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Abstract
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1 Introduction

Economists, more than ever, need high-performance computing. In macroeconomics, we
want to solve models with complex constraints and heterogeneous agents to simultaneously
match micro and aggregate observations. In industrial organization, we aim to characterize
the equilibrium dynamics of industries with several players and multiple state variables. In
asset pricing, we seek to price complex assets in rich environments with numerous state
variables. In corporate finance, we like to track the behavior of firms with rich balance
sheets and intertemporal choices of funding. In international economics, we are interested in
analyzing multisectoral models of trade. In econometrics, we have to evaluate and simulate
from moment conditions and likelihood functions that often fail to have closed-form solutions.
And machine learning and big data are becoming ubiquitous in the field.

One of the most important strategies to achieve the required performance to solve and
estimate the models cited above is to take advantage of parallel computing. Nowadays, even
basic laptops come from the factory with multiple cores (physical or virtual), either in one
central processing unit (CPU) or several CPUs. And nearly all of them come with a graphics
processing unit (GPU) that can be employed for numerical computations. Many departments
of economics and most universities have large servers that researchers can operate (a few
even have supercomputer centers that welcome economists). Furthermore, cloud computing
services, such as Amazon Elastic Compute Cloud or Google Cloud Compute Engine, offer,
for economical prices, access to large servers with dozens of CPUs and GPUs, effectively
making massively parallel programming available to all academic economists.

Unfortunately, there are barriers to engaging in parallel computing in economics. Most
books that deal with parallelization are aimed at natural scientists and engineers. The
examples presented and the recommendations outlined, valuable as they are in those areas,
are sometimes hard to translate into applications in economics. And graduate students in
economics have taken rarely many courses in programming and computer science.

Over the years, we have taught parallel programming to many cohorts of young economists.
Thus, it has become clear to us that an introductory guide to parallelization in economics
would be useful both as a basis for our lectures and as a resource for students and junior
researchers at other institutions.

In this guide, we discuss, first, why much of modern scientific computing is done in parallel
(Section 2). Then, we move on to explain what parallel programming is with two simple
examples (Section 3). And while parallel programming is a fantastic way to improve the
performance of solving many problems, it is not suitable for all applications. We explain this
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point in Section 4 with two fundamental problems in economics: a value function iteration
and a Markov chain Monte Carlo. While the former is perfectly gathered for parallelization,
the latter is much more challenging to parallelize. That is why, in Section 5, we introduce a
life-cycle model as our testbed for the rest of the paper. The life-cycle model is sufficiently
rich as to be an approximation to problems that a researcher would like to solve in “real life.”
At the same time, parallelization of the model is not trivial. While we can parallelize its
solution over the assets and productivity variables, we cannot parallelize over the age of the
individual. Section 6, then, briefly introduces the different types of computers that a typical
economist might encounter in her parallel computations. We spend some time explaining
what a cloud service is and how to take advantage of it.

Sections 7 and 8 are the core of the paper. In Section 7, we outline the main approaches
to parallelization in CPUs, with Julia, Matlab, R, Python, C++–OpenMP, Rcpp–OpenMP, and
C++–MPI. In Section 8, we present CUDA and OpenACC. In these sections, we discuss the
strengths and weaknesses of each approach while we compute the same life-cycle model that
we presented in Section 5. We do not envision that a reader will study through each part of
these two sections in full detail. A reader can, for instance, pick those approaches that she
finds more attractive and study them thoroughly while only browsing the other ones (although
we strongly recommend reading Subsection 7.1, as it presents several key ideas that we will
repeat for all programming languages). Regardless of the situation, the reader should follow
our explanations while checking the code we have posted at the Github repository of this
paper and forking it with her improvements. Learning computation without trying it oneself
is nearly impossible, and in the case of parallelization, even more so. We cannot stress this
point enough.

We conclude the guide with a mention in Section 9 of existing alternatives for parallel
computation beyond CPUs and GPUs (such as manycore processors, field-programmable
gate arrays, and tensor processor units) and with some brief remarks summarizing our com-
putational results in Section 10.

Before we get into the main body of the guide, we must highlight three points. First, this
guide’s goal is pedagogical. Our codes were written putting clarity ahead of performance as
a basic criterion. We did not optimize them to each language or employe advanced coding
styles. Instead, we compute the same model in the same way across languages and compare
the performance of parallel computing, using as the benchmark the serial computation for
each language. Most students in economics do not come to the field from computer science
or engineering, and they prefer clearer codes to sophisticated ones. This means that, for
example, we will employ too few anonymous functions, too many loops, and too much old-
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style imperative programming (also vectorization and related techniques work less well in
the problems we deal with in economics than in other fields; see Aruoba and Fernández-
Villaverde, 2015). While there is much to be said about improving coding style among
economists, that is a battle for another day. You teach one lesson at a time.

Second, we do not cover all possible combinations of languages, parallelization techniques,
and computers. Doing so would be next to impossible and, in any case, not particularly useful.
We are, instead, highly selective. There is no point, for instance, in covering parallelization in
Java or Swift. Neither of these languages is designed for scientific computation, nor are they
widely used by economists. Among programming languages, perhaps the only absence that
some readers might miss is Fortran. In previous related exercises (Aruoba and Fernández-
Villaverde, 2015), we kept Fortranmore as a nod to old times than out of conviction. But, by
now, we feel justified in dropping it. Not only does Fortran not deliver any speed advantage
with respect to C++, but it also perpetuates approaches to numerical computation that are
increasingly obsolete in a world of massive parallelization. To program well in parallel, for
instance, one needs to understand MapReduce and employ rich data structures. Fortran fail
to meet those requirements. While keeping legacy code and libraries may require knowledge
of Fortran for some researchers, there is no point in young students learning what is by now
an outdated language despite all the efforts to modernize it in the most recent standards
(such as the soon-to-be-released Fortran 2018). Among programming techniques, we skip
POSIX and Boost threads and threading building blocks (too low level for most users)
and OpenCL (as we believe that OpenACC is a better way to go).

Perhaps the only topic of importance that we miss is the use of Spark (possibly with
Scala), a general-purpose cluster computing system particularly well-adapted for the ma-
nipulation of large data sets.1 Future editions of this guide might correct that shortcoming,
but the current version is sufficiently long, and we are afraid of losing focus by introducing
a whole new set of issues related to data parallelization.

