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A Subjective Uncertainty in the Bounded Rationality
Model of Default Effects

Here we relax the assumption in the bounded rationality model of default effects developed
in the main text (Section 3) that the decision-maker knows ui(1) and ui(0) with certainty.
We characterize behavior in this model and briefly discuss identification issues that arise.

Consider a model of framing effects in which the individual chooses either actively or
passively, depending on whether the expected gain from choosing actively exceeds some
threshold γi. If the individual chooses actively, the individual learns ui(1) and ui(0) with
certainty and chooses the option that provides the highest utility, Y ∗i . Individuals who
choose passively select whichever option is the default. The individual chooses actively
when

Ei[ui(Y ∗i )− ui(D)] > γi.

Here, we define expectations and probabilities over each individual i’s subjective beliefs
about ui(0) and ui(1). Let ∆ui = ui(1) − ui(0). When D = 1, the individual chooses
actively if:

−pi(Y ∗i = 0)Ei[∆ui|Y ∗i = 0] > γi (1)

When D = 0, the individual chooses actively if:

pi(Y ∗i = 1)Ei[∆ui|Y ∗i = 1] > γi (2)

Because this model is nested by the generic model of active or passive decision-making
discussed in Example 1 of Section 1, frame separability, the consistency principle, and frame
monotonicity are satisfied here. This behavioral model therefore fits into the framework we
develop in the main text.

How does this model differ from the model with certainty about the gains to choosing
actively? Conceptually, the key is in the difference between choosing actively – i.e. paying
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the cost to consider both options and learn which is most-preferred choice – and choosing
consistently. In the model with certainty, decision-makers never choose actively when their
most-preferred option is the default. In that model, inconsistent decision-makers choose
passively in both frames, and consistent decision-makers choose actively in one frame only
(when Di 6= Y ∗i ). The set of consistent decision-makers overlaps exactly with the set of
active decision-makers.

In contrast, in the model with uncertainty, consistent decision-makers choose actively in
either one or both frames, and inconsistent decision-makers choose actively in either zero
or one frame. For example, a consistent decision-maker with Y ∗i = 1 may choose actively
under Di = 1 if she believes there is a sufficiently high probability that Y ∗i = 0. Similarly, an
inconsistent decision-maker with Y ∗i = 1 but who believes that Y ∗i = 0 with high probability
would choose to be active under Di = 1 but not under Di = 0. Consequently, unlike the
model with certainty, the set of active decision-makers diverges from the set of decision-
makers who are consistent. Any extrapolation from consistent choosers to the full population
must therefore account not only for variation in ∆ui and γi across individuals, but also for
variation in subjective beliefs about ui(1) and ui(0).

Finally, note that focusing solely on consistency as our measure of decision quality po-
tentially discards some of the revealed preference information in this model: there are some
inconsistent decision-makers whose active choices in one of the frames reveals their pref-
erences. Without being able to directly observe whether a given decision-maker chooses
actively, however, there is no way to identify this information separately from cases in
which the decision-maker chooses according to the frame under both frames. A similar phe-
nomenon arises elsewhere in the defaults literature, where there may be people who decide
to choose actively under some default, but nevertheless end up choosing the default, so that
it is impossible for an observer to distinguish them from passive decision-makers.

B Standard Errors of Proposed Estimators

The body of the paper ignores finite sample concerns in order to focus on identification.
Naturally, any empirical application, including the ones we undertake in Section 4, should
account for sampling variation and report standard errors for the finite-sample analogs
of the population moments that identify interesting parameters. This section derives the
estimates of the asymptotic variance of the finite-sample moments one would use in any
empirical application to obtain standard errors. We assume the sample of decision-makers
we observe is drawn randomly and independently from some underlying population. The
standard errors we derive are implemented in Stata and Matlab in the empirical application
in the paper. Code is available from the authors.
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B.1 Standard Errors for Proposition 1

In addition to the closed-form variance estimates derived here, applied researchers can obtain
the correct standard errors simply by regressing Yi on Di and using a pre-packaged command
like Stata’s “nlcom” for the proper combination of parameter estimates (see equations 3-5
in the text).

Let ȳ(D) denote the sample averages for D = 0 and D = 1, i.e. the finite sample
analogs of Y (D). We let n denote the number of individuals in the population, nD denote
the number of individuals observed in frame D ∈ {0, 1}, and αD denote the fraction of
individuals observed in frame D, αD = nD

n .
Because Yi(0) and Yi(1) follow a binomial distribution, we have

√
n

(
ȳ(0)− Y (0)
y(1)− Y (1)

)
a∼ N (0,Σ) ,

where
Σ =

(
1
α0
Y (0)(1− Y (0)) 0

0 1
α1
Y (1)(1− Y (1))

)
.

The first statistic from Proposition 1 is Y C , which is defined as:

Y C = Y (0)
Y (0) + 1− Y (1)

. (3)

and can be estimated consistently via

yC = ȳ(0)
ȳ(0) + 1− ȳ(1) .

Using the delta method, we have that V (yC) ' 1
nOY

′
C ΣOY C , where OY C is evaluated at

(Y (0), Y (1)). Taking derivatives of (3) yields

OY C =

 1−Y (1)
(Y (0)+1−Y (1))2

Y (0)
(Y (0)+1−Y (1))2

 .

Simplifying the expression for V (yC) yields

V (yC) ' (1− Y (1))2Y (0)(1− Y (0))
α0(Y (0) + 1− Y (1))4n

+ Y (0)Y (1)(1− Y (1))
α1(Y (0) + 1− Y (1))4n

,

which, letting C = Y (0) + 1 − Y (1) and using that V (ȳD) = Y (D)(1−Y (D))
nD

for D = 0, 1,
simplifies to

V (yC) =
(

1− Y C
C

)2

V (ȳ(0)) +
(
Y C

C

)2

V (ȳ(1)). (4)
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We can consistently estimate the variance of the asymptotic distribution of our estimator
yC by replacing all the terms in (4) with the corresponding sample means. Equation 4
shows, for example, that when the consistent subgroup is a relatively small proportion of
the population, or when there is noise in the estimates of y(D) for some D due to a small
sample size observed in a particular frame, the standard errors on yC will tend to be large.

Note also that we can estimate the variance of the asymptotic distribution of our esti-
mator for C = E[Ci]. Write the estimator itself as:

c = ȳ(0) + 1− ȳ(1).

