
B Online Appendix: Empirical Application

B.1 Representative household utility in model of Section 5.1

Labor Supply. Assume that the representative household preferences have the following
nested structure, if
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In sector s of region d, the real consumption is Csd = ωsdLsd. Thus, the representative

household solves the following second-stage problem:
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Let µ be Lagrange multiplier of the constraint. The first-order condition for Lsd is
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such that
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B.2 Shift-Share representation of regional shock exposure in model
of Section 5.1

Consider our parametric model of Section 5.1. To obtain a shift-share representation, we
simplify the model by imposing Cobb-Douglas preferences between manufacturing and non-
manufacturing. That is, for simplicity, we assume that χ = 0. In this case, the revenue
exposure is the impact of the shock on a market’s revenue holding constant wages and
employment everywhere:
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By combining this expression with equation (35),
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where x̄n,ko,sd is the share of spending on goods from region r in industry n by sd.
LetX t

n,kr,sd ≡ xtn,kr,sd (wtsdL
t
sd) be the total sales of industry n of market kr to region sd.

So,

log η̂Rkr(τ̂ ) ≡ −
∑
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X0
n,kr,sd

Y 0
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(1[r = o]− x̄n,ko,sd) χ̄nd log τ tn,ko,sd.

As in Section 5.3, we consider a shock to the productivity of a foreign country ō such
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that, for all destination sd, d log τ tn,kr,sd = 0 if r 6= ō and d log τ tn,kō,sd = d log τ tn. Thus,

log η̂Rkr(τ̂ ) ≡
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n
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sd
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Y 0
kr

x̄n,kō,sd

)
χ̄nd log τ tn.

This expression clearly outlines that, in our empirical application, the revenue exposure has
a shift-share structure where the industry shock is χ̄nd log τ tn and industry-market exposure
is
∑

sd(X
0
n,kr,sdx̄n,kō,sd)/Y

0
kr. This shift-share expression entails two adjustments. First, our

model implies that the magnitude of the industry-level shock must be adjusted by the the
industry’s trade elasticity. Intuitively, conditional on the same exogenous productivity
change, the demand response is larger in industries with a higher demand elasticity. Second,
the industry-region exposure adjusts the share of industry n in market kr revenue by the
importance of country ō across destination markets sd. Because of the gravity-trade structure,
the demand response in market sd is proportional to the initial spending share of that market
on goods from ō.

Whenever these two sources of heterogeneity are shut down, the revenue exposure is
proportional to a shift-share specification based on industry-region employment shares and
the industry shocks. To see this, assume that all destination markets are have identical
industry-level spending share on country ō (i.e., x̄n,kō,sd = x̄kō for all sd and n), and the trade
elasticity is identical in all industries (χ̄n = χ̄). In this special case,

log η̂Rkr(τ̂ ) = (χ̄x̄kō)
∑
n

l0n,kr
(
d log τ tn

)
,

which l0n,kr is the share of industry n in the total employment of sector k of region r in the
initial equilibrium.

To evaluate the importance of these adjustments in practice, Figure 4 reports the relation
between the revenue exposure in manufacturing in our baseline empirical model and the
shift-share exposure measure,

∑
n l

1997
n,kr δ̂n,China. The two measures have a correlation of 0.3.

This indicates that they rely on different sources of cross-regional variation.
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Figure 4: Manufacturing revenue exposure and shift-share exposure

Notes: Scatter plot of the revenue exposure in manufacturing in the baseline empirical model against the shift-share exposure
measure. A least-square best fit line is reported.

B.3 Additional Results: Empirical Specification

B.3.1 Chinese export growth shock

In this section, we present our measure of the shock to Chinese exports between 1997 and
2007. Table 5 presents the list of industries in our sample, along with the calibrated trade
elasticity and the various sources of industry-level Chinese cost shock. As explained in the
main text, we obtain the estimates of the trade elasticity from Caliendo and Parro (2014).
The adjusted export shock is our baseline shock divided by the trade elasticity, δ̂n,China/χ̄n.
To obtain the inverted bilateral trade cost, we implement the procedure in Head and Ries
(2001) for China and each CZ r (that is, τ̂n,rC = τ̂n,Cr = (x̂n,rC x̂n,Cr/x̂n,rrx̂n,CC)−1/χ̄n . For
the NTR gap, we use the data in Pierce and Schott (2016a) to compute the change in the
trade cost between each CZ and China by taking the simple average of the NTR Gaps among
the HS6 goods in the corresponding SCTG. Finally, we computed the firm-level productivity
growth in 1997-2007 using the unadjusted annual measured productivity growth in column
(3) of Table 6 in Hsieh and Ossa (2016).

There are two striking features in the table. First, there is great cross-industry variation
in the magnitude of the cost shock, which we exploit in estimation. Second, the different
measures of industry-level shocks are only imperfectly correlated, providing us with different
sources of variation for estimation.

Before proceeding, Figure 5 investigates the cross-industry correlation between the exporter
fixed-effects of China and the US. To this end, we obtain δ̂n,US by estimating equation (45)

with the US in the sample. The figure presents a scatter plot of δ̂n,China and δ̂n,US for the
31 manufacturing industries in our sample. We can see that they have a weak positive
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correlation.

Table 5: Industries: Parameters and Shocks

Chinese cost shock
Industry SCTG Trade Export Export Inverted NTR Prod.

Elast. (baseline) (adj) cost Gap Hsieh-Ossa
Animals, cereals 1-2 8.59 0.33 0.04 -0.18 0.04 1.06
Other agriculture 3 8.59 0.23 0.03 -0.04 0.11 1.06
Animal origin goods 4 8.59 0.17 0.02 -0.09 0.07 1.06
Meat, fish, seafood 5 8.59 0.90 0.11 -0.13 0.09 1.06
Grain products 6 2.83 0.83 0.29 -0.31 0.10 1.16
Other prepared food 7 2.83 0.72 0.26 -0.17 0.13 1.16
Alcoholic beverages 8 2.83 -0.17 -0.06 -0.10 0.34 1.16
Tobacco products 9 8.59 0.38 0.04 -0.03 0.22 1.16
Mining 10 14.83 0.28 0.02 -0.02 0.12 1.06
Oil products 15-19 69.31 0.52 0.01 0.02 0.04 0.72
Basic chemicals 20 3.64 1.05 0.29 -0.16 0.14 1.29
Pharmaceutical 21 3.64 0.70 0.19 -0.18 0.17 1.29
Fertilizers 22 3.64 4.26 1.17 -0.28 0.00 1.29
Chemical products 23 3.64 1.28 0.35 -0.29 0.21 1.29
Plastics and rubber 24 0.88 1.17 1.33 -0.95 0.29 0.92
Logs and other wood 25 10.19 0.33 0.03 -0.08 0.00 1.02
Wood products 26 10.19 1.61 0.16 -0.13 0.21 1.02
Pulp, paper 27 8.32 3.60 0.43 -0.21 0.20 0.89
Paper articles 28 8.32 1.70 0.20 -0.10 0.29 0.89
Printed products 29 8.32 1.48 0.18 -0.18 0.14 0.89
Textiles and leather 30 5.99 1.22 0.20 -0.16 0.42 0.65
Nonmetallic mineral 31 3.38 1.45 0.43 -0.16 0.32 1.13
Base metals 32 6.58 2.71 0.41 -0.14 0.17 1.17
Articles of base metal 33 5.03 1.43 0.28 -0.18 0.32 1.17
Machinery 34 2.87 1.95 0.68 -0.39 0.31 1.18
Electronic equip. 35 11.02 1.68 0.15 -0.09 0.32 1.23
Vehicles 36 0.49 1.44 2.94 -2.12 0.18 1.06
Transportation equip. 37 0.9 2.03 2.25 -0.88 0.25 1.06
Precision instruments 38 4.95 0.97 0.20 0.00 0.36 0.70
Furniture 39 4.95 1.42 0.29 -0.12 0.40 0.70
Miscellaneous 40-43 4.95 0.82 0.17 0.01 0.38 0.70
Services NA 5 - - - - -

Median 5.02 1.11 0.20 -0.15 0.19 1.06
Average 7.89 1.20 0.41 -0.25 0.20 1.01
St. Dev. 11.51 0.96 0.64 0.40 0.12 0.26
Correl. w/ baseline -0.17 1.00 0.42 -0.21 0.11 0.22

Notes: The inverted trade shocks are, for each industry, the average change across US CZs in the cost of imports from China.
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Figure 5: Change in Exporter Fixed-Effect of China and US: 31 manufacturing industries,
1997-2007

Notes: Scatter plot of the estimated industry-level exporter fixed effect for China against the corresponding fixed effect for US.
A least-square best fit line is reported.

B.3.2 Estimation of Structural Parameters: Robustness

This section investigates the robustness of the results reported in Table 1. In every specifica-
tion, we compute the predicted changes in CZ-level outcomes using the first-step estimates
of the structural parameters reported in Panel A of Table 1.

We start by reporting, in Table 6, the results obtained with alternative sets of controls.
We can see that the additional controls do not affect significantly the estimates of φe and ψ
reported in Panels B and C. However, the estimate of the migration elasticity is sensitive to
the control set: as we sequentially include controls, the first-stage becomes weaker and the
estimate more imprecise.

Table 7 reports the estimates of the structural parameters using the model’s predicted
response of labor market outcomes with alternative parameter estimates and shock sources.
Column (2) shows that we obtain similar estimates when MOIV is computed with the second-
step estimates reported in Panel B of Table 1. This suggests that there are small efficiency
gains of moving beyond the two-step feasible implementation of the MOIV estimator, as
indeed suggested by Proposition 5.

Columns (3)–(7) report estimates obtained with the alternative configuration of the
industry-level shock described above. Relative to the baseline estimates, the estimated
elasticities of labor supply remain similar but the agglomeration elasticity is can be larger.
In fact, column (8) reports the results of estimation of the structural parameters with the
predicted responses with all sources of cost shocks. The p-value of the over-identification test
is low, which suggests that either the model is not well specified or the exogeneity restriction
is not valid for one of the shocks.