Third, we will not explain how to write algorithms in parallel since this would require a
book in itself (although we will cite several relevant books as we move along as references for
the interested reader). This lack of explanation implies that we will not enter into a taxonomy
of computer architectures and parallel programming models (such as the celebrated Flynn’s
classification) beyond passing references to the differences between parallelism in tasks and
parallelism in data or the comparison between the shared memory of OpenMP and the message
passing structure of MPI.

With these three considerations in mind, we can enter into the main body of the guide.
1See https://spark.apache.org/.
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2 Why Parallel?

In 1965, Gordon Moore, the co-founder of Intel, enunciated the most famous law of the
computer world: the number of components (i.e., transistors) per integrated circuit (i.e., per
“chip”) will double each year (Moore, 1965). Although this number was later downgraded
by Moore himself to a mere doubling every two years (Moore, 1975), this path of exponen-
tial growth in the quantity of transistor chips incorporated is nothing short of astonishing.
Moore’s law predicts that the computational capability of human-made machines will advance
as much during the next 24 months as it has done from the dawn of mechanical devices until
today.
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Figure 1: Number of transistors

But Moore’s law has been nearly as breathtaking in terms of its forecasting success. Figure
1 plots how the number of transistors has evolved from 1971 to 2017.2 Moore’s law predicted
that the representative chip would have 8,388,608 times more transistors by 2017 than in
1971. Indeed, the 2017 32-core AMD Epyc processor has 8,347,800 times more transistors
than the 1971 Intel 4004 processor. If you look, however, at the end of the sample, there are
some indications that the law may be slowing down to a doubling of transistor count every
2.5 years: the 32-core AMD Epyc processor has many more transistors than other processors
of its generation and it achieves that density because it suffers from higher cache latency.

2Data from Figure 1 come from https://en.wikipedia.org/wiki/Transistor_count.
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The recent hints of a slowdown in the rate of transistor growth might be telltale signs
of future developments. Although the demise of Moore’s law has been announced in the
past and technology has kept on surprising skeptics, there are reasons to believe that we are
approaching the maximum number of transistors in a chip, perhaps in a decade or two. Not
only does the electricity consumption of a chip go up by x4 when the transistor size falls by
a factor x, but we must endure considerable increases in the heat generated by the chip and
in its manufacturing costs.

At a more fundamental level, there are inherent limits on serial chips imposed by the
speed of light (30 cm/ns) and the transmission limit of copper wire (9 cm/ns). This means
that there are hard constraints on the speed at which a processor can compute an operation
and that it is virtually impossible to build a serial Teraflop machine without resorting to
parallelization.3 Even more relevant is the observation that the real bottleneck for scientific
computing is often memory access. Random Access Memory (RAM) latency has been only
improving around 10 percent a year.

Figure 2: Cray-1, 1975

That is why the industry has moved from building machines such as the serial Cray-1,
in 1975 (Figure 2), to the massively parallel Sunway TaihuLight (Figure 3), the fastest

3A Teraflop is 1012 floating point operations per second (i.e., the number of calculations involving real
numbers). As a point of comparison, the Microsoft Xbox One X has a top theoretical performance of 6
Teraflops thanks to its aggressive reliance on GPUs.
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supercomputer in the world as of April 2018.4 The Cray-1, built around the idea of vector
processing, aimed to deliver high performance through the simultaneous operations on one-
dimensional arrays (vectors, in more traditional mathematical language).5 Although the
Cray-1 represented a leap over existing machines, it required a specific arranging of the
memory and other components (the circular benches around the main machine that can be
seen in Figure 2 were essential for the power supply to be delivered at the right place) as
well as quite specialized software. These specificities meant that the cost curve could not be
bent sufficiently quickly and that the limitations of single processor machines could not be
overcome.

Figure 3: Sunway TaihuLight, 2016

The solution to these limits is employing more processors. This is the route followed by
the Sunway TaihuLight. The computer is built around 40,960 manycore processors, each
with 256 cores, for a total of 10,649,600 cores. Instead of a single piece of machinery like the
Cray-1, Figure 3 shows rows of cabinets with racks of processors, each handling a part of
some computation. Thanks to this parallelization, the 160 Megaflops (106) Cray-1 has been
replaced by the 125.4 Petaflop (1015) Sunway TaihuLight, an increase in speed of around
0.78 ∗ 109. Without these speed gains, everyday computational jobs on which we have grown
to depend –such as high-definition video rending, machine learning, search engines, or the
tasks behind Spotify, Facebook, and blockchain– would not be feasible.

4Link to Wikipedia image of Figure 2 and link to Flickr image of Figure 3.
5This computer was named after Seymour Cray (1925-1996), whose pioneering vision created modern

high-performance computing (see Murray, 1997). The company he founded to manufacture this machine,
Cray Research, led the industry for decades. Modern-day Cray Inc. descendes from the original Cray
Research after several turbulent changes in ownership. An early example of a parallel computer was the
pathbreaking CDC 6600, released in 1964.
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3 What Is Parallel Programming?

The main idea behind parallel programming is deceptively simple: if we have access to
several processors (either in the same computer or in networked computers), we can divide a
complex problem into easier pieces and send each of these components to a different processor.
Within the field of high-performance computing, this division can be done either for numerical
analysis –for example, to multiply two matrices– or for the handling of large amounts of data
–for instance, the computation of a sample average through MapReduce.

Let us develop these two examples to understand the basic idea. In our first example, we
have two matrices:

A =

(
a11 a12

a21 a22

)
and

B =

(
b11 b12

b21 b22

)
and we want to find:

C = A×B =

(
a11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22

)
.

Imagine, as well, that we have access to a machine with five processors. We can select one of
these processors as a “master” and the other four as “workers” (sometimes, and less delicately,
also called “slaves”). The master processor will send (a11, a12, b11, b21) to the first worker and
ask it to compute a11b11+a12b21. Similarly, it will send (a11, a12, b12, b22) to the second worker
and ask it to compute a11b12 + a12b22 and so on with the third and fourth workers. Then,
the results of the four computations will be returned to the master, which will put all of
them together to generate C. The advantage of this approach is that while the first worker
is computing a11b11+a12b21, the second worker can, at the same time, find a11b12+a12b22. In
comparison, a serial code in one processor will need to finish the computation of a11b11+a12b21
before moving into computing a11b12 + a12b22.

Doing a parallelization to multiply two matrices 2 × 2 is not efficient: we will lose more
time transferring information between master and workers than we will gain from parallelizing
the computation of each of the four entries of C. But a simple extension of this algorithm
will parallelize the multiplication of matrices with hundreds of rows and columns, a costly
task that appears in all sorts of scientific computations (for instance, when we compute a
standard OLS estimator with many regressors and large data sets), and generate significant
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time gains.