As this is a linear combination of other parameters, the variance of this estimator is simply:

V (c) = V (ȳ(0)) + V (ȳ(1)). (5)

B.2 Standard Errors for Proposition 3

The standard errors for the matching-on-observables estimator are somewhat more com-
plicated, due to the presence of multiple demographic groups and the use of weights that
must themselves be estimated from data. We discuss two solutions here, one based on post-
estimation commands in a statistical package like Stata, and another with which one could
directly calculate standard errors from primitives.

First, one can simply estimate our model via

E[Yi(D,X)|Di = D,Xi = X] = f(X, θ) +D ∗ g(X, θ′)

where f() and g() are specified up to vectors of parameters θ and θ′, which are to be
estimated from data. For instance, we could implement a linear model:

E[Yi(D,X)|Di = D,Xi = X] = α+X ′β +D(γ +X ′δ)

This equation can be estimated by a least squares linear probability model, and then the
ingredients of the matching estimator are given by:

Y C(X) = α+ β

1− γ −X ′δ

C(X) ≡ E[Ci|Xi = X] = 1− γ −X ′δ
C ≡ E[Ci] = Ei[1− γ −X ′iδ]

E[Y ∗i ] = Ei[Y C(Xi)]

E[Y ∗i |Ci = 0] = Ei

[
1− E[Ci|X = Xi]

1− E[Ci]
Y C(Xi)

]
The corresponding finite sample analogs of each of these are:
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yC(X) = α̂+ β̂

1− γ −X ′δ

c(X) = 1− γ̂ −X ′δ̂

c = 1
n

Σi[c(Xi)]

Ê[Y ∗i ] = 1
n

Σi[yC(Xi)]

Ê[Y ∗i |Ci = 0] = 1
n

Σi
[

1− c(Xi)
1− c yC(Xi)

]
This estimation strategy can be implemented via straightforward post-regression esti-

mation in Stata, and standard errors may be estimated using the numeric delta method or
a standard non-parametric bootstrap.

Alternatively, one may derive analytic standard errors via the delta method. We provide
formulae for the variance and the gradients of parameters of interest, which may be straight-
forwardly incorporated into a matrix-based programming language, such as MATLAB, to
calculate the variance of the estimators with discrete demographic groups. MATLAB code
illustrating this procedure is also available upon request from the authors.

We focus on the case where the observables are discrete, X ∈ {x1, ..., xJ}, as in our
application. The primitive parameters of the discrete-characteristics model are, for each
X,Y (0, X) = E[Yi(0, X)|Di = 0, Xi = X], Y (1, X) = E[Yi(1, X)|Di = 1, Xi = X],
and p(Xi = X).1 For notational convenience, we will write these three primitives as
Y 0X , Y 1X , and pX respectively. We denote the estimators of these quantities by ȳ0X ,

ȳ1X , and p̂X . Now we construct the variance covariance matrix of the vector primitive
parameters. Letting θ = (Y 0X1 , Y 0X2 , ..., Y 0XJ

, Y 1X1 , ..., Y 1XJ
, pX1 , ..., pXJ

)′, and θ̂ =
(ȳ0X1 , ȳ0X2 , ..., ȳ0XJ

, ȳ0X1 , ..., ȳ0XJ
, p̂X1 , ..., p̂XJ

), we know that
√
n(θ̂ − θ) a∼ N(−→0 ,Σ)

Denoting the fraction of individuals with observable characteristic X observed in frame D
by αDX ≡ nDX

n , we can write the variance matrix as:

Σ(θ) =

(
Σ0(θ)

Σ1(θ)
Σp(θ)

)
,

where Σ0(θ) and Σ1(θ) are diagonal matrices with entries of the form Y Dxj
(1−Y Dxj

)
αDxj

for

1When the X’s are non-stochastic, such as when the researcher wishes to estimate preferences for a
population with a known distribution of observable characteristics, the last of these may be excluded; the
resulting modification of the variance estimation procedure below is straightforward.
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j = 1, ..., n and D = 0, 1, and

Σp(θ) =


px1(1− px1) −px1px2 ... −px1pxJ

−px1px2 px2(1− px2) ... −px2pxJ

... ... ... ...

−px1pxJ
−px2pxJ

... pxJ
(1− pxJ

)

 .

All blank entries of the Σ matrix are zeroes.2

The matching approach employs many different combinations of these primitive param-
eters. We begin with the weights from Lemma 1 for the subset of inconsistent choosers,3

S(X) ≡ p(Xi = X|Ci = 0) = Y 1X − Y 0X∑
X=w(Y 1w − Y 0w)pw

pX .

Taking derivatives of this function and simplifying using the definition of S(X), we obtain
the following for any X and X ′:

∂S(X)
∂Y 0X′

= − 1{X = X ′} − S(X)∑
X=w(Y 1w − Y 0w)pw

pX′ ,

∂S(X)
∂Y 1X′

= 1{X = X ′} − S(X)∑
X=w(Y 1w − Y 0w)pw

pX′ ,

∂S(X)
∂pX′

= 1{X = X ′}S(X)− S(X ′)S(X)
pX′

,

where 1{} is an indicator function equal to 1 when the expression inside the square brackets
is true and zero otherwise. These three expressions can be used to generate the entire
gradient of S(X).

Next we consider the weights for the subset of consistent choosers,

Q(X) = Y 0X + 1− Y 1X

ΣX=w(Y 0w + 1− Y 1w)pw
pX .

Taking derivatives and simplifying, we obtain the following for any X and X ′:

∂Q(X)
∂Y 0X′

= 1{X = X ′} −Q(X)
ΣX=w(Y 0w + 1− Y 1w)pw

pX′ ,

∂Q(X)
∂Y 1X′

= − 1{X = X ′} −Q(X)
ΣX=w(Y 0w + 1− Y 1w)pw

pX′ ,

∂Q(X)
∂pX′

= 1{X = X ′}Q(X)−Q(X ′)Q(X)
pX′

.

2We know that the off-diagonal elements in Σ1(θ) and Σ2(θ), which govern the covariance of the various
ȳDX estimates, are zero because the estimation sample for every ȳDX is distinct and by assumption drawn
from the same underlying population, by assumption A2’. We also know that the entries of Σ governing the
covariance of ȳDXand pX are zero because of assumption A2’.

3Note that these are the weights implied by L1.1, rather than s(X) as defined in the statement of the
Lemma, i.e. S(X) = s(X)pX . We do the same for inconsistent choosers below.
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Next we consider the estimators for the preferences of various subgroups. First, define the
preferences of the inconsistent subgroup Y N ≡ E[Y ∗i |Ci = 0]. When X is discrete, we have

Y N = ΣXS(X)Y C(X).