Finally, Table 8 reports the estimated agglomeration elasticity under different parametriza-
tion of the function controlling how local productivity depends on employment of other regions.
Specifically, column (2) reports the estimation of our model under the assumption of πrr = 1
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and πrd = 0 for all r 6= d. In this case, productivity only depends on the own-market
employment level, as in Krugman (1980) and Allen and Arkolakis (2014). The estimated
parameter of 0.60 indicates strong local agglomeration forces. Alternatively, in column (3),
we estimate the model under the assumption that the decay of πij on distance is 0.35 –
the estimate reported in columns (3) of Table 5 of Ahlfeldt et al. (2015). In this case, the
estimated parameter suggests even stronger productivity spillovers across markets.
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Table 6: Structural Parameter Estimates: Alternative Control Set

(1) (2) (3) (4)
Panel A: −φm/φe

-0.395 0.320 -1.576 -0.262
S.E. (0.467) (0.462) (2.311) (1.724)
F Stat. 5.94 3.67 1.14 0.61

Panel B: 1/φe

0.917*** 0.876*** 0.823*** 0.796***
S.E. (0.121) (0.098) (0.107) (0.089)
F Stat. 16.46 16.85 17.79 15.65

Panel C: ψ

0.635*** 0.588*** 0.506*** 0.479**
S.E. (0.177) (0.161) (0.195) (0.204)
F Stat. 9.22 9.57 8.94 9.23

Sector composition controls: No Yes No Yes

Demographic controls: No No Yes Yes

Notes: Sample of 722 Commuting Zones and 2 Sectors in 1997-2007. Models are weighted by start of period CZ share of
national population. Control sets defined in Table 2. Instrumental variable computed with First-Step estimates of Table 1A.
Robust standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.10
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Table 7: Structural Parameter Estimates: Alternative Instrumental Variables

(1) (2) (3) (4) (5) (6) (7)
Panel A: −φm/φe

-0.390 -0.300 -1.230 0.390 -0.82 -1.83 -0.33
S.E. (0.467) (0.374) (0.936) (0.35) (0.91) (1.63) (0.45)
F Stat. 5.94 8.32 2.96 7.30 2.38 1.88 2.99
J-test (p-value) 0.003

Panel B: 1/φe

0.92*** 0.90*** 0.71*** 1.18*** 1.25*** 1.41*** 1.19***
S.E. (0.121) (0.122) (0.117) (0.09) (0.19) (0.24) (0.11)
F Stat. 16.46 16.21 7.90 120.23 40.84 9.77 51.88
J-test (p-value) 0.052

Panel C: ψ

0.64*** 0.63*** 0.260 0.55*** 1.12*** 1.08*** 0.70***
S.E. (0.177) (0.195) (0.188) (0.15) (0.20) (0.23) (0.15)
F Stat. 9.22 8.81 5.02 76.75 30.12 15.37 37.95
J-test (p-value) 0.016

Cost Shock:

Export (baseline) Yes Yes No No No No Yes

Export (adjsuted) No No Yes No No No Yes

Firm productivity No No No Yes No No Yes

NTR Gap No No No No Yes No Yes

Inverted trade cost No No No No No Yes Yes

MOIV parameters: 1st 2nd 2nd 2nd 2nd 2nd 2nd

Notes: Sample of 722 Commuting Zones and 2 Sectors in 1997-2007. Models are weighted by start of period CZ share of
national population. Robust standard errors in parentheses are clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.10

Table 8: Structural Parameter Estimates: Alternative Agglomeration Specification

(1) (2) (3)
0.635*** 0.604*** 0.871***

S.E. (0.177) (0.169) (0.270)
F Stat. 9.22 9.35 8.07

Distance decay: δ = 1 δ =∞ δ = 0.35

Notes: Sample of 722 Commuting Zones and 2 Sectors in 1997-2007. Models are weighted by start of period CZ share of national
population. Instrumental variable computed with estimates Table 1A. Robust standard errors in parentheses are clustered by
state. *** p < 0.01, ** p < 0.05, * p < 0.10
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B.3.3 Model Fit: Robustness

This section investigates the differential responses in manufacturing employment to alternative
measures of the CZ’s exposure to Chinese import competition. Specifically, We present the
estimation of equation (46) using alternative measures of the Chinese export shock and
alternative shift-share exposure measures. All specifications include the full set of controls in
column (4) of Table 2.

Table 9 investigates the cross-regional employment effects obtained with shift-share
exposure measures. Column (1) replicates the results in Autor, Dorn, and Hanson (2013).
To this end, the industry-level ‘‘shift’’ is the change in Chinese imports of other developed
countries normalized by the 1990 employment in the US, (X2007

n,China,j −X1997
n,China,j)/L

1990
n,US, and

the ‘‘share’’ is the share of industry n in the CZ’s total employment. Notice that Autor,
Dorn, and Hanson (2013) multiply the log-change in manufacturing employment by 100. So,
in order to compare our estimates to theirs, we need to multiply the estimated coefficient in
Table 10 by 100. In this case, our estimated cross-regional effect is 6.5, which is similar to
the estimated effect of 4.2 in Table 5 of Autor, Dorn, and Hanson (2013).

Column (2) reports the differential employment effect of a similar shift-share exposure
where the ‘‘shift’’ is Chinese export shock {δ̂n,Chna}n (as described in Section 5). The estimated
coefficient indicates that CZs more exposed to the Chinese import competition experienced a
statistically significant lower relative growth in manufacturing employment. Finally, column
(3) reports the cross-regional impact of the shift-share measure where the ‘‘share’’ is the share
of industry n in manufacturing employment. In this case, the point estimate is negative, but
it is not statistically significant.

Column (1) replicates the baseline results of Table 2. In column (2), we adjust the Chinese
export shock by the industry’s trade elasticity: the cost shock is zn = δ̂n,China/χ̄n using the
χ̄n reported in Table 5. Despite the fact that the average magnitude of this adjusted shock
measure is 30% of the average baseline shock, the estimated coefficient in column (2) is only
50% higher than the coefficient in column (1). This indicates that the cross-regional variation
in predicted changes in manufacturing employment is mainly driven by industries with a low
trade elasticity – in fact, the cross-industry correlation between δ̂n,China and χ̄n is -0.2.

Column (3) shows that the estimated coefficient is higher when the cost shock measure
is the firm-level productivity growth of Hsieh and Ossa (2016). This is partially driven by
the lower cross-regional variation in exposure to the measured productivity shock due to its
lower cross-industry variation.

Columns (4) and (5) show that the estimated coefficients are much higher when we
consider the impact of removing NTR gaps and changes in bilateral trade costs. In all
these cases, the cross-regional correlation between predicted employment responses to the
baseline and the alternative cost shocks is above 0.4. So, the smaller effects of the trade cost
shocks in columns (4) and (5) are partially capturing the larger impact of changes in Chinese
productivity.
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Table 9: Model Fit: Manufacturing Employment - Alternative Specifications

Dependent variable: Log-change in manufacturing employment, 1997-2007
(1) (2) (3)

Shift-share exposure -0.065*** -0.768*** -0.084
(0.017) (0.237) (0.088)

R2 0.270 0.234 0.268

Industry-level shock

Baseline: No Yes Yes

Normalized import change (ADH): Yes No No

CZ’s industry employment share in

Total employment: Yes Yes No

Manufacturing employment: No No Yes

Notes: Sample of 722 Commuting Zones in 1997-2007. Models are weighted by start of period CZ share of national population.
All specifications include the set of baseline controls in column (4) of Table 2. Robust standard errors in parentheses are
clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.10

Table 10: Model Fit: Manufacturing Employment - Alternative Industry-level Shocks

Dependent variable: Log-change in manufacturing employment, 1997-2007
(1) (2) (3) (4) (5)

Predicted manuf. log-change in employment 6.84*** 9.53** 12.99** 43.25*** 50.69**
(2.079) (3.883) (5.232) (7.87) (24.51)

R2 0.27 0.23 0.24 0.34 0.27

Cost Shock:

Export (baseline) Yes No No No No

Export (adjsuted) No Yes No No No

Firm productivity No No Yes No No

NTR Gap No No No Yes No

Inverted trade cost No No No No Yes

Notes: Sample of 722 Commuting Zones in 1997-2007. Models are weighted by start of period CZ share of national population.
All specifications include the set of baseline controls in column (4) of Table 2. Robust standard errors in parentheses are
clustered by state. *** p < 0.01, ** p < 0.05, * p < 0.10
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B.4 Additional Results: Counterfactual Analysis

B.4.1 Reduced-form elasticities for real wages

Table 11: Reduced-Form Elasticities of Employment to Local Manufacturing Shock Exposure

Own region Other regions
γMr,Mr γNr,Mr

∑
d6=r lMdγMd,Mr

∑
d6=r γMr,Md

(1) (2) (3) (4)

Panel A: Employment elasticity to revenue exposure (γRMr,Md)

Avg. 0.1741 -0.0082 0.0004 -0.1435

Panel B: Employment elasticity to consumption exposure (γCMr,Md)

Avg. 1.2096 0.2313 0.0008 -0.3625

Notes: Average reduced-form elasticity computed using the estimates in Panel B of Table 1 and the observed equilibrium in
1997. M denotes the manufacturing sector and N denotes the non-manufacturing sector.

B.4.2 Robustness

Figure 6: Predicted Change in Manufacturing Real Wage, China shock

Notes: The figure on the left reports the scatter plot of the general equilibrium response of manufacturing real wage against
the predicted revenue exposure and against the sum of the predicted revenue and consumption exposures. It also displays
the average (across CZs) of the general equilibrium response (horizontal line), revenue exposure (black line), revenue and
consumption exposure (red line). The figure on the right reports the scatter plot of the general equilibrium response against
the predicted revenue exposure, and against the sum of predicted (domestic) direct and indirect effects from revenue and
consumption exposures, computed using Proposition . It also displays the average (across CZs) of the general equilibrium
response (horizontal line), revenue exposure (black line), domestic direct and indirect effects (red line).
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Figure 7: Predicted Change in Manufacturing Employment, no labor links

Notes: The figure on the left reports the scatter plot of the general equilibrium response of manufacturing employment in a
model without agglomeration and migration across regions, against the predicted revenue exposure and against the sum of the
predicted revenue and consumption exposures. It also displays the average (across CZs) of the general equilibrium response
(horizontal line), revenue exposure (black line), revenue and consumption exposure (red line). The figure on the right reports
the scatter plot of the general equilibrium response against the predicted revenue exposure, and against the sum of predicted
(domestic) direct and indirect effects from revenue and consumption exposures, computed using Proposition . It also displays
the average (across CZs) of the general equilibrium response (horizontal line), revenue exposure (black line), domestic direct
and indirect effects (red line).