In our second example, we want to find the average of a sample of observations:

y = {1, 2, 3, 4, 5, 6, 7, 8}

and, again, we have access to a machine with five processors divided between a master and
four workers. The master can send {1, 2} to the first worker to compute the average of the
first two observations, {3, 4} to the second worker to compute the average of the next two
observations, and so on with the third and fourth workers. Then, the four averages are re-
turned to the master, which computes the average of the four sub-averages {1.5, 3.5, 5.5, 7.5}.
Thanks to the linearity of the average operator, the average of sub-averages, 4.5, is indeed the
average of y. As was the case for our matrix multiplication example, computing the average
of 8 observations by parallelization is inefficient because of the overheads in transmitting
information between master and workers.

But this approach is a transparent example of the MapReduce programming model, a
successful paradigm for the handling of millions of observations (among other tasks, later we
will show how it can be applied as well to the solution of a life-cycle model). MapReduce is
composed of two steps: a Map operator that takes an input and generates a set of intermediate
values (in this case the input is y and the intermediate inputs are the sub-sample averages) and
a Reduce operator that transforms the intermediate values into a useful final value, which, in
our example, computes the average of the four sub-sample averages. In addition, MapReduce
can be applied recursively, and therefore, the final value can be used as on intermediate input
in another computation.6

The previous two examples highlight two separate issues: first, the need to develop al-
gorithms that divide problems of interest into components that can be parallelized; second,
the need to have coding techniques that can “tell” the computer how to distribute the work
between a master and workers.

In the next pages, we can offer only a very parsimonious introduction for economists to
these issues, and the interested reader should consult more complete references. A few books
we have found particularly useful to extend our knowledge include:

1. Introduction to High Performance Computing for Scientists and Engineers by Hager
6MapReduce’s name derives from two combinators in Lisp, a deeply influential functional programming

language created in 1958, map and reduce. Google developed the modern-day MapReduce approach to handle
the immense amounts of data its search engine requires. Hadoop is a popular implementation of MapReduce.
Currently, a more efficient alternative, Spark, based on the resilient distributed data set (RDD), is quickly
overtaking Hadoop as a weapon of choice in handling large data problems with massive parallelization.
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and Wellein (2011).

2. An Introduction to Parallel Programming by Pacheco (2011).

3. Principles of Parallel Programming by Lin and Snyder (2008).

4. Parallel Programming for Multicore and Cluster Systems by Rünger and Rauber (2013).

5. Structured Parallel Programming: Patterns for Efficient Computation by McCool, Ro-
bison, and Reinders (2012).

Below, we will cite some additional books as we deal with the concrete aspects of paral-
lelization.

4 When Do We Parallelize?

The two examples above show the promise of parallelization for high-performance computing,
but also its potential drawbacks regarding algorithmic design and communication among
processors.

Figure 4: Granularity

Problems in high-performance computing can be classified according to their scalability
(i.e., how effectively we can divide the original problem of interest into smaller tasks) and
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granularity (i.e., the measure of the amount of work involved in each computational task
in which the original problem of interest is subdivided). Depending on their scalability,
problems are either strongly scalable –i.e., inherently easy to parallelize– and weakly scalable
–i.e., inherently difficult to parallelize. Depending on their granularity, problems can be coarse
–i.e., requiring more computation than communication between a master and workers –or fine
–i.e., requiring more communication than computation. In Figure 4, we plot two columns
representing the tasks involved in the computation of two problems. The left column is a
computation requiring mostly computation and little communication among processors. The
right column, in comparison, is a problem with much more communication. While the former
problem is a good candidate for parallelization, the latter is not.

However, whether the problem is easy to parallelize may depend on the way you set
it up. You need to take advantage of the architecture of your computer and exploit it to
the maximum. This will help you to control for overheads (for instance, in the example of
sample average computation, the final sum of sub-sample averages) and achieve optimal load
balancing (we need to assign to each different processor chunks of the problem that require
roughly the same amount of time).

These considerations dictate relying on productivity tools such as a state-of-the-art IDE
(integrated development environment), a debugger, and a profiler that can handle parallel
code. Without these tools, coding, debugging, and profiling your program for accuracy and
performance can become most difficult, as there is much more potential for mistakes and
inefficiencies in a parallel code than in a serial one. Also, these productivity tools may help
you achieve a better tradeoff between speed-ups delivered by parallelization and coding time.
There is no point in parallelizing a code if doing so takes more time than the savings in
running time, even after considering the numerous times a code might need to be run during
a whole research project.

To illustrate some of these ideas, we introduce two common applications in economics:
one where parallelization works wonderfully well and one where it struggles to achieve speed
improvements.

4.1 An application where parallelization works: Value function it-

eration

Our first application is a computational problem where parallelization works with ease: the
canonical value function iteration problem.

Let us assume that we have a social planner that is maximizing the discounted utility
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of a representative household in a standard deterministic neoclassical growth model. The
recursive representation of the problem of this social planner can be written in terms of a
value function V (·) as:

V (k) = max
k′
{u (c) + βV (k′)}

s.t. c = kα + (1− δ) k − k′

where k is aggregate capital in the current period, k′ the aggregate capital in the next
period, c the consumption of the representative household, u(·) the period utility function,
β the discount factor, α the elasticity of output to capital, and δ the depreciation rate.

The solution of the social planner’s problem can be found by applying value function
iteration. Imagine that we have access to j processors in a parallel pool. Then, we can
implement the following algorithm:

Data:
Grid of capital with j points, k ∈ [k1, k2, ..., kj].
Initial guess of value function over the capital grid V 0 (k).
Tolerance ε.
Result:
Converged value function V ∞ (k)

Optimal decision rule k′ = g∞(k)

while sup |V n (k)− V n−1 (k)| < ε do
Send the problem:

max
k′
{u (c) + βV n (k′)}

s.t. c = kα1 + (1− δ) k1 − k′

to processor 1 to get V n+1 (k1). Store optimal decision rule k′ = gn+1(k1).
Send the problem associated with ki to worker i.
When all processors are done, gather V n+1 (ki) for k ∈ [k1, k2, ..., kj] back and
construct V n(k).

end
Algorithm 1: Parallelized value function iteration

The intuition of the algorithm is straightforward. Given a current guess of the value
function V n (k), processor m ≤ j can solve for the optimal choice of capital next period
given capital km without worrying about what other processors are doing for other points
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in the grid of capital. Once every processor has solved for the optimal choice of capital, we
can gather all V n+1 (km) and move to the next iteration. This scheme is often called the
“fork-join” paradigm.

