecting Priority X X X X

Patient Characteristics X X X X

Donor and Match Characteristics X X X X

Listing Center Fixed Effects X X X X

Donor Characteristics of Previous Offer X

Observations 2703549 2703549 2694132 2666270 2703549

R-squared 0.001 0.103 0.103 0.102 0.103

Mean Acceptance Rate 0.14% 0.14% 0.14% 0.14% 0.14%
#REF! 0.005 0.005 0.005 0.005 0.005

#REF! 0.011 0.011 0.008 0.006 0.011

Notes: Estimates from a linear probability model of offer acceptance as a function of the patient's recent offer history. 
Time Since Last N Offers measures the average number of years since the patient's previous offers, averaged over their 
last N offers. Column (1) considers all offers and includes no controls for current offer characteristics. Columns (2) – (5) 
control for current patient, donor, and match characteristics. Column (5) includes controls for donor characteristics of the 
patient's previous offer. Controls are as described in the notes for Appendix Table B.1. An ideal donor has no history of 
diabetes; is non-DCD; has creatinine below 3; and is Hepatitis C negative.

F Convergence Results

F.1 Consistency of Ŵ
(
xi, t; θ̂

)
We now show that Ŵ

(
xi, t; θ̂

)
consistently estimates the quantity

W (xi, t; θ) =
∫
πij (t)ψ (Pijt) dF

=
∫
Hzj ,ηj (s (t;xi, Z))P (cij = 1|Z, xi; θ)ψ (xi, Z, η, t; θ) dFZ,η.

To do this, we need to introduce some notation. Define

gj (θ) = pc (zj, xi; θ)ψ (xi, zj, ηj, t; θ) 1
{
s (t;xi, zj) > s∗j

}
,
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Table E.VIII: Tests for Rank Autocorrelation in Cutoff Scores

Donor Type N p-value

Panel A: Donor Category

Healthy, Age < 35 991 2.08 0.90

Healthy, Age >= 35 1525 2.01 0.60

Cardiac Death, Age < 35 166 2.03 0.58

Cardiac Death, Age >= 35 390 2.22 0.99

Low-Quality 2415 1.94 0.06

Low-Quality or Cardiac Death 155 2.16 0.84

Panel B: Donor Category and Origin

Healthy, Age < 35; from NYRT 212 2.03 0.57

Healthy, Age < 35; not from NYRT 779 2.00 0.48

Healthy, Age >= 35; from NYRT 229 1.99 0.47

Healthy, Age >= 35; not from NYRT 1296 2.03 0.70

Cardiac Death, Age < 35; from NYRT 15 1.91 0.41

Cardiac Death, Age < 35; not from NYRT 151 2.09 0.72

Cardiac Death, Age >= 35; from NYRT 50 2.51 0.97

Cardiac Death, Age >= 35; not from NYRT 340 2.09 0.80

Low-Quality; from NYRT 222 2.03 0.60

Low-Quality; not from NYRT 2193 1.95 0.11

Low-Quality or Cardiac Death; from NYRT 6 2.00 0.54

Low-Quality or Cardiac Death; not from NYRT 149 2.22 0.92

Panel C: Standard Criteria NYRT Donors, by Age and Blood Type

Healthy, Age < 35; from Type O 111 2.04 0.59

Healthy, Age < 35; from Type B 35 1.40 0.03

Healthy, Age < 35; from Type AB 5 1.50 0.26

Healthy, Age < 35; from Type A 61 1.70 0.12

Healthy, Age >= 35; from Type O 113 1.81 0.15

Healthy, Age >= 35; from Type B 32 2.00 0.48

Healthy, Age >= 35; from Type AB 7 1.61 0.27

Healthy, Age >= 35; from Type A 77 2.00 0.52

Autocorrelation 
Statistic

Notes: results from tests for autocorrelation of donor cutoffs in the NYRT sample 
based on the rank version of von Neumann's ratio statistic (Bartels, 1982). Each 
donor's cutoff is the priority score above which a patient would have received an offer 
from that donor, which is determined by the last patient in the donor's offer sequence. 
The rank of each donor's cutoff is its order statistic among the cutoffs of donors of the 
same type, with ties broken by a random number. The autocorrelation statistic for each 
donor type is computed for the observed sequence of donor cutoff ranks. Each p-value 
is the fraction of 1,000 randomly sampled permutations of donor arrival sequences for 
which the rank autocorrelation statistic is below that observed in sample. 
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Table E.IX: Patient Ordering Statistics