Figure 8: Predicted Change in Manufacturing Employment, no home sector

Notes: The figure on the left reports the scatter plot of the general equilibrium response of manufacturing employment in
a model without the home sector, against the predicted revenue exposure and against the sum of the predicted revenue and
consumption exposures. It also displays the average (across CZs) of the general equilibrium response (horizontal line), revenue
exposure (black line), revenue and consumption exposure (red line). The figure on the right reports the scatter plot of the
general equilibrium response against the predicted revenue exposure, and against the sum of predicted (domestic) direct and
indirect effects from revenue and consumption exposures, computed using Proposition . It also displays the average (across
CZs) of the general equilibrium response (horizontal line), revenue exposure (black line), domestic direct and indirect effects
(red line).
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Figure 9: Predicted Change in Manufacturing Employment, NAFTA shock

Notes: The figure on the left reports the scatter plot of the general equilibrium response of manufacturing employment after a
NAFTA shock, against the predicted revenue exposure and against the sum of the predicted revenue and consumption exposures.
It also displays the average (across CZs) of the general equilibrium response (horizontal line), revenue exposure (black line),
revenue and consumption exposure (red line). The figure on the right reports the scatter plot of the general equilibrium response
against the predicted revenue exposure, and against the sum of predicted (domestic) direct and indirect effects from revenue
and consumption exposures, computed using Proposition . It also displays the average (across CZs) of the general equilibrium
response (horizontal line), revenue exposure (black line), domestic direct and indirect effects (red line).

80



C Online Appendix: Data Construction

Our sample consists of 722 US commuting zones, 58 foreign countries plus Alaska and Hawaii.
Table 12 lists the foreign countries. We divide the manufacturing sector in 31 industries,
listed in Table 5.

Table 12: Sample of Countries

Notes: Baltic Republics includes Estonia, Lithuania and Latvia; North Africa includes Algeria, Egypt, Ethiopia, Morocco,

Tunisia; countries named ‘‘Rest of X’’ include all the remaining countries of continent X not included in the table.

C.1 World Trade Matrix

We construct a matrix of bilateral industry-level trade flows among 722 US Commuting Zones,
Alaska, Hawaii and 58 foreign countries for 1997 and 2007.

1. We create country-to-country matrix of trade flows at the 2-digit SCTG classification used in
the CFS. To this end, we use the BACI trade dataset from UN Comtrade at the HS6 level.
We use it to construct trade flows for the 31 industries in Table 5 between the USA and the
58 countries in Table 12. We merge this data with the Eora MRIO dataset to obtain the
domestic spending share in each industry. Since the EORA dataset uses a more aggregated
industry classification, we assign identical spending shares to all SCTG industries in the
EORA sectors. We obtain trade flows in non-manufacturing directly from EORA.

2. We then create a trade matrix between US states and foreign countries at the SCTG-level.
We use state-to-state shipments data at the SCTG level from the Commodity Flow Survey
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released by the US Census in 1997 and 2007. One issue is that in the CFS dataset some
shipment values are suppressed or missing. We use a gravity-based approach to impute
these suppressed values, that we describe in the sub-section C.1.1 below. Finally, we convert
shipment flows into trade flows as follows.

(a) Let
(
Zktdj , Z

kt
jd

)
denote the trade flows between each of the 40 US custom districts, d,

and foreign country, j, by sector k and year t. We obtain
(
Zktdj , Z

kt
jd

)
from the US

Merchandise Trade Files released annually by the US Census between 1990 and 2016.
The exports and imports of state i to foreign country j are

Xkt
ij =

∑
d

adj,kti · Zktdj

Xkt
ji =

∑
d

bdj,kti · Zktjd

where adj,kti and bdj,kti correspond to the share of total exports and imports in district d
whose respective origin and destination are state i.

i. We construct bilateral trade flows between US states for each sector and year. Let
X̃kt
ir denote the value of shipments from state i to state r of goods in sector k at

year t. The trade flows between state i to state r are services:

Xkt
ir = X̃kt

ir −
∑
d,j

(
ãdj,ktir · Zktdj + b̃dj,ktir · Zktjd

)

where ãdj,ktir and b̃dj,ktir correspond respectively to the share of total exports and
imports in district d transiting between states i and r. To compute the variables
above, we assume that the transit route is the same for all export and import of
all sectors with identical state of origin/destination, port of exit/entry, and foreign
country of origin/destination. Using the US Census data on state of origin exports
by port and destination, we compute the following variables:

adj,kti = bdj,kti =
exportsdj,ti∑
l exportsdj,tl

and ãdj,ktir = b̃dj,ktir =
exportsdj,tij∑
r,l exportsdj,trl

ii. We adjust domestic sales of the residual sector to include local spending in

XNT,t
ii =

 ∑
k 6=NT

∑
r

Xkt
ri

 eti

where eti is the expenditure ratio between non-tradeable and tradeable goods of state i
at year t obtained from the BEA state-level accounts.

(b) We merge the trade bilateral trade flows of US states with the bilateral trade flows of
the US and other countries in the BACI database. To this end, we use US domestic
sales in BACI to normalize total expenditures of US states on goods produced from other
US states. We also distribute the bilateral trade flows of the US in the BACI among
US states using each state share in total trade flows to/from other foreign countries
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obtained in the previous step. The final output consists of Xij,k: trade flow from i to j
in SCTG sector k, where i, j are US states or foreign countries.

3. The final step is to use the trade matrix with US states and foreign countries to construct trade
flows for US Commuting Zones at the SCTG-level. To this end, we construct the participation
of each CZ r in its state i(r) production and consumption. The production share is the CZ’s
share in the state’s total employment in industry n, Rtn,r(j) ≡ Ltn,r/(

∑
r′∈i(r) L

t
n,r′), and the

spending share is the CZ’s total employment share in the state, Etn,r(i) ≡ L̄tr/(
∑

r′∈i(r) L̄
t
r′)

with L̄tr ≡
∑

n′ L
t
r,n′ . For each CZ, export value to country j is Xt

cj,n = Rtn,rXi(c)j,n and

import value from country j is Xt
ir,n = Etn,rXij(c),n. Finally, we impute trade flows between

CZs using a gravity procedure. We first use state-to-state trade flows computed in the
previous step to estimate a gravity regression for each industry n:

logXt
ij,n = βt0 + βt11[i = j] + βt2 ln dij + β3 lnY t

i,n + β4 lnEtj,n + etij,k

where dij is the bilateral distance between state i and j, Y t
i,n is the total production in state i,

Etj,n is the total expenditure in state j. We then use the estimated coefficients to compute
the predicted flows between CZ r and d

log x̂trd,k = β̂t0 + β̂t11[i = j] + β̂t2 ln dij + β̂3 lnRti,n + β̂4 lnEtj,n

where Rtn,r are employment shares and Etn,k are expenditure shares computed in the previous

step. We rescale these predicted values by the corresponding share of national flows coming

from US domestic sales from the BACI dataset. In the non-manufacturing sector, we use a

similar procedure using a higher value for the distance elasticities, β̂1 and β̂2. In particular,

we follow Eckert (2018) by adjusting these parameters to be 50% higher than the estimates

for the manufacturing sector.

C.1.1 Methodology to replace suppressed values in the CFS

We implement the imputation procedure separately for each of the 31 industries in Table 5. To
simplify the notation, we drop the industry subscript. Using observed data on bilateral shipments
between US states in the tradeable sector, we estimate the following gravity equation, for every
year t:

log X̃ij = β0 + β1 ln dij + β2 lnYi + β2 lnEj + eij

where dij is the bilateral distance between state i and j, Yi is the total production in state i, Ej is
the total expenditure in state j, and eij is the econometric error. Then we obtain the predicted
values

log X̂ij = β̂0 + β̂1 ln dij + β̂2 lnXi + β̂2 lnXj .

We compute the residual outflows for each state as Ȳi = Yi −
∑

j X̃ij , and the residual inflows

as Ēj = Ej −
∑

i X̃ij . For suppressed values, we assume that the true trade flow equals:

X̃ij = X̂ijξiγj .

We must have that the summation of predicted flows across destinations for each origin has to

be equal to total production:
∑

j X̃ij = Ȳi. Also, the summation of predicted flows across origins for
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each destination has to be equal to total expenditures:
∑

i X̃ij = Ēj . To compute ξi and γj , we use

the following algorithm. For state i, consider the vector of exports to all states X̃ij and the imports

X̃ji. Then, we compute the following ratios: ξi =
∑

j X̃ij/Ȳi and γi =
∑

j X̃ji/Ēj . We then adjust

X̂ij = X̃ij/ξi and X̂ji = X̃ji/γi. For state j + 1, repeat the same procedure, but keeping constant

the exports and imports of the previous adjusted states 1 to j, and adjusting the total expenditures

and production. Finally, we use these predicted (and consistent with the aggregates) values to fill

the suppressed shipments.
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D Online Appendix: Equivalences and Extensions

This online appendix has three parts. First, we establish the general solution of our model in the
non-linear system of equilibrium conditions. Second, we formally establish the equivalence of our
model’s counterfactual predictions to those implied by a number of existing trade and geography
models. Finally, we extend our model to account for other sources of cross-market links.

D.1 Non-Linear DEK Expressions

Consider the solution of the non-linear system of equilibrium equations following changes in economic
fundamentals. Consider an equilibrium with positive production in all markets. The labor market
module in (14)–(16) imply written in changes:

L0
i L̂i = Φi

({
ω0
j ω̂j
}
j

)
(59)

ŵi = p̂i

Ψi

({
L0
j L̂j

}
j

)
Ψi

({
L0
j

}
j

) . (60)

In addition, the market clearing condition in (17) yields

w0
iL

0
i

(
ŵiL̂i

)
=
∑
j

x0
ij x̂ijw

0
jL

0
j

(
ŵjL̂j

)
, (61)

where the changes in spending shares and price indices in (12)–(13) are given by

x0
ij x̂ij = Xij

({
τ0
ojp

0
o

P 0
j

τ̂oj p̂o

}
o

)
and P̂j = Pj

({
τ0
ojp

0
o

P 0
j

τ̂oj p̂o

}
o

)
. (62)

The system (59)–(62) determines the changes in endogenous variables, {p̂i, P̂i, L̂i, ω̂i}i, implied by
any combination of shocks, {τ̂ij}i,j . It depends on the aggregate mappings {{Xij(· )}j ,Φi(· ),Ψi(· )}i
as well as initial outcomes, {{x0

ij}j , w0
i , L

0
i }i, and initial prices and shifters, {{τ0

ij}j , p0
i , P

0
i }i. Notice

however that our model – and thus a large number of spatial models – is over-identified: there are
multiple degrees of freedom to match observed labor and trade outcomes in the initial equilibrium.
We show that it is always possible to choose the location of the preference and productivity shifters
in {{Xij(· )}j ,Φi(· ),Ψi(· )}i to replicate the initial levels of trade flows and labor market outcomes
across markets, while normalizing shifters of trade costs, and productivity in the initial equilibrium.
The normalization of bilateral effective prices in the initial equilibrium is analogous to that imposed
in neoclassical economies by Adao, Costinot, and Donaldson (2017).