Figure 5 illustrates the execution of the fork-join parallel code that would compute the
model presented above. At every iteration n, the master node splits the computation across
the parallel workers (fork). When all processors are done with the computations, the infor-
mation is passed back to the master node (join) and the process is repeated.

Figure 5: Fork-join parallel programming

The algorithm is easily generalized to the case where we have more grid points j than
workers w by sending to each processor b j

w
c grid points (and the remaining points j−w∗b j

w
c

to any worker). Furthermore, this parallelization algorithm is efficient, as it allows an increase
in speed that can be nearly linear in the number of processors, and it is easy to code and
debug.7

4.2 An application where parallelization struggles: A random walk

Metropolis-Hastings

Our second application is a computational task where parallelization faces a difficult time: a
random walk Metropolis-Hastings, the archetypical Markov chain Monte Carlo method.

7The speed-up will depend on the quantity of information moved and the quality of the hardware per-
forming the communication among the processors. Also, the gain in efficiency is diminished by the difficulty
in applying properties of the solution such as the monotonicity of the decision rule of the social planner (i.e.,
g∞(kj) < g∞(kj+1)) that simplify the computation involved in the max operator in the Bellman equation.
However, when the number of grid points is sufficiently larger than the number of workers, this difficulty is
only a minor inconvenience. Furthermore, there are several “tricks” to incorporate additional information in
the iteration to capture most of the gains from monotonicity.
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Many problems in econometrics require drawing from a distribution. More concretely, we
want to draw a sequence of θ1, θ2, θ3, ..., such that:

θi ∼ P (·) .

This draw may allow us to simulate some stochastic process where the θ’s are the innovations
or to evaluate functions of interest of the distribution –such as its moments– appealing to a
law of large numbers (i.e., the theoretical mean of the distribution will be well approximated
by the mean of the drawn θ’s).

In principle, computers face a difficult time drawing a random number: they are, after
all, deterministic machines that follow a predetermined set of instructions. Computer scien-
tists and applied mathematicians have developed, nevertheless, deterministic algorithms that
generate a sequence of pseudo-random numbers and whose properties are, up to some cycle,
very close to those of a truly random sequence.8

These pseudo-random number generators typically produce a sequence of draws that
mimics a draw from a uniform distribution in [0, 1]. Through different change-of-distribution
transformations, such a sequence from a uniform distribution can yield a sequence from
a wide family of known parametric distributions (Devroye, 1986, provides an encyclopedic
treatment of such transformations).

The challenge appears when the distribution P (·) does not belong to any known family.
In fact, it is often the case that we cannot even write down P (·), although we can numerically
evaluate it at an arbitrary point θi. This happens, for example, with the likelihood function of
a dynamic equilibrium model: a filter (either linear, such as the Kalman filter, or non-linear,
such as the particle filter in Fernández-Villaverde and Rubio-Ramírez, 2007) provides the
researcher with a procedure to evaluate the likelihood of the model given some observations
for arbitrary parameter values, but not how to write a closed-form expression for it. We want
to draw from this likelihood function to implement a Bayesian approach (after the likelihood
has been multiplied by a prior) or to maximize it, from a frequentist perspective, through
some stochastic optimization search algorithm.

A random walk Metropolis-Hastings is an algorithm that allows us to draw from an
arbitrary distribution a Markov chain whose ergodic properties replicate those of the distri-
bution of interest. The arrival of the random walk Metropolis-Hastings and other Markov
chain Monte Carlo methods in the 1990s revolutionized econometrics and led to an explosion

8When true randomness is absolutely required, such as in cryptography, one can rely on different physical
phenomena built into hardware with true random number generators. This is, however, rarely necessary in
economics.
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of research in Bayesian methods (Robert, 2007) and estimation by simulation (Gourieroux
and Monfort, 1997).

The algorithm is as follows:

Data:
Distribution of interest P (·).
Initial value of the chain θ1.
Scaling of the innovation λ.
Result:
Sequence {θ1, θ2, ..., θm}.
while n ≤ m do

Given a state of the chain θn−1, generate a proposal:

θ∗ = θn−1 + λε, ε ∼ N (0, 1)

Compute:

α = min

{
1,

P (θ∗)

P (θn−1)

}
Set:

θn = θ∗ with probability α

θn = θn−1 with probability 1− α

end
Algorithm 2: Random walk Metropolis-Hastings

The key of the algorithm is to generate a proposal θ∗ for the new state of the chain
through a random walk specification

θ∗ = θn−1 + λε, ε ∼ N (0, 1)

(the proposal is the new state plus an innovation) that is accepted with some probability α

α = min

{
1,

P (θ∗)

P (θn−1)

}
construed to induce the desired ergodic properties of the drawn sequence. By appropriately
tuning λ, we can get an optimal acceptance rate and achieve faster convergence (Roberts,
Gelman, and Gilks, 1997).
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From the perspective of parallelization, the problem of the algorithm is that to generate
θ∗, we need θn−1, so we cannot instruct processor i to compute θn−1 and, at the same time,
instruct processor j to compute θn. The Markov property of the chain makes it an inherently
serial algorithm. Thus, we cannot easily subdivide the problem. The “obvious” solution of
running parallel chains fails because it violates the asymptotic properties of the chain: we
need a long sequence of size m, not many short sequences that add up to m, as the latter
might not have traveled to the ergodic regions of the distribution.

Researchers have attempted to come up with proposals to parallelize the random walk
Metropolis-Hastings algorithm (see, among others, Ingvar, 2010, and Calderhead, 2014).
Also, in economics, other parts of the problem (such as the evaluation of the distribution
P (·)) can be parallelized. For example, if P (·) comes from a particle filter, such a filter is easy
to parallelize. But despite these partial remedies, at the end of the day, the random walk
Metropolis-Hastings algorithm is not a good candidate for parallelization. Unfortunately,
many other problems in economics (such as those involving long simulations) suffer from
the same drawback. Parallelization is a great tool for many computational challenges in
economics, but not for all.

4.3 The road ahead

We will now move on to show how to parallelize in a realistic application in economics: a
life-cycle model of consumption-saving. Slightly more complex versions of this model are
at the core of much research in economics regarding consumption and savings across ages
(Fernández-Villaverde and Krueger, 2011), portfolio choice (Cocco, 2005), household for-
mation (Chang, 2017), human capital accumulation (Ben-Porath, 1967), housing decisions
(Zarruk-Valencia, 2017), taxation policies (Nishiyama and Smetters, 2014), social security
reform (Conesa and Krueger, 1999), etc. Not only is the application simple enough to fulfill
its pedagogical goals, but it also presents sufficient sophistication as to illustrate the most
relevant features of parallelization.