Taking derivatives of this expression – which may be done more easily using several expres-
sions derived above – we obtain the following for any X:

∂Y N

∂Y 0X
= S(X)1− Y C(X)

C(X)
+ pX

1− C
(Y N − Y C(X)),

∂Y N

∂Y 1X
= S(X)Y C(X)

C(X)
− pX

1− C
(Y N − Y C(X)),

∂Y N
∂pX

= S(X)
p(Xi = X)(1− C)

[Y C(X)− (1− C)Y N ].

where C(X) ≡ Y 0X + 1 − Y 1X and C = ΣX=w(Y 0w + 1 − Y 1w)pw. From these three
expressions we construct the gradient of YN .

Proceeding similarly for the full population, Y FP =
∑
X pXY C(X), we obtain, for any

X ∂Y FP
∂Y0w

= pX
1− Y C(X)
C(X)

,

∂Y FP
∂Y1w

= pX
Y C(X)
C(X)

,

∂Y FP
∂pX

= Y C(X),

which allows us to construct the gradient of Y FP .
We can also obtain the gradient of Y C =

∑
X Q(X)Y X(X) in terms of the primitive

parameters of this model.4 Taking derivatives of the expression for Y C yields

∂Y C

∂Y 0X
= Q(X)1− Y C(X)

CX
+ pX

C
(Y C(X)− Y C),

∂Y C

∂Y 1X
= Q(X)Y C(X)

CX
− pX

C
(Y C(X)− Y C),

∂Y C
∂pX

= Q(X)
pXC

(Y C(X)− CY C).

Using all of the above expressions, we can generate a gradient of each parameter of
the matching-on-observables models. Putting all these expressions together, we construct a

4This part is not necessary to obtain a standard error on Y C , because we know how to obtain a simpler
formula for the asymptotic variance of our estimator of Y C using the result in the previous section of this
Appendix. This derivation yields a numerically identical standard error estimate. The usefulness of the
expressions derived here is that these expressions may be used to estimate the (asymptotic) covariance of,
say, the estimators for Y C and Y N , which is necessary for the statistical test of the null hypothesis of
consistency independence against the alternative hypothesis of conditional consistency independence.
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gradient matrix of the form:

G(θ) = (OSx1 , ...,OSxJ
,OQx1 , ...,OQxJ

,OY N ,OY FP ,OY C).

To be clear, each of the columns of G(θ) is the gradient of a particular (nonlinear) function
of the primitive parameters of the model. We can then estimate the full variance-covariance
matrix of all the non-primitive parameters (SX1 , ..., SXJ , QX1 , ..., QXJ , Y N , Y F P , Y C) by

V̂ (θ̂) = 1
n
G′ΣG

where G and Σ are evaluated at θ̂. The square root of the diagonals of the matrix V̂ (θ̂) will
be asymptotically consistent standard errors for the parameter estimates themselves. The
off-diagonal elements are the estimated covariance of different estimates, which are useful
for tests of hypotheses involving more than one parameter of the model, such as tests of
decision-quality independence (H0 : Y N = Y C) in this setting.

B.3 Standard Errors for Proposition 4

Next we derive standard errors for the final identification result derived in the paper, in which
we identify the preferences of sometimes-consistent decision-makers using decision-quality
instruments. Using similar notation to before, let Y (D,Z) ≡ E[Yi(D,Z)] for D = 0, 1 and
Z = 0, 1, and denote the estimator for each population moment by ȳ(D,Z). Similarly to
before, we begin by noting that

√
n


y(0, 0)− Y (0, 0)
y(0, 1)− Y (0, 1)
y(1, 0)− Y (1, 0)
y(1, 1)− Y (1, 1)

 a∼ N(−→0 ,Σ)

where Σ is a diagonal matrix with entries of the form 1
αDZ

Y (D,Z)(1− Y (D,Z)). The new
statistic in Proposition 4 is

Y S ≡
Y (0, 1)− Y (0, 0)

Y (1, 0)− Y (0, 0)−
(
Y (1, 1)− Y (0, 1)

) , (6)

which we can estimate consistently with

yS ≡
y(0, 1)− y(0, 0)

y(1, 0)− y(0, 0)− (y(1, 1)− y(0, 1)) .
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Using the delta method, we obtain V (yS) ' 1
nOY

′
S ΣOY S , where OY S is evaluated at

(Y (0, 0), Y (0, 1), Y (1, 0), Y (1, 1)). Taking the gradient of (6) gives

OY S =
(
Y (1, 1)− Y (1, 0)(

∆C
)2 ,

Y (1, 0)− Y (1, 1)(
∆C

)2 ,
Y (0, 0)− Y (0, 1)(

∆C
)2 ,

Y (0, 1)− Y (0, 0)(
∆C

)2
)′

where ∆C = Y (1, 0)−Y (0, 0)−(Y (1, 1)−Y (0, 1)). Plugging this into the formula for V (yS)
and simplifying yields

V (yS) =
(

1− Y S
∆C

)2

[V (y(0, 1)) + V (y(0, 0))] +
(
Y S

∆C

)2

[V (y(1, 1)) + V (y(1, 0))] , (7)

where V (ȳ(D,Z)) = 1
nDZ

Y (D,Z)(1−Y (D,Z)). Replacing each Y (D,Z) with the estimator
y(D,Z), we obtain a consistent estimate of the asymptotic variance of Y S .

Note that when the fraction of the population who are sometimes-consistent choosers,
∆C, is relatively small, the variance of the estimator yS can be quite large. This is analogous
to a familiar practical issue with the use of conventional instrumental variables, wherein an
instrument that has a small first-stage effect might yield very imprecise IV estimates. The
analog of the weak instruments problem can also be shown to be an important finite-sample
concern in this setting. Specifically, when ∆C is small and there is idiosyncratic correlation
between Y ∗i and Zi (of the form that is ruled out in population moments by assumption
A7), yS may be quite biased in finite samples.

C Extrapolation from Decision Quality Instruments to
Population Preferences

The next two sections develop identification conditions for population and inconsistent
decision-maker preferences that utilize variation in Z. On its own, Proposition 4 does not
identify these parameters; rather, by shedding light on the covariance between preferences
and consistency, it allows us to extrapolate preference information from consistent decision-
makers to other groups in the population.

C.1 Parametric Extrapolation with Decision Quality Instruments

This section develops a latent variable model of the relationship between decision-makers’
consistency and their preferences, assuming a bivariate normal distribution for the idiosyn-
cratic terms. With this additional structure, population preference parameters may be fully
characterized using a decision quality instrument.