Thus, in equations (59)–(62), we choose initial shifters such that

τ0
ijp

0
i ≡ 1, P 0

j ≡ 1, Ψi

({
L0
j

}
j

)
≡ 1 ∀i, j. (63)

Given the normalization in (63), we can use the system in (59)–(62) to characterize the
counterfactual predictions of our model.

Proposition 6. Consider the Generalized Spatial Economy satisfying Assumptions 1 and 2. Condi-
tional on initial levels of endogenous variables {{x0

ij}j , w0
i , L

0
i }i, the mappings {{Xij(· )}j ,Φi(· ),Ψi(· )}i
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are sufficient to uniquely characterize counterfactual changes in endogenous outcomes, {p̂i, P̂i, L̂i, ω̂i}i,
implied by any combination of shocks, {τ̂ij}i,j , as a solution of (59)–(62).

Proof. Proposition 2 immediately guarantees that there is a unique equilibrium for the initial and
the final set of shifters. So, we only need to show that, by specifying preferences and technology,
we obtain an equilibrium with identical trade and labor outcomes as the initial equilibrium under
the normalization in (63).

Initial Equilibrium. Consider an initial equilibrium such that

L0
j = Φj

({
w0
i

P 0
i

}
i

)

p0
i =

w0
i

P 0
i

1

Ψi

({
L0
j

}
j

)
w0
iL

0
i =

∑
j

x0
ijw

0
jL

0
j

x0
ij = Xij

({
τ0
ojp

0
o

}
o

)
and P 0

j = Pj

({
τ0
ojp

0
o

}
o

)
.

Alternative Economy. Denote Ψ0
i ≡ Ψi

({
L0
j

}
j

)
. Let us construct an alternative economy

without trade costs (τ̃ij ≡ 1), where technology is given by

Ψ̃i

(
{Lj}j

)
≡ 1

Ψ0
i

Ψi

(
{Lj}j

)
,

and preferences are given by

Ũc

(
{Cj}j , {Lj}j

)
≡ Uc

{ 1

P 0
j

Cj

}
j

, {Lj}j



Ṽj
(
{cij}i

)
≡ Vj

({
cij

Ψ0
iP

0
j

τ0
ij

}
i

)
.

In this case, we immediately get that

Φ̃j ({ωi}i) = Φj

({
1

P 0
i

ωi

}
i

)
and

X̃ij

(
{poj}o

)
= Xij

({
τ0
oj

P 0
j Ψ0

i

poj

}
o

)
and P̃j

(
{poj}o

)
= Pj

({
τ0
oj

P 0
j Ψ0

i

poj

}
o

)
.

Equilibrium of Alternative Economy. In this economy, the equilibrium entails w̃i = w0
i ,

L̃i = L0
i ,x̃ij = x0

ij , and p̃ij = P̃i = 1. To see this, notice that
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p̃i =
w̃i

Ψ̃i

({
L0
j

}
j

) = w0
i ,

Φ̃j

({
w̃i

P̃i

}
i

)
= Φj

({
1

P 0
i

w0
i

}
i

)
= L0

j ,

x̃ij = X̃ij

(
{τ̃oj p̃o}o

)
= Xij

({
τ0
ojp

0
o

P 0
j

}
o

)
= x0

ij ,

P̃j = P̃j
(
{τ̃oj p̃o}o

)
= Pj

({
τ0
ojp

0
o

P 0
j

}
o

)
= 1

Finally, the labor market clearing condition holds:

w̃iL̃i = w0
iL

0
i =

∑
j

x0
ijw

0
jL

0
j =

∑
j

x̃ijw̃jL̃j . �

D.2 Equivalences

We now discuss how our theoretical environment unifies a number of existing frameworks in spatial
economics. We show that the shape of the mappings {{Xij(· )}i,Φj(· ),Ψj(· )}j encompasses the
central forces in a wide range of spatial and trade models. We start by introducing a formal
definition of the models for which the equilibrium outcomes of the Generalized Spatial Model of
Section 3 are observationally equivalent to.

Definition 2. The Generalized Spatial Model of Section 3 is observationally equivalent to Economy
N with respect to the shifters {τij}i,j if

1. There exist unique mappings {{XN
ij (· )}i,ΦN

j (· ),ΨN
j (· )}j such that the equilibrium of Econ-

omy N is characterized by conditions (12)–(17) for any levels of {τij}i,j ;

2. There exist preferences, (1) and (10), and technology, (4), that imply {{XN
ij (· )}i,ΦN

j (· ),ΨN
j (· )}j .

This definition requires that, independent of the levels of the exogenous shifters, Economy N
must satisfy the equilibrium conditions (12)–(17) for unique mappings {{XN

ij (· )}i,ΦN
j (· ),ΨN

j (· )}j .
This implies that any combination of shocks to the shifters {τij}i,j yields identical counterfactual
outcomes in labor markets. We use Definition 2 to establish that our model is observationally
equivalent to several existing frameworks under specific parametric restrictions on the shape of
{{Xij(· )}i,Φj(· ),Ψj(· )}j . In particular, we show the equivalence with, respectively: (i) Neoclassical
models with economies of scale, (ii) New trade theory models, (iii) New economic geography models,
(iv) Spatial assignment models, and (v) Spatial assignment models with other factors of production.

D.2.1 Neoclassical Economy

Environment. Consider a neoclassical economy with a single factor of production. We denote all
the variables of this economy that are potentially different from the Generalized Spatial Economy
with a superscript N . The proofs follows the logic of the proof of Adao, Costinot, and Donaldson
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(2017) but extending to the case of labor mobility and agglomeration spillovers. We assume that
the agglomeration function, the labor supply function, and the exogenous shifters are the same as
for the Generalized Economy, so that we do not use superscripts for those objects.

As in the Generalized Spatial Model, each country has a representative agent with preferences
for consumption and labor supply in different markets, with utility function given by

Uc

({
CNj
}
j
,
{
LNj
}
j

)
.

The main difference is that we explicitly allow for preferences over goods, z:

CNj ≡ V N
({
cNz,ij

}
z,i

)
,

where V N (· ) is twice differentiable, quasi-concave, homothetic, and increasing in all arguments.
Notice that V N (· ) allows for the possibility that goods from different origins are imperfect substitutes.

The representative household’s budget constraint is∑
i

∑
z

pNz,ijc
N
z,ij = wNj L

N
j .

There are many perfectly competitive firms supplying each good in any market. The production
technology uses only labor and entails external economies of scale at the market level. In particular,
the technology of producing good z in i and delivering to j is given by

Y N
z,ij = Ψi

({
LNj
}
j

) LNz,ij

τijαNz,ir
,

where αNz,ij is good-specific productivity shifter of producing in i and delivering in j.

Equilibrium. We use the fact that V N (· ) is homothetic to derive the price index in market j:

PNj = PNj

({
pNk,oj

}
k,o

)
≡ min
{ck,oj}k,o

∑
k,o

pNk,ojc
N
k,oj s.t. V N

(
{ck,oj}k,o

)
≥ 1 (64)

where the associated spending share on good z from i is

xNij,z ∈ XN
ij,z

({
pNk,oj

}
k,o

)
. (65)

Conditional on prices, the representative household solves the utility maximization problem that
yields the labor supply in market j:

LNj = Φj

({
ωNi
}
i

)
. (66)

Profit maximization implies that

pNz,ij = τijp
N
i α

N
z,ij (67)
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where

pNi =
wNi

Ψi

({
LNj

}
j

) (68)

Finally, the labor market clearing condition is

wNi L
N
i =

∑
j

∑
z

xNz,ij ·
(
wNj L

N
j

)
. (69)

The competitive equilibrium corresponds to

{{
pNz,ij

}
z,i
, wNj , L

N
j , P

N
j

}
j

such that equations

(64)–(69) hold. Thus, the equilibrium can be written as
{
pNi , ω

N
i , L

N
i , P

N
i

}
i

solving (12)–(17) with
Φj(· ), Ψj(· ), and

XN
ij

({
τojp

N
o

}
o

)
≡

{
xNij =

∑
z

xNij,z : xNij,z ∈ XN
ij,z

({
τojp

N
o α

N
k,oj

}
o,k

)}

such that
PNi

({
τojp

N
o

}
o

)
= PNi

({
τojp

N
o α

N
k,oj

}
o,k

)
.

Equivalence. We now construct an equivalent Generalized Spatial Economy. We only need to

show that there exist preferences and technology that are consistent with
{{

XN
ij (.)

}
i
,Φj(.),Ψj(.)

}
j
.

We also assume that the production function of the market-specific composite good in the Generalized
Economy is

Yij = Ψi

(
{Lj}j

) Lij
τij

.

In addition, consider the preferences in Section 3 with

Vj
(
{cij}i

)
≡ max{cz,ij}z,i V

N
(
{cz,ij}z,i

)
s.t.

∑
z α

N
z,ijcz,ij = cij . (70)

Intuitively, the preference structure in (70) implies that, if the representative household acquires
cij units of i′s composite good for j’s consumption, then it optimally allocates the composite good
into the production of different goods, given the exogenous weights αNz,ij that are now embedded into
the representative agent’s preferences. Since the relative price of goods in market i only depends on
αNz,ij , this decision yields allocations that are identical to those in the competitive equilibrium of the
decentralized economy.

To see this, denote the spending shares associated with the cost minimization problem with
Vj (· ) by xij ∈ Xij

(
{τijpi}i

)
. Thus, the equivalence follows from showing that

Xij

(
{τojpo}o

)
= XN

ij

(
{τojpo}o

)
∀ {τojpo}o . (71)

First, we show that xij ∈ Xij

(
{τojpo}o

)
=⇒ ∃xNij,z ∈ XN

ij,z

({
τojpoα

N
z,oj

}
k,o

)
with xij =∑

z x
N
ij,z. Let {cz,ij}z,i be the solution of the good allocation problem in the definition of Vj ({cij})

in (70). We proceed by contradiction to show that {cz,ij}z,i implies spending shares, {xz,ij}z,i =
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{
τojpoα

N
z,ijcz,ij

}
z,i

, such that xz,ij ∈ XN
ij,z

({
τojpoα

N
z,oj

}
k,o

)
. Suppose there exists a feasible

allocation
{
cNz,ij

}
z,i

such that

V N
({
cNz,ij

}
z,i

)
> V N

(
{cz,ij}z,i

)
and

∑
i

∑
z

τijpiα
N
z,ijc

N
z,ij ≤ 1. (72)

Notice that
∑

i

∑
z τijpiα

N
z,ijc

N
z,ij ≤ 1, which implies that the allocation cNij ≡

∑
z α

N
z,ijc

N
z,ij is

feasible in the Generalized Spatial Competitive Economy. Thus,

V N
(
{cz,ij}z,i

)
= Vj ({cij}) ≥ Vj

({
cNij
})
≥ V N

({
cNz,ij

}
z,i

)
,

which is a contradiction of inequality (72).