5 A Life-Cycle Model

We consider the following model for our experiments. We have an economy populated by a
continuum of individuals of measure one who live for T periods. Individuals supply inelasti-
cally one unit of labor each period and receive labor income according to a market-determined
wage, w, and an idiosyncratic and uninsurable productivity shock e. This shock follows an
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age-independent Markov chain, with the probability of moving from shock ej to ek given by
P(ek|ej). Individuals have access to one-period risk-free bonds, x, with return given by a
market-determined net interest rate, r.

Given the age, t, an exogenous productivity shock, e, and savings from last period, x,
the individual chooses the optimal amount of consumption, c, and savings to carry for next
period, x′. The problem of the household during periods t ∈ {1, . . . , T − 1} is described by
the following Bellman equation:

V (t, x, e) = max
{c≥0,x′}

u(c) + βEV (t+ 1, x′, e′)

s.t. c+ x′ = (1 + r)x+ ew

e′ ∼ P(e′|e),

for some initial savings and productivity shock.9 The problem of the household in period T
is just to consume all resources, yielding a terminal condition for the value function:

V (T, x, e) = u((1 + r)x+ ew).

A terminal condition, such as a value of bequests or altruism for future generations, could
be easily added.

As referred to earlier, even this simple life-cycle model has important features related
to parallelization. First, it is a problem with three state variables. This means that if the
number of grid points on each variable is sufficiently large, the model might take some time to
compute. If another state variable is included, the model might become infeasible to estimate.
For instance, any model that studies health, housing, durable goods, or the consequences
of having multiple financial assets implies keeping track of additional state variables and
estimation requires the repeated solution of the model for many different parameter values.
Second, although there are three state variables, the problem is not parallelizable along the
three dimensions, as will become clear later.

The following pseudo-code summarizes how to compute the model in serial using a stan-
9For the purpose of this paper, we do not need to worry too much about how we specify those initial

conditions, and we would compute the solution of the model for all possible initial conditions within a grid.
In real research applications, the initial conditions are usually given by the desire to match observed data.
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dard backward-induction scheme:
Data:
Grid for assets X = {x1, . . . , xnx}.
Grid for shocks E = {e1, . . . , ene}.
Transition matrix P(e′|e).
Result:
Value function V (t, xi, ej) for t = 1, ..., T , i = 1, ..., nx, and j = 1, ..., ne.
for ∀ xi ∈ X and ej ∈ E do

V (T, xi, ej) = u((1 + r)xi + ejw)

end
for t = T − 1, . . . , 1, do

Use V (t+ 1, xi, ej) to solve:

V (t, xi, ej) = max
{c,x′∈X}

u(c) + β
ne∑
k=1

P(ek|ej)V (t+ 1, x′, ek)

s.t. c+ x′ = (1 + r)xi + ejw

end
Algorithm 3: Life-cycle value function

Note that the expectation in the right-hand side of the Bellman operator has been substi-
tuted by a sum over future value functions by taking advantage of the Markov chain structure
of the productivity shock.

The Julia code in Box 1 computes the value function in serial:

for(age = T:-1:1)
for(ix = 1:nx)
for(ie = 1:ne)

V[age, ix, ie] = Value(age, ix, ie);

end
end

end

Box 1: Julia code to compute the value function.
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In the code, the function Value computes the maximum value attainable given state
variables age, ix, ie. We loop over all possible combinations of the state variables to get
our value function. The function Value is described in Box 2. The function searches, among
all the possible values of the grid for assets, for the optimal level of savings for the next
period. For the last period of life, the function picks, trivially, zero savings (if we had a
terminal condition such as a valuation for bequests, such a choice could be different). We
could have more sophisticated search methods but, for our argument, a simple grid search is
most transparent.

function Value(age, ix, ie)
VV = -10^3;
for(ixp = 1:nx)

expected = 0.0;
if(age < T)

for(iep = 1:ne)
expected = expected + P[ie, iep]*V[age+1, ixp, iep];

end
end

cons = (1 + r)*xgrid[ix] + egrid[ie]*w - xgrid[ixp];
utility = (cons^(1-ssigma))/(1-ssigma) + bbeta*expected;
if(cons <= 0)

utility = -10^5;
end
if(utility >= VV)

VV = utility;
end

end

return(VV);
end

Box 2: Julia code to compute the value function, given state variables age, ix, ie.

This life-cycle problem can be parallelized along the saving and productivity shock di-
mensions (x and e), but not along the age dimension. Given the age of the household, t,
the computation of V (t, xi, ej) is independent of the computation of V (t, xi′ , ej′), for i 6= i′,
j 6= j′. While one of the processors computes V (t, xi, ej), another processor can compute
V (t, xi′ , ej′) without them having to communicate. For a given t, a parallel algorithm could
split the grid points along the x and e dimensions, and assign different computations to each
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of the processors, so that total computation speed can be significantly reduced. In other
words, the problem can be parallelized along the x and e dimensions in the same way that
we parallelized the basic value function iteration in Subsection 4.1. This is not the case,
however, for the age dimension. For the computation of any V (t, xi, ej), the computer has to
first have computed V (t+ 1, xi, ej). The computation is, by its very nature, recursive along
t.

The following pseudo-code computes the model in parallel:

begin

1. Set t = T .

2. Given t, one processor can compute V (t, xi, ej), while another processor computes
V (t, xi′ , ej′).

3. When the different processors are done computing V (t, xi, ej), ∀xi ∈ X and ∀ej ∈ E,
set t = t− 1. Go to 1.

end
Algorithm 4: Parallelizing the value function

Figures 6 and 7 illustrate the performance of each of the processors of an 8-thread CPU
when the process is executed in serial (Figure 6) and in parallel with the maximum number
of threads (Figure 7). While in the first figure only one processor works (CPU2, represented
by the line that jumps in the middle), in the second figure all 8 CPUs are occupied.

Figure 6: 1 Core used for computation
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Figure 7: 8 Cores used for computation

6 Different Computers

Before we show how to implement Algorithm 4 in practice, we must spend some time dis-
cussing how the choice of a particular computer matters for parallelization and how we
implement it.

Amdahl’s law (name after the computer architect Gene Amdahl) states that the speed-
up of a program using multiple processors in parallel is limited by the time needed for the
sequential fraction of the program. That is, if 25 percent of the computation is inherently
serial, even a machine with thousands of processors cannot lower computation time below
25 percent of its duration when running serially. Thus, the speed of each processor is still of
paramount relevance.