Suppose that consistency for individual i is determined by
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Pi = P + θZi + εi (8)
Ci = 1 ⇐⇒ Pi > 0, (9)

where Pi is a latent variable reflecting idiosyncratic variation εi and the effect of a decision
quality instrument Zi ∈ {0, 1}. Note that consistency depends on i’s choice under both
frames, so Pi does not depend on the frame to which i is assigned. Note also that decision
quality monotonicity (A6) is satisfied provided θ > 0.

Next, suppose the distribution of preferences can also be described with a latent variable
model:

Mi = M + νi (10)
Y ∗i = 1 ⇐⇒ Mi > 0, (11)

where the latent variable Mi simply reflects idiosyncratic variation in preferences, νi. Frame
separability (A1) is satisfied because Mi does not depend on d, and the decision quality
exclusion restriction (A7) is satisfied because Mi does not depend on Zi. Exogeneity of
the decision quality instrument and frame (A2”) is satisfied provided that εi and νi are
independent of Zi and Di.

Assume that εi and νi are characterized by a bivariate standard normal distribution:(
εi

νi

)
∼ N

((
0
0

)
,

(
1 ρ

ρ 1

))
, (12)

where ρ ∈ (−1, 1) is the correlation between the error terms and where the normalization
is without loss of generality. Note that consistency independence is satisfied if and only if
ρ = 0.

We close the model with the consistency principle (A3) and frame monotonicity (A4).
Together, these assumptions allow us to evaluate the probability of observing a given choice
for a given (D,Z) combination:

Yi(0, Z) = 1 ⇐⇒ εi > −P − θZ; νi > −M (13)

Yi(1, Z) = 0 ⇐⇒ εi > −P − θZ; νi < −M. (14)

Equations (13) and (14) can be combined with (12) to identify the parameters of the
model: P , M , θ, and ρ. One can then recover ordinal preferences by integrating the un-
derlying distribution: E[Y ∗i ] = Φ(M̄), where Φ(·) is the standard normal cumulative den-
sity function, and E[Y ∗i |Ci(Z) = 0] = 1

1−E[Ci(Z)]
´ P−θ Z
−∞

´∞
−M φBV SN (ε, ν; ρ)∂ν∂ε, where

φBV SN (a, b; ρ) is the bivariate standard normal density with correlation coefficient ρ evalu-
ated at (a, b).

The statistical model described above resembles the classic bivariate normal model of
selection. Variation in the decision quality instrument induces variation in consistency
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without affecting preferences; this guarantees that the relationship between consistency and
preferences is identified without relying solely on functional form.

With a binary decision decision quality instrument, the model is just-identified. Addi-
tional values of Z permit maximum likelihood estimation of the model’s parameters.

C.2 Semi-Parametric Extrapolation with Decision Quality Instru-
ments

This section develops an extrapolation approach for recovering population preferences with-
out relying on parametric distributional assumptions. In particular, we model the prefer-
ences of the consistent decision-makers at a given value of the decision quality instrument
as a flexible polynomial in the fraction of decision-makers who are consistent at that value
of the decision quality instrument.5

Suppose the decision quality instrument Z is observed taking on N + 1 values, indexed
z0, z1, ..., zN , and drawn from a continuous ordered set of values, [z, z] ⊂ R such that
E[Ci(z)] = 0 and E[Ci(z)] = 1. In addition, suppose that decision quality monotonic-
ity holds with respect to any two values of Z:

A6’ For all individuals and all z, z′ ∈ [z, z] such that z > z′, Ci(z) ≥ Ci(z′) and E[Ci(z)−
Ci(z′)] > 0.

For each individual, let z∗i < z denote the value of z at which she begins to choose con-
sistently, i.e., z ≥ z∗i =⇒ Ci(z) = 1. Assumption A6’ implies that z∗i is unique for each
individual. Denoting the CDF of z∗i by F (.) and the PDF by f(.), we have E[Ci(z)] = F (z).
In addition, note that the second part of A6’ guarantees f(z) > 0 for all z ∈ [z, z], so that
F (.) is strictly increasing with a well-defined inverse function over E[Ci(z)] ∈ [0, 1], which
we denote F−1(E[Ci(z)]).

Finally, let g(z) ≡ E[Y ∗i | z∗i = z] denote the preferences of the marginally consistent
decision-makers at a given z. To guarantee the validity of the Taylor series approximation
that underpins the following result, it will be convenient to assume that both F (z) and g(z)
are infinitely differentiable with respect to z.

Proposition A.1 Assume that A1, A3, and A4 hold at each fixed value of Z, and assume
A2”, A6’, and A7. For any degree M ∈ N, there exist constants a0...aM such that

(A.1.1) For any z, E[Y ∗i |z∗i = z] ≈ a0 + a1E[Ci(z)] + a2E[Ci(z)]2...+ aME[Ci(z)]M

5This approach shares some similarity to the literature on non-parametric identification of marginal
treatment effects from local average treatment effects (Heckman and Vytlacil, 2005). An important difference
is that the techniques in that literature utilize instrumental variables that drive the propensity to participate
in the treatment over a range from 0 to 1. However, in our context, if we were able to observe decisions
made under a decision-quality state that induced everyone to choose consistently, we could simply look at
the preferences revealed in that state to recover the preferences for the population.
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(A.1.2) For any z, E[Y ∗i |Ci(z) = 1] ≈ a0 + a1
2 E[Ci(z)] + a2

3 E[Ci(z)]2 + ... aM

M+1E[Ci(z)]M

(A.1.3) E[Y ∗i ] ≈ a0 + a1 + ...+ aM

Proof Throughout the proof it will be convenient to denote E[Ci(z)] by Cz. Fix any
M ∈ Z+. Our technical assumptions – requiring F (z) = 0, F (z) = 1, and F strictly
increasing – imply that F has a well-defined inverse function over the unit interval [0, 1].
Because we have assumed F (z) and g(z) are continuous and infinitely differentiable, the
function h = g ◦ F−1 will be continuous and infinitely differentiable as well. As a result, h
has a well-defined Taylor series approximation of degree M about any point in (0, 1). Noting
that h(Cz) = E[Y ∗i |z∗i = F−1(Cz)] = E[Y ∗i |z∗i = z] proves (A.1.1).