Second, we show that xij =
∑

z x
N
ij,z with xNij,z ∈ XN

ij,z

({
τojpoα

N
z,oj

}
k,o

)
, and cNij =

∑
z α

N
z,ijc

N
z,ij =⇒

xij ∈ Xij

(
{τojpo}o

)
. We start with cNij =

∑
z α

N
z,ijc

N
z,ij implied by the solution of the consumer’s

problem in the Neoclassical Economy. We proceed by contradiction to show that
{
cNij

}
i

is optimal

in the Generalized Spatial Competitive Economy given prices {τijpi}i. Suppose there exists a
feasible allocation {cij}i in the Generalized Spatial Competitive Economy such that

Vj ({cij}) > Vj
({
cNij
})

and
∑
i

pijcij ≤
∑
i

pijc
N
ij = 1.

Let {cz,ij}z,i be the be the solution of the good allocation problem in the definition of Vj ({cij})
in (70). Thus, ∑

i

τijpi
∑
z

αNz,ijcz,ij =
∑
i

τijpicij ≤ 1

and, by revealed preference,

Vj
({
cNij
})
≥ V N

({
cNz,ij

}
z,i

)
≥ V N

(
{cz,ij}z,i

)
= Vj ({cij}) .

This establishes the contradiction. Since we have found preferences and technology that imply

the mappings
(

Φj(.),Ψj(.), X
N
ij (.)

)
, we have proven the equivalence.

D.2.2 New Trade Theory

Environment. The utility function is as in the Generalized Spatial Model. We assume that Cj has
a nested preference structure across sectors, CNj = V N

j

(
{Ck,j}k

)
with V N

j (· ) strictly quasi-concave

and homogeneous of degree one. Sectors are divided into two groups: competitive sectors, k ∈ KNC ,
and monopolistic competitive sectors, k ∈ KNM .

In any competitive sector k ∈ KNC , firms in each country produce one homogeneous good
with the production technology in (4). In particular, assume that technology is subject to external

economies of scale with the marginal production cost given by ζkrΨ
NC
kr

(
{Lj}j

)
. Let CNCk,j be

an aggregator of goods from different origins r, CNCk,j ≡ V NC
k,j

(
{ckr,j}r

)
, where V NC

k,j (· ) is twice
differentiable, increasing, quasi-concave, and homogeneous of degree one. Notice that the utility
function allows the goods produced in different regions to be perfect substitutes and, therefore, it
covers homogeneous goods.
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In any sector k ∈ KNM , there is large mass of potential entrants in each region that produce
a differentiated good, indexed by z, and operate in monopolistic competition. We assume that
all potential entrants in sector-region (k, r) have access to the same increasing returns technology

where, in terms of labor, the fixed entry cost is µkrΨ
NE
kr

(
{Lj}j

)
and the marginal production cost

is ζkr ·ΨNP
kr

(
{Lj}j

)
. We explicitly allow ΨNP

kr (· ) and ΨNE
kr (· ) to depend on employment, but we

assume that firms perceive them as given. So, these function incorporate external agglomeration
and congestion forces at the market level.

We also assume that, for k ∈ KNM , preferences are CES across the available differentiated
goods with elasticity σ > 1:

CNk,j =

[∫
z∈Zk,j

(c(z))
σ
σ−1 dz

]σ−1
σ

,

where Zk,j is the set of goods in sector k ∈ KNM available in market j.

Equilibrium. As in the Generalized Spatial Model, the representative household’s problem yields
the labor supply in region-sector j,

LNj ∈ Φj

({
ωNi
}
i

)
. (73)

Consider now a competitive sector k ∈ KNC . Cost minimization implies that

pNkr,j = τkr,j
wNkr

ΨNC
kr

({
LNj

}
j

) (74)

For the monopolistic competitive sector k ∈ KNM , all firms in region r choose the same price:

pNkr,j = τkr,j
σ

σ − 1

wNkr

ΨNP
kr

({
LNj

}
j

) . (75)

We now characterize the mass of operating firms, Mkr. The labor market clearing and the free
entry conditions in (k, r) imply

Mkr =
1

σµkr
·

LNkr

ΨNE
kr

({
LNj

}
j

) .
Thus, in the monopolistic competitive sector k ∈ KNM , we can express prices as

pNkr,j = τkr,j
wNkr

ΨNM
kr

({
LNj

}
j

) (76)

with

ΨNM
kr

{
LNj
}
j
≡ σ − 1

σ
ΨNP
kr

({
LNj
}
j

) 1

σµkr
·

LNkr

ΨNE
kr

({
LNj

}
j

)


1
1−σ

. (77)
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Using these expressions, it is straightforward to show that the labor market clearing condition
in sector k of region r, i = (k, r), is

wNkrL
N
kr =

∑
j

xNkr,jw
N
j L

N
j . (78)

Equivalence. We now construct an equivalent Generalized Spatial Model. To establish the
equivalence, we need to set Ψkr(· ) = ΨNM

kr (· ) for k ∈ KNM and Ψkr(· ) = ΨNC
kr (· ) for k ∈ KNC . We

also need to specify sector-level preferences such that Vk,j
(
{ckr,j}r

)
= V NC

k,j

(
{ckr,j}r

)
for k ∈ KNC

and Vk,j
(
{ckr,j}r

)
=
[∑

r (ckr,j)
σ
σ−1

]σ−1
σ

for k ∈ KNM . In addition, we must specify the same

upper-level consumption aggregator across sectors: Vj

(
{ckr,j}k,r

)
≡ V N

j

({
Vk,j

(
{ckr,j}r

)}
k

)
.

D.2.3 New Economic Geography

Environment. For the next equivalence result we consider an economy with production structure
and preference for goods identical to those in the New Trade Theory Economy of Section D.2.2. We
assume that each country c is populated by a continuum of individuals with identical preferences
for goods. These individuals differ in terms of mobility across markets. As in Krugman (1991),
there are two groups of markets in each country, JNIc and JNMc . Market j ∈ JNIc is populated by a
subset of completely immobile individuals such that

LNj = L̄j ∀j ∈ JNIc , (79)

In addition, there is a mass L̄c of individuals that is completely mobile across markets j ∈ JNMc
such that ∑

j∈JNMc

LNj = L̄c. (80)

Mobile individuals have identical preferences for being employed in any j ∈ JNMc :

Uj
(
ωNj , L

N
j

)
= ωNj

(
LNj
)β ·

where ωNj is the real wage in market j.

Equilibrium. We restrict attention to equilibria with positive employment in every j ∈ JNMc , and
analyze separately the cases of β 6= 0 and β = 0.

If β = 0 , any employment allocation is feasible as long as νiω
N
i = ū. Thus, the labor supply is

{
LNi
}
i

= ΦN
c

({
νiω

N
i

}
i

)
=

{
LNj = L̄c, L

N
i = 0 if ωNi > ωNi ∀i ∈ JNMc{

LNj :
∑

j L
N
j = L̄c

}
if ωNi = ū ∀i ∈ JNMc

. (81)

If β 6= 0, in this case, any j ∈ JNMc with positive employment must have

ωNj
(
LNj
)β

= ū =⇒ LNj =

(
ū

ωNi

) 1
β
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From equation (80),

LNj = ΦN
j

({
ωNi
}
i

)
≡ L̄c

(
ωNj

)− 1
β

∑
i∈JNMc

(
ωNi
)− 1

β

(82)

The equilibrium of this economy is
{
pNi , P

N
i , L

N
i , ω

N
i

}
solving (12)–(17) with Φj

({
ωNi
}
i

)
= L̄j if

j ∈ JNI and Φj

({
ωNi
}
i

)
= ΦN

j

({
ωNi
}
i

)
if j ∈ JNM .

Equivalence. To establish equivalence, we construct preferences for the the representative
household in the Generalized Spatial Model that yield the labor supply function Φj(· ) = ΦN

j (· ).
Specifically, consider the following preferences:

Uc

(
{Cj , Lj}j

)
=


[∑

j∈JMc (Cj) (Lj)
β
] 1

1+β
if
∑

j∈JMc Lj = L̄c and Li = L̄i ∀i ∈ JI

−∞ otherwise

Since the budget constraint implies that Cj = ωjLj , the labor supply function is the solution of

{Φj ({ωi}i)}j = arg max
{Lj}

 ∑
j∈JMc

(ωj) (Lj)
1+β

 1
1+β

s.t.
∑
j∈JMc

Lj = L̄c.

If β = 0, it is straightforward to see that the solution of the utility maximization problem yields
equation (81). If β 6= 0, the solution of the maximization problem is the same as equation (82).
Since we have assumed a production structure and preferences for goods identical to those in the
New Trade Theory Economy, the assumptions on technology and consumption aggregator imposed
in the previous section imply that the functions Xij(· ) and Ψi(· ) deliver the equivalence.

D.2.4 Spatial Assignment Models

Environment. Suppose that countries are populated by a continuum of individuals, ι ∈ Ic, that
are heterogeneous in terms of preferences and efficiency across markets (i.e, sector-region pairs). We
assume individual ι has market specific preferences, aj(ι), and market specific efficiency, ej(ι). In
particular, if employed in market j, we assume that individual ι has homothetic preferences given
by

Uj(ι) = aj(ι) + V N
j

({
cNij
}
j

)
,

with a budget constraint given by ∑
i

pNij c
N
ij = wNj ej(ι).

We further assume that individuals take independent draws of (aj(ι), ej(ι)) from a common
distribution:

{aj(ι), ej(ι)}j ∼ F
N (a, e).

On the production side, we maintain the same structure of the Generalized Spatial Model. That
is, there is a representative competitive firm in each market with the production technology in (4).