Similarly (and as we will describe below in more detail for each programming language),
we face the fixed cost of starting a thread or a process/worker when we want to distribute
computations among workers, transfer shared data to them, and synchronize results. These
tasks are time intensive and, often, they depend more on the hardware allowing the commu-
nication among processors than on the quality of the processors themselves. Indeed, much
of the cost of state-of-the-art supercomputers is in top-of-the-line equipment that maximizes
network bandwidth and minimizes latency, not in the processors. Furthermore, the primary
barrier facing extremely large machines is load imbalance among processors. In actual ap-
plications, it is difficult to use more than 10 percent of the theoretically available computing
power.

23



These issues are somewhat less relevant for users of workstations and desktops with just a
few processors, but cannot be completely ignored. For instance, an Intel CoreTM i9-7980XE

Extreme Edition has 18 cores and can run up to 36 threads. A performance workstation
equipped with such a processor is priced at less than $5,000 and, thus, affordable to many
researchers. This unprecedented level of sophistication for a personal computer requires an
investment of time and effort in getting to know the limits a particular computer imposes on
parallelization. A thorough discussion of such issues is well beyond the scope of this chapter
(and would be, in any case, contingent on rapidly evolving hardware).

We would be remiss, however, if we did not mention other hardware possibilities. For
example, many institutions provide affiliated researchers with large servers, some of them
with dozens of cores, and even with mighty supercomputers. Similarly, several companies
offer computing services on demand over the internet. The main advantage of these services
is the replacement of a large initial capital cost (purchasing a workstation) for a variable
cost (use-as-needed), the supply of constant updates in the hardware, and the avoidance of
maintenance considerations (at times acute in a department of economics where IT support
can be spotty).

A popular example of those services is Amazon Elastic Compute Cloud (EC2), which
allows requesting nearly as much computational power as one would desire in economics.10

As of April 2018, you can rent on-demand 8 processors with 32 GiB of memory, running on
Linux and gathered for general purposes for $0.3712 per hour and 96 processors with 384
GiB of memory for $4.608 per hour. These prices mean that one can use 96 processors for
an entire month, non-stop, for $3,318.11 Prices can be substantially cheaper if the user is
willing to pay for spot pricing at lower-demand times.

The access to EC2 is straightforward. After setting up an account, one can go to Ama-
zon EC2, click on “Launch a virtual machine” and follow the webpage links (for example,
one can select Ubuntu Server 16.04 LTS, an instance that runs on the well-known Ubuntu

distribution of Linux).

The only difficulty lies in the need to use a public key. The required steps are i) create a
new key pair; ii) download the key; iii) store it in a secure place (usually ∼./ssh/); and iv)
run an instance.

On an Ubuntu terminal this requires, first, transfering the folder from local to instance
10https://aws.amazon.com/ec2/, where in addition, the reader can find complete documentation of how

to create and operate an instance online.
11https://aws.amazon.com/ec2/pricing/on-demand/. If one considers the expected life of a server

before it becomes obsolete plus the burden of maintenance in terms of time and effort, the user cost of the
server per month might be quite higher than $3,318.
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with scp:

$ scp -i "/path/PUBLICKEY.pem" -r "/pathfrom/FOLDER/" ubuntu@52.3.251.249:~

Second, to make sure the key is not publicly available:

$ chmod 400 "/path/PUBLICKEY.pem"

And, third, to connect to instance with ssh:

$ ssh -i "/path/PUBLICKEY.pem" ubuntu@52.3.251.249

Once the instance is running, the terminal where it operates works like any other Linux
terminal and the user can execute its parallel codes.

7 Parallelization Schemes on CPUs

We are now ready to review several of the most popular parallelization schemes that take
advantage of having access to multiple cores (physical or virtual), either in one or several
CPUs. This is the most traditional form of parallelism. In Section 8, we will review paral-
lelization schemes for GPUs and mixed approaches that can use both CPUs and GPUs. This
second form of parallelism has gained much attention during the last decade and it deserves
its own section.

Except for the case of MPI in Subsection 7.8 with its rich set of operations, the schemes
in this section will be, in some form or another, simple variations of two different ideas: the
for loop and Map and Reduce. In the for loop approach, we add a statement before the for
loop that we want to parallelize. For example, in the code displayed in Box 2, if we want
to parallelize the computation of the value function along the productivity (x) grid, we add
a statement on the code specifying that the for(ix = 1:nx) loop should be computed in
parallel. This approach is simple to implement, transparent in its working, and efficient for
many computations. However, it faces scalability constraints.

In comparison, a Map function receives as inputs the function Value described in Box 1
and a data structure containing every possible combination of the state variables, and returns
the value associated which each of them. This computation is done in parallel, so there is
no need to loop over all state variables as in Box 2. Although our particular case does not
require it, a Reduce function takes the values computed by the Map and reduces them in the
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desired way, such as taking the average or the sum of them.

In most programming languages, there is at least one package/extension to perform par-
allel computing, and most follow one of the two procedures described above. Some of them
require the programmer to add a statement before the loop that should be computed in par-
allel, while some others require the use of a Map function. In the remaining sections of this
paper, we show how to implement these schemes in some of the most popular programming
languages in economics. More concretely, we will deal with Julia, Matlab, R, Python, C++
with OpenMP, and Rcpp with OpenMP. We will close with explanations of how to apply MPI,
which can interact with different programming languages.12

7.1 Julia - Parallel for

Julia is a modern, expressive, open-source programming language with excellent abstraction,
functional, and metaprogramming capabilities. Designed from the start for high-performance
numerical computing, Julia is particularly well-suited for economics.

A design principle of Julia was to provide tools for easy and efficient parallelization of
numerical code. One of those tools is the @parallel for, most convenient for “small tasks,”
that is, for situations where there are few computations on each parallel iteration. This
might be because we have few control variables, or few grid points on control variables, or
the computation requires relatively few steps.13

To implement @parallel for, we start by setting up the number of workers according
to the architecture of our machine with the instruction addprocs():

addprocs(6) # Here we have 6; check the number of processors you have

available

In Julia, as in most languages described below, initializing the pool of workers can take
some time. However, the programmer has to consider that this is a one-time fixed cost that

12As we indicated in the introduction, we do not try to be exhaustive in our coverage of programming
languages, as such an exercise would be too cumbersome. Furthermore, the set of languages we select spans
other alternatives with minimal changes. For example, once one understands how to implement parallelization
in C++ with OpenMP, doing the same in Scala or Fortran is straightforward. For a comparison of programming
languages in economics that motivates our choice of languages for this exercise, see Aruoba and Fernández-
Villaverde (2015).