To prove (A.1.2), note that the preferences of the consistent choosers at some z′, E[Y ∗i |Ci(z′) =
1] = E[Y ∗i |z∗i ≤ z′], can be expressed using the definition of conditional probability as

E[Y ∗i |Ci(z′) = 1] =

´ z=z′

z=z g(z) f(z) dz
F (z′)

We employ a change of variables, letting c = F (z), dc = f(z)dz. From above, g(z) = h(Cz),
so we obtain

E[Y ∗i |Ci(z′) = 1] =
´ c=F (z′)
c=0 h(c)dc

F (z′)

Given that the expression in (6.1) is a Taylor Series approximation of h(c̄) by construction,
we can substitute the expression in (6.1) into the numerator of the above expression, evaluate
the integral in the numerator, and divide by F (z′) = Cz′ to obtain (6.2).

The result in (A.1.3) follows from evaluating the expression in (A.1.2) at c = 1. �

Proposition A.1 implies that the preferences of the consistent decision-makers at a partic-
ular value of the decision quality instrument can be approximated by a polynomial function
in the fraction of decision-makers who choose consistently at that value of the instrument.
Because A6’ guarantees a one-to-one mapping between z and E[Ci(z)], we can write the
preferences of the marginally consistent decision-makers as a function of the fraction of
decision-makers choosing consistently, i.e. E[Y ∗i |z∗i = z] = g(F−1(E[Ci(z)])). In addition,
infinite differentiability of g and F ensure the composite function h ≡ g ◦ F−1 will have a
well-defined Taylor series approximation of degree N . We then obtain (A.1.2) by integrating
the marginal preference function h(.) from E[Ci(z)] = 0 to E[Ci(z′)] and scaling by E[Ci(z′)]
for any arbitrary z′. Finally, (A.1.3) follows from setting E[Ci(z)] = 1 in (A.1.2). Note that
when N = M , we will have N + 1 equations in M + 1 unknowns, so that a0, ..., aM are
just-identified. When N > M , we will have more equations than unknowns, and a best-fit
technique such as least-squares can be used to estimate a0, ..., aM .
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C.3 Extrapolation in a Bounded Rationality Model

Here we describe extrapolation using a decision-quality instrument in a bounded rationality
model, as alluded to in Section 3.3. This subsection also serves to flesh out some details of
the costly opt-out model used in Column 6 of Table 3.

In the bounded rationality model discussed throughout Section 3, we assume a decision-
maker makes an active choice when the benefits of doings so exceed some cost γi ≥ 0. Recall
that preferences and consistency in this model are given by

Y ∗i = 1 ⇐⇒ ∆ui > 0

Ci = 1 ⇐⇒ |∆ui| > γi

Let F∆(.) denote the CDF of ∆ui, as in the main text. When the costs are homogeneous,
γi = γ ∀i, the average (ordinal) preferences of the consistent decision-makers is given by:

E[Y ∗i |Ci = 1] = 1− F∆(γ)
1− F∆(γ) + F∆(−γ) .

Similarly, for the inconsistent decision-makers we have E[Y ∗i |Ci = 0] = P (∆ui > 0 |∆ui ∈ (−γ, γ)),
or

E[Y ∗i |Ci = 0] = F∆(γ)− F (0)
F (γ)− F (−γ) .

In this model changes in the cost of opting out constitute valid decision-quality instruments.
Reductions in these costs could be obtained, for example, by easing the administrative re-
quirements (such as paperwork) for choosing the non-default option. Suppose that transac-
tion costs change from γi to γ′i ≤ γi, with γ′i < γi for some i. Then variation in transactions
costs will meet the criteria for being a decision-quality instrument. Letting Z = 0 represent
choices under γ and Z = 1 choices under γ′, we will have the following potential outcomes
for Y (D,Z).

(Yi(0, 0), Yi(0, 1), Yi(1, 1), Yi(1, 0)) =



(0, 0, 0, 0) if ∆ui < −γi
(0, 0, 0, 1) if ∆ui ∈ [−γi,−γ′i]

(0, 0, 1, 1) if ∆ui ∈ [−γ′i, γ′i]

(0, 1, 1, 1) if ∆ui ∈ [γ′i, γi]

(1, 1, 1, 1) if ∆ui > γi

(15)

The second and fourth cases correspond to the sometimes-consistent decision-makers whose
ordinal preferences are captured by the statistic YS in Section 3.3. Figure 1 depicts the
different cases in Equation (15), given two values of a decision-quality instrument. Variation
in a decision-quality instrument in this model thereby allows the researcher to trace out the
distribution of ∆ui, and to do so more and more flexibly as the number of values of the
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Figure 1: Sometimes Consistent Choosers in the Costly Opt-out Model

0 γ γ′−γ−γ′ ui(1)− ui(0)
ASNNSA

Y ∗i = 0 Y ∗i = 1

instrument grows. Once the distribution of ∆ui is known, it is obviously straightforward to
estimate the distribution of ordinal preferences in the population, or even the distribution
of cardinal preferences, which could be useful for welfare calculations.

D Supplementary Results for Empirical Application

This section contains supplementary material from the empirical application.

E Generalizations

E.1 Non-Binary Menus

We now assume that the menu consists of a fixed set of K ordered options, Yi(D) ∈ S ≡
{1, 2, ...,K}. As above, there are two frames, D ∈ {0, 1}. This setup might reflect an
individual choosing from a menu of insurance plans, ordered from low-cost, low-benefit
plans to high-cost, high-benefit plans (ignoring dominated options), where the frame makes
salient either the benefits or the cost of the plan. Another example are survey questions
in which the answer choices range from 1 (strongly agree) to 7 (strongly disagree), and the
frame reflects variation in whether the question is worded positively or negatively.

The most-preferred option of individual i is represented by Y ∗i ∈ {1, 2, ...K}.6 As before,
frame separability requires that Y ∗i does not depend on D. Frame monotonicity is the same
as well: Yi(1) ≥ Yi(0) for all i.