Equilibrium. We start by characterizing spending shares across markets. Conditional on
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choosing j, individuals choose spending shares that minimize total cost:

PNj

({
pNoj
}
j

)
≡
∑
o

pNojc
N
oj s.t. V N

j

({
cNoj
}
o

)
= 1, (83)

with associated spending shares given by

xij ∈ XN
ij

({
pNoj
}
o

)
. (84)

The solution of this problem implies that, for individual ι, the utility of being employed in j is
Uj(ι) = aj(ι) + ωNj ej(ι). Thus, the set of individuals choosing j is

Ij
({
ωNi
}
i

)
≡ {(a, e) : aj + ejωj ≥ ai + eiωi ∀i} ,

with the associated labor supply given by

Lj = ΦN
j

({
ωNi
}
i

)
≡
∫
Ij({ωNi }i)

ej dFc(a, e). (85)

Notice that the function ΦN
j (· ) is homogeneous of degree zero with

∂ΦNj
∂ωj
≥ 0 and

∂ΦNj
∂ωi
≤ 0.46

Profit maximization and labor market clearing are still given by (15)–(17). Thus, the equilibrium
can be written as

{
pNi , P

N
i , L

N
i , ω

N
i

}
solving (12)–(17) with Ψj(·), Xij(·) = XN

ij (·), and Φj(·) =

ΦN
j (·).

Equivalence. To establish the equivalence, it is sufficient to show that there are preferences
for the representative household of the Generalized Spatial Model that yield Φj(·) = ΦN

j (·) and

Xij(·) = XN
ij (·). Specifically, consider the following preferences:

Cj = V N
j

(
{cij}j

)
,

and

U
(
{Cj}j {Lj}j

)
≡ max
{{Ij(a,e)}j}(a,e)

∑
j

Cj +

∫ ∑
j

ajIj(a, e) dF
N (a, e)

subject to

Lj =

∫
ejIj(a, e) dF

N (a, e) ∀j∑
j

Ij(a, e) = 1 ∀(a, e),

Ij(a, e) ≥ 0 ∀j, ∀(a, e).

It is straight forward to see that the first-stage problem in the Generalized Spatial Model yields

Xij

(
{poj}o

)
= XN

ij

(
{poj}o

)
and Pj

(
{poj}o

)
= PNj

(
{poj}o

)
.

46The homogeneity of ΦN
j (· ) follows immediately from the definition of Ij . To see that

∂ΦNj
∂ωj
≥ 0

and
∂ΦNj
∂ωi
≤ 0, notice that Ii (ω̃c) ⊂ Ii (ωc) and Ij (ωc) ⊂ Ij (ω̃c) whenever ω̃j > ωj and ω̃i = ωi.
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Also, the second-stage problem in the Generalized Spatial Model yields a labor supply function
that solves

{Φj ({ωi}i)}j = arg max
{Lj}j

U
(
{ωjLj}j {Lj}j

)
.

Using the definition above, the solution of this problem is

Φj ({ωi}i) =

∫
ejI
∗
j (a, e) dFN (a, e) ∀j

where {{
I∗j (a, e)

}
j

}
(a,e)
≡ arg max

{{Ij(a,e)}j}(a,e)

∫ ∑
j

(aj + ωjej) Ij(a, e) dF
N (a, e)

subject to

∀(a, e) :
∑
j

Ij(a, e) = 1, and Ij(a, e) ≥ 0.

To solve this problem, we substitute the first constraint into the objective function to eliminate
Io(a, e) for an arbitrary o. Then, we consider the problem’s Lagrangian:

max
{Ij(a,e)≥0}j 6=o

∫
(ao + ωoeo) dF (a, e) +

∫ ∑
j

(aj + ωjej − ao − ωoeo) Ij(a, e) dFN (a, e).

The first-order condition of this problem implies that, for all j 6= o, Ij(a, e) = 0 if ao + ωoeo >
aj + ωjej . Thus, Io(a, e) = 1 if, and only if, ao + ωoeo ≥ aj + ωjej . Since o was arbitrarily chosen,
we can write

∀i : I∗j (a, e) = 1 ⇔ (a, e) ∈ Ij ({ωi}i) ≡ {(a, e) : aj + ωjej ≥ ao + ωoeo ∀o} .

Thus, the system of labor supply constraints implies that

Φj ({ωi}i) =

∫
Ij({ωi}i)

ej dF
N (a, e),

and, therefore,
Φj ({ωi}i) = ΦN

j ({ωi}i) .

D.2.5 Spatial Assignment Models with Other Factors in Production

Environment. Consider an economy with a representative household with the preferences in
(1)–(10) subject to the budget constraint in (11). We denote an origin sector-region pair as i ≡ (k, r)
and a destination sector-region pair as j ≡ (s, d). We impose additional restrictions on preferences
to obtain the equivalence result. First, assume that individuals employed in all sectors of region r
have identical preferences, Vsd(· ) = Vd(· ), and face identical prices, pkr,sd = pkr,d. Second, assume
that preferences are such that the labor supply function is invertible (up to a scalar).

In sector-region pair, there is a representative competitive firm that uses labor, LNkr, and another
factor, TNkr , in production, with the following Cobb-Douglas production function:

Y N
kr = ζ̃krΨ̃

N
kr

({
LNsd
}
sd

) (
LNkr
)αNkr (TNkr)1−αNkr . (86)
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Each region r has an endowment of the other factor, T̄Nr . We assume that the other factor is mobile
across sectors within a region, but that it is immobile across regions – like land in spatial models.
Similar to Caliendo et al. (2018b), there is a national mutual fund that owns the other factor in all
regions. We assume that the local government in region r owns a share κr of the national fund, and
it transfers all dividends to local residents. In particular, we impose that the per-capita transfer
rate to individuals employed in sector k of region r, ρNkr, is inversely proportional to the share of
labor in the total cost of the sector,

ρNkr = ρNr /α
N
kr. (87)

Equilibrium. To characterize the equilibrium, it is useful to work with the adjusted wage rate,
w̃Nkr ≡ wNkr/αNkr. The representative household’s cost minimization problem yields spending share
and price indices that are given by, for all s,

xNkr,sd ∈ Xkr,sd

({
pNkr,sd

}
kr

)
= Xkr,d

({
pNkr,d

}
kr

)
and PNsd = Psd

({
pNkr,sd

}
kr

)
= Pd

({
pNkr,dd

}
kr

)
.

(88)
As in Section (3), the utility maximization problem of the representative household yields the

labor supply function. Using the transfer rule in (87), the labor supply in j is

Lsd ∈ Φsd

({
ρNr ω̃

N
kr

}
kr

)
. (89)

Thus, the optimization of consumption and labor choice is corresponds directly to the one of the
Generalized Economy with transfers such that the budget constraint in market j is

∑
kr ckr,sdpkr,sd =

ρNd wsdLsd.
In addition, the profit maximization problem of firms implies that

pNkr,sd = τkr,sdp
N
kr

where

pNkr =
w̃Nkr

ζkrΨ̃
N
kr

({
LNsd
}
sd

) · (RNkr
w̃Nkr

)1−αNkr

where RNkr is the price of other factor faced by the producer in sector k of region r, and, abusing

notation, ζkr ≡ ζ̃kr(1− αNkr)(1−αNkr).
To obtain the equilibrium level of RNkr, consider the market clearing condition for the other

factor in region r: T̄Nr =
∑

k T
N
kr =

∑
k

(
1− αNkr

)
w̃NkrL

N
kr/R

N
kr. Since the other factor is perfectly

mobile across sectors, RNkr = RNr for all k and, therefore,

RNr =

∑
k

(
1− αNkr

)
w̃NkrL

N
kr

T̄Nr

We use this expression to eliminate RNkr in the expression of pNkr,kr for sector k in region r. After
some manipulation, we obtain

pNkr,kr =
w̃Nkr

Ψ̃N
kr

({
LNsd
}
sd

) ( 1

T̄Nr

∑
s

(
1− αNsr

) ρNr ω̃Nsr
ρNr ω̃

N
kr

LNsr

)1−αNkr
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Thus, the invertibility of the labor supply function yields

pNkr =
w̃Nkr

ΨN
kr

({
LNsd
}
sd

) (90)

with

ΨN
kr

({
LNsd
}
sd

)
≡ Ψ̃N

kr

({
LNsd
}
sd

)( 1

T̄Nr

∑
s

(1− αsr) Φ−1
kr,sr

({
LNsd
}
sd

)
LNsr

)αi−1

. (91)

where we used invertibility of labor supply up to a scalar to write

ρNr ω̃
N
sr

ρNr ω̃
N
kr

= Φ−1
kr,sr

({
LNsd
}
sd

)
.

To close the equilibrium, we consider the labor market clearing condition that can be written in
terms of the revenue share accruing to labor in every sector-region pair:

w̃NkrL
N
kr =

∑
sd

xNkr,sdρ
N
d w̃

N
sdL

N
sd. (92)

Finally, the transfer rate in region r is determined by its share in the dividend paid by the
mutual fund:

κr
∑
sd

(1− αNsd)w̃NsdLNsd =
∑
k

(ρNkr − 1)αkrw̃
N
krL

N
kr =

∑
k

(ρNr − αkr)w̃NkrLNkr

ρNr =
κr
∑

sd(1− αNsd)w̃NsdLNsd +
∑

k αkrw̃
N
krL

N
kr∑

k w̃
N
krL

N
kr

(93)

where the left hand side is region r’s total transfer payments, and the right hand side is region r’s
share in the total land revenue in the country.

The equilibrium of this economy is characterized by
{
pNi , P

N
i , L

N
i , ω

N
i

}
that solve equations

(88)–(92), with
(

Φj(· ),ΨN
j (· ) , Xij(· )

)
, conditional on the transfer rule {ρr} in (93).

Equivalence. To establish the equivalence, we consider the Generalized Spatial Model of Section
3, with Ψkr (· ) = ΨN

kr (· ) in (91) and the transfer rule in (93). This establishes that the Generalized
Spatial Model is equivalent to spatial assignment models with other factors of production that are
mobile across sectors but not across regions – e.g., land and other natural resources. A similar
argument yields the equivalence with models with other factors of production that are mobile across
both regions and sectors. The only restriction is that the invertibility step to obtain (91) requires
the same transfer rate across markets in the country, as in Caliendo et al. (2018b).

D.2.6 Special Case with Mobile Capital

Environment. Consider the simplified economy of Section 2. Assume that assume that preferences
are such that the labor supply function is invertible (up to a scalar), so that we can write

wj
wi

= Φ−1
i,j (L) . (94)

We introduce capital by assuming that the production function takes the following Cobb-Douglas
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form:

Yi =
1

κi
τi (Li)

αi (Ki)
1−αi ,

where κi ≡ ααii (1− αi)1−αi .
Assume that capital is fully mobile across regions, so that rent is identical in all regions: Ri = R

for all i. There is an exogenous capital endowment in the economy given by K̄.