Re-Ordering of Patients

% Cases Ever Ahead given Ahead Today 81.6%

% Cases Ahead in Future given Ahead Today 81.5%

# Cases Ahead in Future given Ahead Today 136.7
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where pc (zj, xi; θ) = P (cij = 1|zj, xi; θ) . For a vector x = (x1, . . . , xK) , we write |x| =
(|x1| , . . . , |xK |) .

Finally, we index objects according to the order in which they arrive in our sample. Therefore,
(zj, ηj) denotes the observed and unobserved characteristics of the j-th donor that arrived.
Therefore, the data on

(
zj, ηj, s

∗
j

)
generate a sequence of object arrivals.

We make the following assumptions on gj (θ):

Assumption 2. (i) (zj, ηj) is drawn i.i.d. with CDF F

(ii) gj (θ0) is weakly stationary1 with ∑∞k=−∞ γk <∞, where Cov (gj (θ0) , gj−k (θ0)) = γk.

(iii) θ̂J is
√
J-consistent, i.e.

(
θ̂J − θ0

)
= Op

(
J−1/2

)
(iv) There exists a function m (z), such that for each zj |g (zj; θ)− g (zj; θ′)| ≤ m (zj)·|θ − θ′|,
and m (Z) has finite second moments.

Part (i), in our empirical context, assumes that the characteristics of the donor are drawn
independently each time a donor arrives. Part (ii) assumes that, at θ0, the offers and their
values for any given patient type xi, at any given time t, follows a weakly stationary process.
That is, the covariance in these values across any two donors falls as they are further apart
in the sequence. Given part (i), the only potential source of dependence between gj (θ0)
and gk (θ0) is that the characteristics of donor j may affect the state of the waitlist for
donor k because of patient decisions. However, we expect that this dependence to fall as
these donors become further apart in their arrival sequence. Part (iii) assumes that θ̂J is
consistently estimated at a rate that is at least as fast as the square-root of the number of
donors. These parameters govern the conditional choice probabilities and the probability of
a crossmatch failure at biological testing. Part (iv) is a regularity condition, assuming that
g (zj; θ) is Lipschitz continuous at each z, and imposes a bound on the second moment of the
distribution of Lipschitz constants. Proposition 1 shows that this property is satisfied under
more primitive conditions stated in Assumption 3.

We now show that for each xi, t, Ŵ = 1
J

∑J
j=1 gj

(
θ̂
)

is a
√
J-consistent estimator of

W (xi, t; θ0) under this assumption.

Theorem 2. Fix xi, t. If Assumption 2 is satisfied, then∣∣∣∣∣∣W (xi, t; θ0)− 1
J

J∑
j=1

gj
(
θ̂
)∣∣∣∣∣∣ = Op

(
J−1/2

)
.

1The process {gj} is weakly stationary if (i) E [gj ] does not depend on j, and (ii) Cov (gj , gj−k) exists, is
finite and depends only on k, and not j.
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Proof. For each xi, t, Assumption 2(i) implies that

E [gj (θ0)] = E
[
pc (zj, xi; θ0)ψ (xi, zj, ηj, t; θ0) 1

{
s (t;xi, zj) > s∗j

}]
= E

[
pc (zj, xi; θ0)ψ (xi, zj, ηj, t; θ0)E

[
1
{
s (t;xi, zj) > s∗j

}
|zj, ηj

]]
= E

[
E
[
pc (zj, xi; θ0)ψ (xi, zj, ηj, t; θ0)Hzj ,ηj (s (t;xi, zj)) |zj, ηj

]]
= W (xi, t; θ0) ,

where the equalities are a result of the law of iterated expectations, and the definitions of
Hzj ,ηj (s) and W (xi, t; θ0) .