We next define partition consistency at k ∈ S, Ci(k), as follows: Ci(k) = 1 if {Yi(1) ≤ k and Yi(0) ≤ k}
or {Yi(1) > k and Yi(0) > k}, and Ci(k) = 0 otherwise. Intuitively, partition consistency

6We focus on identifying the distribution of Y ∗
i holding the menu fixed; with variations in the menu one

might naturally seek to recover richer information about individuals’ preference relations.
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Table 1: Worker Characteristics by Automatic Enrollment Cohort

Not Automatically Enrolled Automatically Enrolled
(WINDOW Cohort) (NEW Cohort)

Income
<$20k (%) 10.5 12.7
$20k-$29k (%) 37.7 45.6
$30k-$39k (%) 18.7 16.5
$40k-$49k (%) 15.2 11.2
>$50k (%) 18.0 14.1

Age
<30 (%) 30.9 37.4
30-39 (%) 36.0 33.3
40-64 (%) 33.1 29.3

Gender
Female (%) 76.9 79.0
Male (%) 23.1 21.0

Ethnicity
White (%) 72.4 69.5
Non-White (%) 27.5 30.5

Number of Observations 4,185 5,702

Note: This table shows that there is a similar distribution of observable characteristics in
the automatically enrolled cohort (those hired within one year of the switch to automatic
enrollment) and in the cohort who were not automatically enrolled (those hired within one
year before the switch). These are called the NEW and WINDOW cohorts, respectively, in
Madrian and Shea (2001). A similar set of summary statistics appears in Table II of
Madrian and Shea (2001). The numbers here are very similar to the numbers in Madrian
and Shea. The slight differences between the two sets of tabulations are driven by the fact
that a small number of observations (110 in the NEW cohort and 72 in the OLD cohort)
are dropped due to cell size restrictions in the aggregated data provided to the authors
from Madrian and Shea.
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Figure 2: Test of Monotonicity Assumption Using Subgroups

Note: This figure shows that participation rates are higher under automatic enrollment
than without automatic enrollment for every demographic group (aligned on the x axis) in
the cell-level data provided to us from Madrian and Shea (2001). Demographic cells are
constructed on the basis of income group, age group, gender, and ethnicity. Table 1 lists
the specific divisions of these characteristics used to construct the cells. The fact that
participation rates are higher under automatic enrollment in every group, for finely defined
groups, is consistent with the assumption of frame monotonicity (A4).
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Figure 3: Variance of γi and Implied Population Moments in the Bounded Rationality Model

Note: This figure plots consistent preferences (E[Y ∗i |Ci = 1]), inconsistent preferences
(E[Y ∗i |Ci = 0]), and population preferences (E[Y ∗i ]) in a bounded rationality model of
default effects in which ∆ui follows a normal distribution with mean µ∆u and variance
normalized to 1 and γi follows a log-normal distribution with mean µγ and variance σγ ,
and in which γi is assumed to be independent of ∆ui. As it contains three unknown
parameters, this model is not identified with the two population moments, Y 1 and Y 0.
The illustration here: (1) varies the assumed value of σγ on the x-axis; (2) estimates µ∆u
and µγ from the two observed population moments; and then (3) calculates the fraction of
consistent, inconsistent, and all individuals preferring enrollment. We observe that at low
values of σγ , the model is well-approximated by the assumption of a homogeneous γ. At
high values of σγ , however, inconsistent and population preferences are well-approximated
by assuming consistency independence (cov(Y ∗i , Ci) ≈ 0). In a sense, therefore, preference
estimates based on a model with homogeneous γ and estimates based on consistency
independence represent two extreme implementations of the same behavioral model of
default effects.
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at k captures whether the decision-maker chooses consistently with respect to the binary
choice between the two partitions of S, {1, 2, ...k − 1} and {k, k + 1, ...K}.

Finally, in place of the consistency principle, we assume the following:

A10 (Partition Consistency Principle) For all individuals i and options k ∈ {1, 2, ...K},
Ci(k) = 1 implies

Yi ≥ k =⇒ Y ∗i ≥ k
Yi ≤ k =⇒ Y ∗i ≤ k.

(16)

The partition consistency principle states that if a decision-maker selects an option greater
than k under each frame, his or her most-preferred option is also greater than k (and
similarly if the decision-maker chooses less than k under each frame). Note that the par-
tition consistency principle implies the consistency principle used in previous sections: if
Yi(0) = Yi(1), then (16) implies Yi = Y ∗i . Combining frame monotonicity and the partition
consistency principle, we have Yi(1) ≥ Y ∗i ≥ Yi(0).

With this structure, a number of our earlier results extend naturally to this new setting:

Proposition A.2 Let GD(k) ≡ P (Yi(D) ≤ k|Di = D) for k = 1, ..., N, D = 0, 1 and
let GD(0) ≡ 0. Let YC(k) ≡ G0(k)

G0(k)+1−G1(k) for k = 0, ...,K. Frame separability (A1), frame
exogeneity (A2), frame monotonicity (A4), and the partition consistency principle (A8),
imply that for k = 1, ...,K,

(A.2.1) The fraction of partition-consistent individuals at k with Y ∗i ≤ k is given by
P (Y ∗i ≤ k|Ci(k) = 1) = YC(k).

(A.2.2) The fraction of partition-consistent individuals at k is given by E[Ci(k)] = G0(k)+
1−G1(k).

(A.2.3) The fraction of the population who prefer option k is bounded as follows: p(Y ∗i =
k) ∈ [G0(k)−G1(k − 1), G1(k)−G0(k − 1)].

Proof Throughout the proof, we denote the fraction of individuals preferring some option
k by φ̄k ≡ p(Y ∗i = k).

Proof of (A.2.1) and (A.2.2): Fix some k ∈ {1, ...,K − 1}. Let X ′ = {x1, ...xk−1}
and X ′′ = {xk, .., xK} Note that we can write the many-choices problem into a binary menu
choice problem between X ′ and X ′′. Similarly, note that (A1), (A2), (A4), and (A10) imply
the binary analogs to these assumptions (A1)-(A4). As such, these results follow directly
from the application of Proposition 1 to this problem.

Proof of (A.2.3): First suppose that k = 1. Applying Proposition 2 to the binary
menu choice problem with X ′ = {1} and X ′′ = {2, ...,K} implies that

φ1 ∈ [G0(1), G1(1)] (17)
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Note that this confirms the desired result for k = 1 since G1(0) = Gl(0) = 0 by definition.
Next, applying the same proposition for k = 2, we have φ1 +φ2 ∈ [Gl(2), Gh(2)]. Combined
with (17), this implies

φ2 ∈ [G0(2)−G1(1), G1(2)−G0(1)]. (18)

Similarly with k = 3, we have that φ1 + φ2 + φ3 ∈ [G0(3), G1(3)], and applying (17) and
(18) implies that φ3 ∈ [G0(3)−G1(2), G1(3)−G0(2)]. Proceeding recursively, suppose that
for some k, we know that for any k′ < k,

φk′ ∈ [G0(k′)−G1(k′ − 1), G1(k′)−G0(k′ − 1)] (19)

Then application of Proposition 2 to the binary menu choice problem withX ′ = {x1, ..., xk}
yields φ1 + φ2 + ...+ φk ∈ [G0(k), G1(k)], so φk ∈ [G0(k)− (φ1 + φ2 + ...+ φ̄k−1), G1(k)−
(φ1 + φ2 + ... + φ̄k−1)]. Applying the lower and upper bounds from (19) and simplifying
yields the desired result. �

Discussion of Proposition A.2. The results in (A.2.1) and (A.2.2) provide informa-
tion about consistent decision-makers in non-binary settings, using the notion of partition
consistency. With this information, the techniques developed in Section 3 can be employed
to extrapolate from consistent choosers for any partition to the full population. By identify-
ing P (Y ∗i ≤ k) for the population at each k, one can trace out the full population cumulative
density function of Y ∗. Proposition (A.2.3) generalizes the population bounds derived in
Section 2 of the main text. In this case, the bounds have a new and interesting property.
Even if individuals are highly susceptible to framing effects when they prefer some option far
away from k, our estimate for the fraction of people preferring option k can still be precise
because the partition consistency principle permits us to ignore individuals who consistently
choose options above or below k.