Equilibrium. The cost minimization problem of the firm and the zero profit conditions imply that,
in every region i,

pi =
wi
τi

(
R

wi

)1−αi
. (95)

In this economy, capital market clearing condition requires RK̄ =
∑

iRKi. Using the fact that
firms spend a share 1− αi of their revenue on capital, we get the following expression for the rent
in equilibrium:

R =
1

K̄

∑
j

1− αj
αj

wjLj .

Substituting this expression into (95),

pi =
wi
τi

 1

K̄

∑
j

1− αj
αj

wj
wi
Lj

1−αi

,

which combined with the inverse labor supply in (94) yields

pi =
wi
τi

 1

K̄

∑
j

1− αj
αj

Φ−1
i,j (L)Lj

1−αi

.

Equivalence. We establish the equivalence with the model of Section 2 by specifying

Ψi (L) ≡

 1

K̄

∑
j

1− αj
αj

Φ−1
i,j (L)Lj

αi−1

. (96)

An illustrative example. To gain intuition for the labor productivity spillovers implied by factor

mobility, consider the special case of a gravity labor supply structure: Φi (ω) =
ωφi∑
j ω

φ̃
j

such that

wj
wi

=
(
Lj
Li

) 1
φ

. In this case,

Ψi (L) =

 K̄ (Li)
1
φ∑

j
1−αj
αj

(Lj)
1+ 1

φ

1−αi
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Thus, for i 6= j, the elasticity of labor productivity in market i to employment in market j is

ψij ≡
∂ log Ψi (L)

∂ logLj
= −(1− αi)

1−αj
αj

(Lj)
1+ 1

φ∑
j′

1−αj′
αj′

(
Lj′
)1+ 1

φ

(
1 +

1

φ

)
< 0.

Intuitively, since the labor-to-capital spending ration is constant, higher employment in market j
triggers an increase in the capital demand in market j, which causes rent prices to increase in the
entire economy. The higher capital cost increases the production cost everywhere and, therefore,
acts as a congestion on other markets.

D.3 Extensions

D.3.1 Generalized Spatial Model with Multiple Labor Types

Multiple Worker Types. Consider an extension of our model with multiple worker groups –
groups are indexed by g and g′. We write the equilibrium in terms of factor-content of trade as
in Adao, Costinot, and Donaldson (2017). Each market now is defined as a triple of sector-region-
group. We denote origin markets as i ≡ (k, r, g), and destination markets as j ≡ (s, d, g′). As
before, the representative consumer has preferences over consumption and labor across markets
(i.e., sector-region-group markers):

Uc

(
{Cj} , {Lj}j

)
.

We assume that the consumption index depends on the factor content of trade from different
sectors and regions. That is, the consumption index depends directly on a composite good produced
by each sector-region-group triple:

Cj = Vj
(
{cij}i

)
Finally, assume that there is a competitive firm producing the market-level composite good with

production function given by

Yi = Ψi ({Lo}o)Li.

All our results remain valid in this environment with spending shares in terms of factor content of
trade. That is, xij is the spending share on the composite good produced in the sector-region-group
triple.

Equivalent Armington Economy Multiple Worker Types. To gain intuition for this econ-
omy, we now derive preferences in terms of factor content of trade in the case of an Armington
economy with multiple labor types. Assume that the representative household has preferences over
the allocation of the multiple worker groups across sector-region pairs j,

Uc

({
Cgj

}
j,g
,
{
Lgj

}
j,g

)
.

The consumption index is a function of the quantities consumed of goods produced in different
origin sector-region pairs i:

Cgj = Ṽj

({
cgij

}
i

)
.

Assume that each sector-region pair i has a representative firm that combines labor from different
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worker types with a constant returns to scale technology:

Yi = Fi

(
{Ψg

i (L)Lgi }g
)

where Fij(.) is homogeneous of degree one.
Thus, as in the equivalence with the Ricardian economy above, we must define preferences of

the representative agent that incorporate the technology to produce final goods,

Cj = Vj

({
cgij

}
i,g

)
≡ Ṽj

({
Fi

({
cgij

}
g

)}
i

)
,

where cgij is the amount of ‘‘effective’’ labor of group g in market i used in the production of goods
shipped to market j.

let the production technology of ‘‘effective’’ labor of group g in market i be

cgi = Ψg
i (L)Lgi .

In equilibrium, the production cost of ‘‘effective’’ labor of group g in market i

pgi =
wgi

Ψg
i (L)

In this case, the spending share on factor g in sector-region pair i is simply

xgij = αgi

(
{pgi }g

)
xij

where αgi

(
{pgi }g

)
is the share of factor g in the production cost of sector-region pair i, and xij is

the spending share on goods from sector-region pair i.

D.3.2 Generalized Spatial Model with Intermediate Goods in Production

We now derive the decomposition between direct and indirect effects in a model with input-output
linkages.

Preferences. On the consumption side, we maintain the same structure of Section 3, in which the
representative household preferences yield a market-level price index of

PCj = PCj
(
pj
)
≡ min

cj

∑
o

pojcoj s.t. Vj (cj) = 1, (97)

with the associated final spending share on goods from origin i given by

xCij = XC
ij

(
pj
)
. (98)

Also, the utility maximization problem of the representative agent yields the labor supply in
any market j:

Lj = Φj (ω) . (99)

We also maintain the assumption of iceberg trade costs such that

pij = τijpi (100)
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Production. The main change is on the production function, which we assume to take the following
Cobb-Douglas form between labor and an intermediate input aggregator:

Yi =
1

κ i
Ψi (L) (Li)

$i (Mi)
1−$i ,

where κi = $$i
i (1−$i)

1−$i , and Mi is an index of intermediate inputs used in production:

Mi = Fi

(
{Mji}j

)
.

In this case, the cost minimization problem of the representative firm implies that the zero profit
condition is

pi =
(wi)

$i
(
PMi

)1−$i
Ψi (L)

(101)

where
PMi = PMi (pi) ≡ min

M i

∑
o

pjiMji s.t. Fi

(
{Mji}j

)
= 1 (102)

with associated input spending shares given by

xMji = XM
ji

(
{pji}j

)
≡ ∂ lnPMi

∂ ln pji
. (103)

Market clearing. To close the model, consider the market clearing condition for labor in each
market. The total revenue of market i from sales in market j is

Xij = xCijwjLj + xMij (1−$j)
∑
d

Xjd

Xij = xCijwjLj + xMij
1−$j

$j
wjLj

Xij =

(
xCij + xMij

1−$j

$j

)
wjLj

Thus,
1

$i
wiLi =

∑
j

(
$jx

C
ij + xMij (1−$j)

) 1

$j
wjLj . (104)

Equilibrium. The equilibrium entails {wi, Pi, Li, pi} that satisfy (97)–(104) given pm ≡ 1 for a
reference market.

There are two points that are worth mentioning. The equilibrium requires knowledge of the
labor share, $i, and the cost function, Fi(.) (which determines the producer price index PMi (·) and
the intermediate spending shares πij(·)). Second, this environment is a generalization of the model in
Caliendo and Parro (2014) that imposes a gravity structure on the demand for final products, Xij(·),
and intermediate products, XM

ij (·). In particular, their model assumes that final and intermediate
consumption is identical within each sector, but have different sector-level spending shares.

To write the labor and the trade modules, we combine first equations (99) and (101):

logωi =
1

$i
logQi +

1

$i
log Ψi (Φ (ω)) , (105)
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where
Qi =

pi(
PCi
)$i (PMi )1−$i (106)

with PCi given by (97) and PMi given by (102).
The trade module follows from the combination of (101) and (104):

[
piΨi (Φ (ω))(
PMi

)1−$i
] 1
$i Φi(ω)

$i
=
∑
j

Xij

(
{poj}o

)pjΨij (Φ (ω))(
PMj

)1−$j


1
$i

Φj(ω)

$j
(107)

with PCi given by (97), PMi given by (102), and

Xij

(
{poj}o

)
≡ XC

ij

(
{poj}o

)
$j +XM

ij

(
{poj}o

)
(1−$j)

Decomposition of direct and indirect effects. In terms of the modified competitiveness
measure, we have the same labor market module equation:

log ω̂ = β̄ log Q̂ (108)

with β̄ =
(
$̄ − ψ̄φ̄

)−1
and $̄ is a diagonal matrix with entries $i.

We also have that

log Q̂ =
(
Ī − $̄x̄C −

(
Ī − $̄

)
x̄M
)

log p̂− $̄ log ηC(τ̂ )−
(
Ī − $̄

)
log ηM (τ̂ ) (109)

where the consumption and the production cost exposure are given by

log η̂Ci (τ̂ ) ≡
∑
j

xCji log τ̂ji, (110)

log η̂Mi (τ̂ ) ≡
∑
j

xMji log τ̂ji. (111)

Notice that, if the production and the consumption shares are the same xji = xMji = xCji, then

log η̂Ci (τ̂ ) = log η̂Mi (τ̂ ).

Define χoij ≡ ∂ logXij({poj}o)
∂ log poj

, with the associate matrix χ̄ ≡ [
∑

d yidχjid]i,j . As before, we define

the revenue exposure as

log η̂Ri (τ̂ ) ≡
∑
j

∑
o

y0
ijχoij log τ̂oj . (112)

Thus, the trade module yields[
Ī − ȳ − χ̄$̄

]
$̄−1 log p̂+

(
Ī − ȳ

) (
Ī + $̄−1ψ̄

)
φ̄ log ω̂ = log ηR(τ̂ )+

(
Ī − ȳ

)
$̄−1

(
Ī − $̄

)
log P̂

M

Let us define
x̄ ≡ $̄x̄C +

(
Ī − $̄

)
x̄M

µ̄M ≡
(
Ī − ȳ

)
$̄−1
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µ̄ ≡
(
Ī − ȳ

) (
Ī + $̄−1ψ̄

)
φ̄

γ̄ ≡
[
Ī − ȳ − χ̄$̄ + µ̄β̄

(
Ī − x̄

)
$̄ − µ̄M x̄M

]
$̄−1

By substituting (108) and (109) into the expression above, we obtain

γ̄ log p̂ = log ηR(τ̂ ) + µ̄β̄$̄ log ηC(τ̂ ) +
(
µ̄M + µ̄β̄

) (
Ī − $̄

)
log ηM (τ̂ ).