13See Julia Parallel Computing. These paragraphs follow the syntax Julia v0.6.2, the current release
as of April 2018. Some details may change before the release of the first “stable” 1.0 version, announced for
some time in late 2018. Our computations are done with Julia v0.6.0, which has minimal changes with
respect to Julia v0.6.2.
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does not depend on the size of the problem. If the parallel pool is initialized to perform a
time-consuming task or to repeat the same task multiple times, the fixed cost vanishes as
a proportion of total computation time. However, if the user only uses the parallel pool to
perform a one-time small task, initializing the pool of workers might make parallel computing
more time expensive than serial computing.

When variables are declared in Julia, they are not part of the shared memory by default.
That is, variables are not generally observable/accessible by workers. To grant the workers
access to the variables they need for their computations, we must explicitly declare those
variables to be accessible/modifiable by workers. If we only want a variable to be observed
by workers, but not modified on parallel iterations, we should declare it as global with
@everywhere:

@everywhere T = 10;

#...

@everywhere gridx = zeros(nx);

However, there are some variables that we want the parallel workers to modify simul-
taneously in each iteration. In our example, we want the workers to modify the entries of
the value function matrix V that are assigned to them. To accomplish this, we declare these
variables as SharedArray:

V = SharedArray(Float64, (T, nx, ne),

init = V -> V[Base.localindexes(V)] = myid());

Once the required variables have been declared to be observable and modifiable by the
workers, we should explicitly state the for loop we want to be executed in parallel. For
this, it suffices to add the directive @parallel before the for statement. For example, if we
want to compute in parallel the values assigned to each point in the savings grid, we add
@parallel before the for loop associated with the x grid:

@parallel for(ix = 1:1:nx)

# ...

end

As explained above, our life-cycle problem can be parallelized across the savings and
productivity dimensions, x and e, but not across age, t. This means that, for every t, we
should assign grid points in the E ×X space to each worker to compute the value assigned
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to those points, gather back the computations, stack them on the matrix V (t, ·, ·), iterate to
t − 1, and repeat. Before iterating to t − 1, we need all the workers to finish their job so
that we can collect all the information in V (t, ·, ·). To make sure that every worker finishes
its job before iterating to t− 1, we must add the directive @sync before the @parallel for

statement:

@sync @parallel for(ix = 1:1:nx)

# ...

end

These three elements (i) declaring observable and modifiable variables, ii) a directive
@parallel for loop, and iii) a directive @sync) are all one needs to run the code in parallel
in Julia. The execution of the code in the REPL terminal or the batch model is the same
as for any other Julia file.

There is, however, an important further point to discuss. In our example, we stated that
the problem could be computed in parallel across two dimensions: x and e. It turns out that,
in Julia, it is not possible to embed a @parallel for loop inside another @parallel for

loop. The programmer must choose whether to perform parallel computing on one grid but
not on the other, or to convert the two nested loops into a single loop that iterates over all
the points in both grids.

Let us explore the first alternative (parallelize along one dimension, but not the other)
first. The code below presents the two possible choices of the loop to parallelize in two
columns:

nx = 350;

ne = 9;

for(ie = 1:ne)

@sync @parallel for(ix = 1:nx)

# ...

end

end

nx = 350;

ne = 9;

for(ix = 1:nx)

@sync @parallel for(ie = 1:ne)

# ...

end

end

Although the choice of computing in parallel the x or the e grid might seem innocuous,
the implied performance differences are large. Computing in parallel the loop corresponding
to the x grid is much faster. The reason is mainly the time spent in communication vs. actual
computation.
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Note there are many more grid points in the x grid, 350, than in the e grid, 9 (this is
typical in life-cycle models; in other models, the larger grid can be another dimension). In the
left column above, for every point in the e grid, the master node has to split the x grid among
the workers. That is, on every iteration on the e grid, the master node has to communicate
and exchange information with the workers. In the above example, with 9 points on the e
grid, the master node has to move information 9 times. On each of these 9 iterations, the
master node divides a grid of 350 points among 8 workers. If the tasks are equally split, each
worker will have around 43 computations on every iteration.

In the right column, when we choose to parallelize across the e grid, the opposite happens.
Since nx=350, the master node has to move information 350 times, one after every iteration.
Moreover, the computing time is small, as the 9 grid points in the e grid are divided among
8 workers; that is, at most, two computations per worker! In this case, the communication
time is very large when compared to computation time, so parallel computing is not only
slower than in the first case, but it can be even slower than any parallelization at all.

The second alternative collapses the two nested loops into a single loop that iterates over
all the grid points. In this case, the parallelization is performed over all the grid points,
which minimizes the communication time and maximizes the computations per worker:

@sync @parallel for(ind = 1:(ne*nx))

ix = convert(Int, ceil(ind/ne));

ie = convert(Int, floor(mod(ind-0.05, ne))+1);

# ...

end

In the Github repository of this paper, the reader can find an example in which we
compute the baseline model described with parallel loops across both x and e dimensions.
We repeat the computation of the model with a different number of cores for parallelization,
up to 8 cores. The experiments are performed on a laptop computer with 4 physical cores and
8 virtual cores.14 In each case, we execute the code 20 times, to account for small differences
in performance between runs.

Figure 8a illustrates the average total computing time, with the number of cores employed
on the x-axis and the time in seconds on the y-axis. The performance gains are substantial
up to the third core, going from around 16 seconds to less than 8, but they decrease after
that. Since total time spent in communication is large, adding workers does not necessarily

14More concretely, we use a Lenovo Y50-70 with Intel CoreTM i7-4710HQ CPU @2.50GHzx8, 15.6 GiB,
and NVIDIA GeForce GTX 860M/PCIe/SSE2 GPU. The operating system is Ubuntu 14.04, 64-bit.
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increase speed. This point is stressed in Figure 8b, which plots the number of cores against
the performance gains in terms of the normalized performance of one processor. If the
parallelization was perfect and no time was spent in communication, the performance gains
should be linear. That is, doubling the number of processors should double the speed of
computation, as represented by the 45◦ line (the inherently serial part of the code affected by
Amdahl’s law is small). In reality, the performance gains are always significantly below the
optimal gains and start decreasing after the third core. To make this argument clearer, we plot
in both figures the mean of the runs and the band between the min and max performance.
Of course, in larger problems (for instance, with more points in the state variable grids),
performance might continue increasing with additional processors. Similarly, better machines
(for example, with more physical processors) might deliver improved performance for a longer
range of processors used.
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Figure 8: Results in Julia with different number of processors. Number of experiments: 20.