E.2 Non-Binary Frames

We next extend the model beyond a simple binary frame in two ways. First, we consider the
situation in which the intensity of the frame varies. We show how this reduces to a binary,
two-frame problem under intuitive assumptions. With additional structure, the intensity
of framing is a valid decision-quality instrument. Second, we show that one can analyze
data with multiple dimensions of framing in a very similar fashion to how we analyze frame
intensity, using a modified set of assumptions.
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E.2.1 Varying Framing Intensity

We now suppose that i chooses from a binary menu Yi ∈ {0, 1} under one of multiple
frames that vary in the intensity with which they pull the decision-maker toward option 1,
D ∈ {0, 1, ..., J}. The following modification to our frame monotonicity assumption captures
this idea:

(A11) (Pairwise Frame Monotonicity) ∀i , D ≥ D′ =⇒ Yi(D) ≥ yi(D′)

Pairwise frame monotonicity implies that the frames can be ordered according to their
intensity; if a decision-maker chooses an option under one frame, he or she will also choose
that option under any frame that pushes towards it more intensely. For example, D = 0
might indicate a frame in which option 0 is the default and the choice environment makes the
cognitive cost of opting out very high, and D = J might indicate a frame where option 1 is
the default and the cognitive cost of opting out is very high; the intermediate frames would
correspond to situations where the opt-out costs were lower. Alternatively, the decision
could be one in which the decision-maker must choose whether to purchase a good for a
given price, and the frame describes the reference point with which the decision-maker has
been anchored.

We also modify the consistency principle, weakening it so that choices are only assumed
to reveal preferences when the decision-maker is consistent across all observed frames:

(A12) (Global Consistency Principle) Yi(D) = Yi(D′) ∀D, D′ =⇒ Yi(D) = Y ∗i

When (A11) and (A12) hold, the multi-frame setting can be reduced to the binary one
studied in the rest of the paper, with respect to the most intense frames observed in each
direction. Specifically, consider the binary frame D̃, defined as D̃ = 1 when D = J and
D̃ = 0 when D = 0. For other values of D, D̃ is undefined. Note that with respect to
D̃, (A11) and (A12) imply that frame monotonicity and the consistency principle are each
satisfied. The earlier propositions in the paper can then be directly applied.

Analog to Decision-Quality Instruments Additional structure beyond the global
consistency principle allows one to recover even more information on preferences. To illus-
trate this, we note that this problem has an interesting relationship to the model of decision-
quality instruments presented in Section 3.3. We alluded in Section 3.3to the idea that valid
decision-quality instruments can include those varying the intensity of a given framing effect.
Adopting the notation of Section 3.3, let the four possible frames D̃ ∈ {0, 1, 2, 3} be given
by D̃ = 0 when (D,Z) = (0, 0), D̃ = 1 when (D,Z) = (0, 1), D̃ = 2 when (D,Z) = (1, 1)
and D̃ = 3 when (D,Z) = (1, 0). The consistency principle from Section 3.3, at Z = 0 is
equivalent to the global consistency principle (A9). The idea in the previous paragraph,
using the two most extreme frames, is exactly analogous to recovering the preferences of the
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consistent group at Z = 0: Y C(0) = E[Y ∗i |Ci(0) = 1]. The consistency principle at Z = 1
in Section 3.3also implies a second condition for consistency across D = 1 and D = 2, which
will imply that Y C(1) = E[Y ∗i |Ci(1) = 1]. Frame separability in this model implies decision
quality exclusion, and frame monotonicity implies decision quality monotonicity, so that all
changes in behavior between D = 0 and D = 1, and between D = 2 and D = 3 tell us about
the preferences of individuals consistent across (0, 3) but not across (1, 2), which allows us to
recover the preferences of decision-makers whose choices depend on the intensity of framing,
YS = E[Y ∗i |Ci(1) > Ci(0)].

E.2.2 Multi-Dimensional Frames

We next consider choice settings in which frames differ along multiple dimensions, so that
frames cannot be ordered by intensity. Individual i chooses from a binary menu Yi ∈ {0, 1}
under a frame vector D = (D1, ..., DK), so that each component of D encodes some feature
of the choice environment. We assume each frame component Dk of D is discrete with two
possible realizations: Dk ∈ {0, 1}.7 For example, a decision-maker’s choice between two
options might be affected both by which option is presented first and by which option is
framed as the default. In this example, D1 could describe the order of the options and D2

could describe which option is the default.
As before, denote choices under frame D by Yi(D). We will assume component-wise

frame monotonicity:

(A11’) ∀i ,∀k, ∀D¬k, Yi(1, D¬k) ≥ Yi(0, D¬k), where D¬k is a vector consisting of all frame
components other than k and we have re-written Yi(D) as Yi(Dk, D¬k).

Assumption (A11’) implies that frame monotonicity holds for each component of the frame
vector when all other components are held fixed. It also requires that the direction of
the effect of any one decision characteristic on choice be independent of other decision
characteristics. For example, it must not be the case that making option 0 the default
induces more decision-makers to select Yi = 0 when 0 is listed first but that making 0 the
default induces more decision-makers to select Yi = 1 when 0 is listed second.

As before, we assume the global consistency principle (A12). Whenever the individual
would choose the same option in every frame, she prefers the option that she chooses.

When (A11’) and (A12) hold, we can proceed similarly to the previous subsection using
the two most extreme frames as a binary frame D̃ , where D̃ = 0 when D = (0, 0, ..., 0) and
D̃ = 1 when D = (1, 1, ..., 1). The results from the main part of the paper are then obtained
with this binary frame.