Because W (xi, t; θ0) = E [gj (θ0)], Chebychev’s inequality implies that,

P

J1/2

∣∣∣∣∣∣W (xi, t; θ0)− 1
J

J∑
j=1

gj (θ0)

∣∣∣∣∣∣ > ε

 ≤ V ar

(
1√
J

∑J
j=1 gj (θ0)

)
ε2 .

Assumption 2(i) and Proposition 6.8 in Hayashi (2001) imply that

lim
J→∞

V ar

 1√
J

J∑
j=1

gj (θ0)
 = K.

Therefore, we have that

W (xi, t; θ0)− 1
J

J∑
j=1

gj (θ0) = Op

(
J−1/2

)
. (F.6)

Lemma 6 implies that

W (xi, t; θ0)− 1
J

J∑
j=1

gj
(
θ̂
)

= Op

(
J−1/2

)
,

as requirements (i) and (ii) of Lemma 6 are part of Assumption 2(iv), requirement (iii) is
equivalent to Assumption 2(iii), and requirement (iv) is proved in equation (F.6).

Lemma 6. Fix xi, t. Suppose that (i) g (zj; θ) is Lipschitz continuous for each zj with the
Lipschitz constant m (zj) ∈ RK i.e. |g (zj; θ)− g (zj; θ0)| ≤ m (zj) · |θ − θ0| , (ii) m (zj) has
finite second moments, (iii)

∣∣∣θ̂J − θ0

∣∣∣ = Op

(
J−1/2

)
, and (iv) 1

J

∑
j g (zj; θ0)− E [g (zj; θ0)] =

Op

(
J−1/2

)
. Then

1
J

∑
j

g
(
zj; θ̂J

)
− E [g (zj; θ0)] = Op

(
J−1/2

)
.
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Proof. Because g (zj; θ) is Lipschitz continuous in θ, we have that for any θ ∈ Θ,

V ar (|g (zj; θ)− g (zj; θ0)|) ≤ |θ − θ0|T E
(
m (zj)mT (zj)

)
|θ − θ0| ,

where xT is the transpose of the vector x. Therefore, because
∣∣∣θ̂J − θ0

∣∣∣ = Op

(
J−1/2

)
, with

probability approaching 1,

V ar
(
g
(
zj; θ̂J

)
− g (zj; θ0)

)
≤ VMKJ

−1,

for some finite constant K > 0, where VM = E
(∑

k,k′mk (zj)mk′ (zj)
)
and mk (zj) is the k-th

component of m (zj) . By the covariance inequality, with probability approaching 1,

Cov
(
g
(
zj; θ̂J

)
− g (zj; θ0) , g

(
zk; θ̂J

)
− g (zk; θ0)

)
≤ VMKJ

−1.

Therefore, with probability approaching 1, for all j, k ∈ {1, . . . , J},

V ar

 1√
J

∑
j

g
(
zj; θ̂J

)
− 1√

J

∑
j

g (zj; θ0)


= 1
J

J∑
k=1

J∑
j=1

Cov
(
g
(
zj; θ̂J

)
− g (zj; θ0) , g

(
zk; θ̂J

)
− g (zk; θ0)

)
≤ VMK.

By Chebychev’s inequality,

P

√J
∣∣∣∣∣∣ 1J
∑
j

g
(
zj; θ̂J

)
− E

[
g
(
zj; θ̂J

)]
− 1
J

∑
j

g (zj; θ0) + E [g (zj; θ0)]

∣∣∣∣∣∣ > ε

 ≤ VMK

ε2 .

Therefore,

AJ = 1
J

∑
j

g
(
zj; θ̂J

)
− E

[
g
(
zj; θ̂J

)]
− 1
J

∑
j

g (zj; θ0) + E [g (zj; θ0)] = Op

(
J−1/2

)
.

But, we know that 1
J

∑
j g (zj; θ0)− E [g (zj; θ0)] = Op

(
J−1/2

)
. So, it must be that

1
J

∑
j

g
(
zj; θ̂J

)
− E

[
g
(
zj; θ̂J

)]
= Op

(
J−1/2

)
. (F.7)
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Lipschitz continuity of g (zj; θ) and the Cauchy-Schwarz inequality imply that.