Applying this expression into (109),

log Q̂ = ᾱR log ηR(τ̂ )− ᾱC$̄ log ηC(τ̂ )− ᾱM
(
Ī − $̄

)
log ηM (τ̂ ) (113)

where ᾱ ≡ M̄ ′
(
M̄γ̄M̄

′
)−1

M̄ , ᾱR ≡
(
Ī − x̄

)
ᾱ, ᾱC ≡ Ī − ᾱRµ̄β̄, and ᾱM ≡ ᾱC − ᾱRµ̄M .

Thus, equations (108) and (113) yield

log ω̂ = β̄
[
ᾱR log ηR(τ̂ )− ᾱC$̄ log ηC(τ̂ , ζ̂)− ᾱM

(
Ī − $̄

)
log ηM (τ̂ )

]
(114)

Notice that if xji = xMji = xCji then log η̂Ci (τ̂ ) = log η̂Mi (τ̂ ), as discussed above, so that then the
relationship can be written as

log ω̂ = β̄
[
ᾱR log ηR(τ̂ )−

[
ᾱC$̄ + ᾱM

(
Ī − $̄

)]
log ηC(τ̂ )

]
.

Thus, under the assumption of xji = xMji = xCji, the model with intermediate inputs can generate
the same counterfactuals as a model without intermediate inputs, as long as the elasticities of the
models with and without the intermediates are set to be the same.

An illustrative example. To see this point more clearly, we consider a simple example that
draws on the model of Section 2. In particular, we assume the presence of a single homogeneous
good as in Section 2 such that the production function with intermediate goods is

Yi = τiΨi (L) (Li)
$ (Mi)

1−$ .

The derivations above yield the following expression for the labor market module:

logω −$−1 log Ψ (Φ (ω)) = $−1 log τ .

Consider the case of log-linear functions of agglomeration and labor supply: Φi (ω) = ωφi and

Ψi(L) = Lψi . Thus,

logωi =
$−1

1−$−1ψφ
log τi =

1

$ − ψφ
log τi.

The interpretation of this condition is that, for given elasticities φ and ψ, a lower value of $
(higher share of intermediates) means a stronger response of labor outcomes to economic shocks.
However, the response of real wages to shocks in τi is going to be the same if the aggregate elasticity
($ − ψφ)−1 is set to be the same across models. This is a similar point to the one made by Allen,
Arkolakis, and Takahashi (2018) in that, for certain counterfactuals, the predictions of a spatial
model with respect to fundamentals may be the same with intermediate inputs or not as long as
some aggregate elasticities are set to be invariant across models.

103



D.3.3 Generalized Spatial Model with Commuting

We now define a Generalized Spatial Competitive Economy with Commuting between markets.

Preferences. We assume that the representative household has preferences over consumption and
labor for individuals residing in market j and commuting to market d:

U
(
{Cjd}j,d , {Ljd}j,d

)
where Ljd is the mass of workers residing in market j and working on market d, and Cjd denoting
the associated consumption index of these workers.

We assume that individuals consume in their market of residence. For labor in market j
commuting to d, the homothetic consumption index is

Cjd = Vj
(
{cijd}i

)
and the budget constraint is ∑

i

pijcijd = wdLjd.

As in the baseline model, the first-stage problem yields the price index and the spending shares,

Pj
(
{pij}i

)
and Xij

(
{poj}o

)
. (115)

Notice that, because Vj(.) does not vary with the commuting destination, the price index and
the spending shares do not vary with the commuting destination. This implies that∑

i

pijcijd = PjCjd ⇒ Cjd =
wd
Pj
Ljd = ωjdLjd

where ωjd = wd/Pj is the real wage of working in market d and residing in market j.
Thus, the second-stage problem is

max
{Ljd}jd

U
(
{(ωjd)Ljd}j,d , {Ljd}j,d

)
which yields the labor supply mapping,

Ljd ∈ Φjd (ω,P ) ≡ Φjd

({
ωi
Pi
Po

}
oi

)
. (116)

Production. As in the baseline model, we consider the profit maximization problem of firms in
market i yields the same equilibrium conditions

pij = τijpi, (117)

pi =
wi

Ψi

(
{Ljd}j,d

) . (118)

Notice that we all agglomeration to depend on the entire vector of commuting flows, {Lij}i,j . This
general formulation covers two possible specifications of agglomeration forces. When agglomeration

depends only on employment in each market, Ψi

(
{Ljd}j,d

)
= Ψi

({∑
j Ljd

}
d

)
. Alternatively, when
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agglomeration depends only on residence population in each market, we have that Ψi

(
{Ljd}j,d

)
=

Ψi

(
{
∑

d Ljd}j
)

.

Market clearing. To close the model, we consider the labor market clearing condition: total labor
payments to labor in market i equals total revenue of market i from selling to all other markets in
the world economy. That is,

∑
o

wiLoi =
∑
j

xij

(∑
d

wdLjd

)
. (119)

Equilibrium. The competitive equilibrium in this economy corresponds to {pi, wi, Pj , Lij} such
that conditions (115)–(119) hold. In this case, we need to extend the notion of labor supply
to capture commuting flows across markets. In other words, counterfactual predictions require
knowledge of the extended labor supply mapping with between-market worker commuting flows,
Ljd ∈ Φjd ({ωoi}oi).

Let bold variable with a tilde denote the N2 × 1 vector of stacked market-to-market vector,
with L̃ ≡ {Ljd}jd and ω̃ ≡ {ωjd}jd.

Using this notation, the combination of equations (116) and (118) yields the labor market module

ωi =
pi
Pi

Ψi

(
{Φjd (ω,P )}jd

)
(120)

The combination of (118) and (119) yields the trade module:

piΨi

(
Φ̃ (ω̃)

)∑
o

Φoi (ω̃) =
∑
j

xij

(∑
d

pdΨd

(
Φ̃ (ω̃)

)
Φjd (ω̃)

)
, (121)

where the price index and the spending shares are given by (115).

Decomposition of direct and indirect effects. We now log-linearize the system to obtain the
decomposition into direct and indirect spillover effects. The labor market module in (116) implies
that

log ω̂i = log p̂i − log P̂i +
∑
jd

ψi,jd
∑
l

∑
o

φjd,ol

(
log ω̂l + log P̂l − log P̂o

)

log ω̂i −
∑
jd

ψi,jd
∑
l

(∑
o

φjd,ol

)
log ω̂l = log p̂i − log P̂i +

∑
jd

ψi,jd
∑
l

(∑
o

(φjd,ol − φjd,lo)

)
log P̂l

In matrix form, we write(
Ī − ψ̄φ̄ω

)
log ω̂ = log p̂−

(
Ī − ψ̄φ̄P

)
log P̂

where

ψ̄ = [ψi,jd]i,jd φ̄
ω ≡ [

∑
o

φjd,ol]jd,l φ̄
P ≡ [

∑
o

(φjd,ol − φjd,lo)]jd,l.

105



We now have two elasticity matrices of commuting flows: φ̄
ω

and φ̄
P

. First, a change in the
real wage of market l affects the payoff of all commuting flows with destination l and, therefore,
has a total effect on the flow in jd of φωjd,l ≡

∑
o φjd,ol. Second, conditional on real wages, a change

in the price index of market l has an effect on the payoff of all pairs with an origin effect in l,
generating a total response in the jd flow of φPjd,l ≡

∑
o(φjd,ol − φjd,lo).

Recalling that log P̂ = log η̂C + x̄ log p̂, we get that

log ω̂ = β̄
(
Ī − π̄x̄

)
log p̂− β̄π̄ log η̂C (122)

where we define

β̄ ≡
(
Ī − ψ̄φ̄ω

)−1
and π̄ ≡

(
Ī − ψ̄φ̄P

)
.

From the trade module in

log p̂i +
∑

jd ψi,jdφ
ω
jd,l log ω̂l +

∑
jd ψi,jdφ

P
jd,l log P̂l +

∑
o

Loi∑
l Lli

(
φωoi,l log ω̂l + φPoi,l log P̂l

)
=

log ηRi +
∑

o

(∑
j yijχoij

)
log p̂o + log p̂d +

∑
j yij

∑
d

Ljd∑
o Ljo

(∑
ko ψd,koφ

ω
ko,l log ω̂l +

∑
ko ψd,koφ

P
ko,l log P̂l

)
+
∑

j yij
∑

d
Ljd∑
o Ljo

(
φωjd,l log ω̂l + φPjd,l log P̂l

)
Thus,

log p̂+
(
ψ̄ + L̄

E
)(
φ̄
ω

log ω̂ + φ̄
P

log P̂
)

= log η̂R + χ̄ log p̂

+ȳL̄
(

log p̂+ ψ̄
(
φ̄
ω

log ω̂ + φ̄
P

log P̂
))

+ ȳL̄
R
(
φ̄
ω

log ω̂ + φ̄
P

log P̂
)

where L̄ = [Lij/
∑

o Lio]i,j , L̄
R

= [LRi,jd]i,jd with LRj,od = Lod/
∑

i Lji1[j = o], and L̄
E

= [LEi,jd]i,jd
with LEi,jd = Ljd/

∑
o Loi1[i = d].

Rearranging the expression above,(
Ī − χ̄− ȳL̄

)
log p̂ = log η̂R − µ̄

(
φ̄
ω

log ω̂ + φ̄
P

log P̂
)

with µ̄ ≡ ψ̄ + L̄
E − ȳ

(
L̄ψ̄ + L̄

R
)

.

Using (122),

γ̄ log p̂ = log η̂R + µ̄
(
φ̄
ω
β̄π̄ − φ̄P

)
log η̂C

with γ̄ ≡ Ī − χ̄− ȳL̄+ µ̄
(
φ̄
ω
β̄
(
Ī − π̄x̄

)
+ φ̄

P
x̄
)
.

By combining this expression and (122),

log ω̂ = β̄
(
Ī − π̄x̄

) (
ᾱ log η̂R + ᾱµ̄

(
φ̄
ω
β̄π̄ − φ̄P

)
log η̂C

)
− β̄π̄ log η̂C ,

which implies that

log ω̂ = β̄
(
ᾱR log η̂R − ᾱC log η̂C

)
(123)

where ᾱ ≡ M̄ ′
(
M̄γ̄M̄

′
)−1

M̄ , ᾱR ≡
(
Ī − π̄x̄

)
ᾱ, ᾱC ≡ π̄ − ᾱRµ̄

(
φ̄
ω
β̄π̄ − φ̄P

)
.
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