Further possibilities are generated by considering what additional structure might allow
us to learn about preferences from the behavior of individuals who are consistent with respect

7It is straightforward to combine this approach with the one in which frames vary by intensity.
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to all frame components but one, all frame components but two, and so on. For instance,
in the case where there are two frame components D = (D1, D2), we might be willing to
impose that for all individuals, D1 always exerts a stronger pull on behavior than D2, i.e.
Yi(1, 1) ≥ Yi(1, 0) ≥ Y ∗i ≥ Yi(0, 1) ≥ Yi(0, 0) for all individuals. For example, ordering might
exert a weaker influence on behavior than the default. This naturally generates an ordering
of the entire frame vector and the problem becomes isomorphic to the analysis of framing
intensity, including the relationship to decision-quality instruments just described. In this
instance, the analog of the decision-quality instrument would indicate whether ordering
influenced decisions in the same direction or the opposite direction as the default. When
ordering reinforces the default, the inconsistency is relatively large, and when ordering
mitigates it, the inconsistency is small.

E.3 Relaxing Frame Exogeneity

Throughout the body of the text, the frame exogeneity assumption allowed us to set aside
the challenge of identifying the effect of the frame on behavior to focus on the preference
identification problem. Specifically, from observing Y (0) ≡ E[Yi(0)|D = 0] and Y (1) ≡
E[Yi(1)|D = 1], frame exogeneity allowed us to recover E[Yi(0)] and E[Yi(1)]. The principle
was the same when these moments were observed for specific subgroups of decision-makers
or at specific values of a decision quality instrument.

In practice, frame exogeneity is most plausible when decision-makers are randomly as-
signed to frames or when substantively identical cohorts are observed under different frames,
as in our empirical example. In this section, we show that our proposed methods extend
naturally to settings in which the effect of the frame on behavior must be estimated using
other conventional tools of causal inference. These methods allow us to recover moments
analogous to E[Yi(0)] and E[Yi(1)], which can then be incorporated as the primitives in our
main identification results.

E.3.1 Matching on Observables

Suppose that frame exogeneity fails unconditionally, but holds once the researcher conditions
on decision-makers’ observable characteristics. In this case, the researcher can use a standard
regression or matching-on-observables type approach to estimates of E[Yi(0)] and E[Yi(1)].
In particular, the conditional frame exogeneity assumption (A2’) introduced in Section 3.2
is exactly the assumption necessary to identify these two primitive parameters using this
technique. With that assumption, one can recover E[Yi(0)] and E[Yi(1)] by using that
E[Yi(1)] = EX [E[Yi(1)|Di = 1, X]] and E[Yi(0)] = EX [E[Yi(0)|Di = 0, X]].
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E.3.2 Difference in Differences

Decision-makers are assigned to one of two groups, the treatment or the control, denoted
respectively by Ai ∈ {0, 1}, and are observed choosing from X in two time periods, T ∈
{0, 1}. All individuals make their choice under Di = 0 when T = 0, as do individuals
in the control when T = 1. Individuals in the treatment group choose under Di = 1
when T = 1. Choices may potentially depend on both D and T : Yi = Yi(D,T ). The
researcher thus observes four population moments: E[Yi(0, 0)|Ai = 0], E[Yi(0, 1)|Ai = 0],
E[Yi(0, 0)|Ai = 1], and E[Yi(1, 1)|Ai = 1].

In this setup, the standard parallel trends assumption corresponds to

E[Yi(0, 1)|Ai = 0]− E[Yi(0, 0)|Ai = 0] = E[Yi(0, 1)|Ai = 1]− E[Yi(0, 0)|Ai = 1]

Under this assumption, it is straightforward to show that the researcher can recover the av-
erage effect of the frame on the behavior of the treated group in time period 1, E[Yi(1, 1)−
Yi(0, 1)|Ai = 1], and/or the counterfactual behavior of the same group in the same time
period, E[Yi(0, 1)|Ai = 1]. Hence, replacing frame exogeneity with the parallel trends as-
sumption allows us to identify E[Yi(0, 1)|Ai = 1] and E[Yi(1, 1)|Ai = 1], the analogs of
Y (0) and Y (1) for decision-makers assigned to the treatment group. From these, we can
construct our statistics of interest like Y C to obtain preference information for consistent
decision-makers in the treatment group, E[Y ∗i |Ci = 1, Ai = 1], or preferences for the en-
tire sub-population of decision-makers assigned to the treatment group, E[Y ∗i |Ai = 1]. To
recover preferences for the full population of consistent decision-makers (or the full popu-
lation) requires extrapolating the Average Treatment Effect on the Treated (ATET) to the
Average Treatment Effect (ATE) – a problem which has been well-studied in the program
evaluation literature.

E.3.3 Instrumental Variable Analysis

Suppose the researcher uses an instrumental variable to estimate the causal effect of the
frame on behavior. (To be clear, the type of instrument that would be used here is en-
tirely distinct from the concept of a decision quality instrument developed in Section 3.3.)
Each decision-maker is assigned to one of two values of the instrument, Wi ∈ {0, 1}, and
suppose the frame to which one is assigned is a function of the instrument, Di(Wi), with
Di(1) ≥ Di(0) and E[Di(1) − Di(0)] > 0. Choice may still depend on D, but does not
otherwise depend on Z, so we can continue to write Yi(D). An individual is thus repre-
sented by the following vector of random variables: (Yi(0), Yi(1), Y ∗i , Di(0), Di(1), Wi).
Finally, we assume assignment of the instrument is exogenous with respect to behavior,
Wi ⊥ (Yi(0), Yi(1)).

With this setup, it is straightforward to recover E[Yi(1)|Di(1) > Di(0)] and E[Yi(0)|Di(1) >
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Di(0)] (Imbens and Rubin, 1997), which can be used in place of Y (0) and Y (1) in our pro-
posed estimators. For example, Proposition 1 would recover the preferences of the consistent
compliers, E[Y ∗i |Ci = 1, Di(1) > Di(0)], and the subsequent propositions would recover the
preferences of the overall population of compliers, E[Y ∗i |Di(1) > Di(0)]. To the extent that
the compliers have different preferences than the rest of the population, one could imple-
ment methods for extrapolating the LATE to the ATE in this setting (e.g., Angrist and
Fernandez-Val, 2013).

Finally, note that the same logic would apply if a regression discontinuity design is used
to estimate a causal framing effect. In this case, one could identify information about the
preferences of the subgroup for whom the discontinuity induces treatment, i.e. the compliers
at the threshold of the running variable (or all individuals with a running variable at the
cutoff in the case of a sharp regression discontinuity design).
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