E
[∣∣∣g (zj; θ̂J)− g (zj; θ0)

∣∣∣] ≤ E
[
m (zj) ·

∣∣∣θ̂J − θ0

∣∣∣]
≤
√
VM

√
E
[∣∣∣θ̂J − θ0

∣∣∣ · ∣∣∣θ̂J − θ0

∣∣∣].
Because θ̂J belongs to the compact set Θ, and θ̂J−θ0 = Op

(
J−1/2

)
, we have that

√
E
[∣∣∣θ̂J − θ0

∣∣∣ · ∣∣∣θ̂J − θ0

∣∣∣] =

Op

(
J−1/2

)
. Together with the assumption that VM = E

(∑
k,k′mk (zj)mk′ (zj)

)
is finite, we

have that
E
[∣∣∣g (zj; θ̂J)− g (zj; θ0)

∣∣∣] = Op

(
J−1/2

)
. (F.8)

Finally, equation (F.7) and (F.8) together imply that

1
J

∑
j

g
(
zj; θ̂J

)
− E

[
g
(
zj; θ̂J

)]
= 1
J

∑
j

g
(
zj; θ̂J

)
− E [g (zj; θ0)] + E [g (zj; θ0)]− E

[
g
(
zj; θ̂J

)]
≤ 1
J

∑
j

g
(
zj; θ̂J

)
− E [g (zj; θ0)] + E

[∣∣∣g (zj; θ0)− g
(
zj; θ̂J

)∣∣∣]
=Op

(
J−1/2

)
.

Lipschitz continuity of g (z; θ)

We now show primitive regularity conditions under which Assumption 2(iv) is satisfied.
Recall that gj (θ) = P (cij = 1|zj, xi; θ)ψ (xi, zj, ηj, t; θ) 1

{
s (t;xi, zj) > s∗j

}
. Fix xi, t and

omit it from the notation for simplicity.

Assumption 3. (i) ψ (zj, ηj; θ) = E [max {0, χ (zj) · θ + ηj + ε}] where ε has cdf Fε

(ii) There exists a function m (z), such that m (Z) has finite fourth moments and for all θ, θ′,

a. |P (cij = 1|zj; θ)− P (cij = 1|zj; θ′)| ≤ m (zj) · |θ − θ′|

b. |χ (z)| ≤ m (z) .

Part (i) follows from the definition of ψ (zj, ηj; θ) and the parametrization of the conditional
choice probabilities in our model. It is repeated simply to keep this exercise self-contained.
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Part (ii) is a regularity condition that assumes lipschitz continuity of primitives, with suffi-
ciently small lipschitz constants.

Proposition 1. If Assumption 3 is satisfied, then for all θ, θ′ ∈ Θ, |gj (θ)− gj (θ)| ≤ m̃ (zj) ·
|θ − θ′| , where m̃ (zj) has finite second moments.

Proof. First, we show that for all θ, θ′ ∈ Θ |ψ (zj, ηj; θ)− ψ (zj, ηj; θ′)| ≤ m (zj) · |θ − θ′|.
Define γ (x) = E [max {0, x+ ε}] =

∫∞
−x (x+ ε) dFε. Libniz’s rule implies that

γ′ (x) =
∫ ∞
−x−η

1dFε = 1− F (−x− η) ≤ 1.

Therefore, γ (x) is Lipschitz continuous with constant 1. Hence, Assumption 3(i) and (ii)b.,
and Lemma 8 imply that

|ψ (zj, ηj; θ)− ψ (zj, ηj; θ′)| = |γ (χ (zj) θ + ηj)− γ (χ (zj) θ′ + ηj)|

≤ |χ (zj) (θ − θ′)|

≤ |χ (zj)| · |θ − θ′| ≤ m (zj) · |θ − θ′| , (F.9)

where the first inequality is due to the fact that γ (·) is Lipschitz continuous with constant 1.

Equation (F.9), Assumption 3(ii)a and Lemma 7 imply that |gj (θ)− gj (θ)| ≤ 2 (m (z) ∗m (z))·
|θ − θ′|, where ∗ is the hadamard (or component-wise) product. Assumption 3(ii) implies that
m̃ (z) = 2 (m (z) ∗m (z)) has finite second moments.

Lemma 7. Suppose that there exists a function m (z) such that (i) χ̃ (z) ≤ m (z) and
|χ (z, θ)− χ (z, θ′)| ≤ m (z) · |θ − θ′| , and (ii) supθ |χ̃ (z, θ)| ≤ m (z) and supθ |χ (z, θ)| ≤
m (z). Then,

|χ̃ (z, θ)χ (z, θ)− χ̃ (z, θ′)χ (z, θ′)| ≤ 2 (m (z) ∗m (z)) · |θ − θ′| ,

where ∗ is the hadamard (or component-wise) product.

Proof. Suppose that |χ̃ (z, θ)− χ̃ (z, θ′)| ≤ m̃ (z) · |θ − θ′| and |χ (z, θ)− χ (z, θ′)| ≤ m (z) ·
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|θ − θ′| . Consider

|χ̃ (z, θ)χ (z, θ)− χ̃ (z, θ′)χ (z, θ′)|

= |χ̃ (z, θ)χ (z, θ)− χ̃ (z, θ)χ (z, θ′) + χ̃ (z, θ)χ (z, θ′)− χ̃ (z, θ′)χ (z, θ′)|

≤ |χ̃ (z, θ) (χ (z, θ)− χ (z, θ′))|+ |(χ̃ (z, θ)− χ̃ (z, θ′))χ (z, θ′)|

≤ |χ̃ (z, θ)|m (z) · |θ − θ′|+ |χ (z, θ′)|m (z) · |θ − θ′|

≤2 (m (z) ∗m (z)) · |θ − θ′| .

Lemma 8. Suppose that (i) ψ : R → R is Lipschitz continuous with constant K < ∞,
and (ii) for each z, there exists m (z) ∈ RKθ such that |χ̃ (z, θ)− χ̃ (z, θ′)| ≤ m (z) · |θ − θ′|,
then |ψ (χ̃ (z, θ))− ψ (χ̃ (z, θ′))| ≤ Km (z) · |θ − θ′| . In particular, if χ̃ (z, θ) = χ (z) · θ where
χ (z) , θ ∈ RKθ , then |ψ (χ̃ (z, θ))− ψ (χ̃ (z, θ′))| ≤ K |χ (z)| · |θ − θ′| .

Proof. The first part follows definitionally because Lipschitz continuity of ψ implies that

|ψ (χ̃ (z, θ))− ψ (χ̃ (z, θ′))| ≤ K |χ̃ (z, θ)− χ̃ (z, θ′)| ≤ Km (z) · |θ − θ′| .

For the second part, note that

χ (z) · (θ − θ′) ≤ |χ (z)| · |θ − θ′| .

F.2 Approximation Result for Long Queues

In this section, we show that the stationary distribution of the length of the waitlist concen-
trates mass around the steady state value, N∗. This result suggests that using a deterministic
queue length is a good approximation for large values of N∗.

Theorem 3. Consider the continuous time Markov process Nτ , where τ denotes calendar
time. For any given (π∗,m∗, σ∗), Nτ is an ergodic process with stationary distribution pn.
Moreover, for any ε > 0,

lim
τ→∞

P (|Nτ −N∗| > εN∗) ≤ 2 exp
(
− N∗ε2

2 (1 + ε)

)
,
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where
N∗ =

∫
γxdFX∫ ∫

m∗x (t)κx (t) dtdFX
.

Proof. Define κ =
∫ ∫

m∗x (t)κx (t) dtdFX and γ =
∫
γxdFX . Observe that Nτ follows a birth-

death process with birth-rate γ and death rate Nτκ. Therefore, Nτ is an ergodic Markov
process. The stationary distribution, pn, satisfies the detail balance conditions:

γp0 = κp1

(γ + nκ) pn = γpn−1 + (n+ 1)κpn+1 for n ≥ 1,

where the left-hand side denotes the exit rate from state n and the right hand side is the
entry rate. Solving the system recursively and using the fact that ∑n pn = 1 yields

p0 =
[
1 +

∑ γn

n!κn
]−1

= exp
(
−γ
κ

)
.

and
pn = γn

n!κn exp
(
−γ
κ

)
.

Note that pn is the probability that a random variable N following a Poisson distribution
with parameter N∗ = γ

κ
takes on the value n. Theorem 1, part 3 in Canone (2017) implies

the result.
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