When implementing parallel computing in Julia, the programmer must take into account
that the total computation speed is particularly sensitive to the use of global (@everywhere)
variables and large SharedArray objects. Many elements in shared memory can significantly
hamper the potential time gains that parallel computing brings. In applications where shared
memory is sizable, it might even be preferable to perform serial computing.
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7.2 Julia - MapReduce

Recall that the @parallel for is designed for applications, such as our life-cycle model, when
the problems assigned to each worker are small. In cases where there are many more control
variables or where we work with fine-mesh grids, or in models with many discrete choices,
@parallel for might slow down the computation. In these situations, a MapReduce-type of
function built into Julia is a superior approach.

To do so, we must look at our life-cycle problem from a different perspective. To solve
the problem serially, we compute the maximum attainable value –given the restrictions– for
every point –t, x, and e– in the grids (see Algorithm 4). A MapReduce function, instead, takes
as inputs a function and vector of values where we want to evaluate that function (recall our
discussion in Section 3). In our case, the inputs would be the function Value that computes
the optimal choice given state variables, and the vector of values would be a data structure
containing all possible combinations of the points in the grids for the state variables (or,
perhaps, some relevant subset of those combinations).

We show now how to implement this idea in practice. As before, the first step is to
initialize the number of parallel workers:

addprocs(6)

Next, we define a data structure modelState composed of all parameters and variables
needed for the computation in Value, and declare this structure as global:

@everywhere type modelState

ix::Int64

age::Int64

# ...

end

Note that the idea of creating a rich data structure to store all the state variables can be
applied to a wide class of dynamic models that goes well beyond our simple life-cycle economy.
More generally, using rich data structures allows for cleaner and less bug-prone code, since
we can define operators on the whole structure or overload already existing ones, instead of
operating on each element of the structure one at a time.15

15Overloading an operator is to define a different effect of the operation when the inputs are different, i.e,
the operator “+” works differently when applied to two integers than when we apply it to two matrices of
complex numbers. Also, we can be flexible in the definition of structures. For example, we can incorporate
on them just the states of the model, but not the parameters as well, as we do in the main text.
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Given that the function Value will now depend on the data structure: modelState,
instead of on each of the parameters, the function must be modified accordingly to take the
structure as an input:

@everywhere function Value(currentState::modelState)

ix = currentState.ix;

age = currentState.age;

# ...

VV = -10^3;

for(ixp = 1:nx)

# ...

end

return(VV);

end

Since the workers in the parallel pool must be able to observe the function Value, this must
also be declared as global with the directive @everywhere.

The last step is to use the Map-type of function to compute Value in parallel. In Julia,
this is done with the pmap function (pmap generalizes map to the parallel case), which receives
as inputs the function Value and a vector with all possible combinations of state variables
as stored in our data structure modelState:

for(age = T:-1:1)

pars = [modelState(ix, age, ..., w, r) for ind in 1:ne*nx];

s = pmap(Value,pars);

for(ind = 1:ne*nx)

ix = convert(Int, floor((ind-0.05)/ne))+1;

ie = convert(Int, floor(mod(ind-0.05, ne))+1);

V[age, ix, ie] = s[ix];

end

end

Figures 9a and 9b illustrate the total computing time and the time gains, respectively,
with a different number of processors when using the pmap function. Absolute computing
times using this procedure are very large when compared to the results of the last section,
and the performance gains from adding more workers to the parallel pool are very poor. One
possible explanation is that the pmap function is designed to be applied to tasks where each
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worker is assigned a large task. In our example, this is not the case. The computation speed,
in this case, could also be reduced by applying Julia-specific tricks, such as wrapping the
code inside a function. However, since the purpose of this paper is to make the comparison
as transparent as possible, we avoid applying language-specific procedures different from the
parallelization itself.
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Figure 9: Results with pmap function in Julia with different number of processors. Number
of experiments: 20.

7.3 Matlab

Matlab performs parallel computing through the parallel toolbox.16 While this tool is
probably the simplest of all the alternatives covered in this paper to implement, it also
suffers from limited performance and it is expensive to purchase.

As opposed to Julia, in which variables are neither observable nor modifiable by default
by all the workers in the parallel pool, in Matlab they are. Every time you declare a variable,
it can be accessed by any worker in the parallel pool. In this way, the programmer only has
to take care of initializing the parallel pool of workers and explicitly stating which for loop
she wants to be parallelized.

To initialize the parallel pool of workers, we use the function parpool():

parpool(6)

16We employ Matlab 2017b, with its corresponding parallel toolbox.
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In Matlab, as in Julia, initializing the workers in the parallel pool is also time consuming.
It can take some seconds, even a considerable fraction of a minute. Again, if the parallel pool
is initialized to perform a time-consuming task or to repeat the same task multiple times,
the fixed cost of initializing the parallel pool vanishes as a proportion of total computation
time, and parallel computing might increase performance. If the code only performs a small
task, the initialization cost of parallel computing might offset its benefits.

To state which loop is to be computed in parallel, instead of declaring the for loop, the
programmer must declare it as parfor:

for age = T:-1:1

parfor ie = 1:1:ne

% ...

end

end

Beyond these two steps (i.e., initializing the parallel pool and employing parfor), the devel-
oper does not need to exert further effort and Matlab takes care of all the rest.

Physical cores

0

5

10

15

20

25

30

35

40

45

50

55

1 2 3 4 5 6 7 8

# of cores

T
im

e 
(s

)

Mean Min−max

(a) Computing time (s)

Physical cores

45°

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

# of cores

R
el

at
iv

e 
pe

rf
or

m
an

ce

Mean Min−max

(b) Performance gains.

Figure 10: Results in Matlab with different number of processors. Number of experiments:
20.

Total computing time in Matlab is considerably higher than in Julia with the @parallel
for procedure, as illustrated by Figure 10a. While Julia takes around 16 seconds to compute
the model with one core, Matlab takes over 50 seconds. Similar to Julia, the performance
gains of using parallel computing in Matlab are not very large, as illustrated in Figure

34



10b. The speed-ups are well below the perfect linear gains represented by the 45◦ line. On
average, using 4 workers in the parallel pool decreases computing time by less than 2.5 times.
Computing in Matlab is very simple to implement, but does not bring substantial benefits
when compared to other languages. Indeed, after the computer reaches the limit of physical
cores, computing time deteriorates with additional virtual cores.

7.4 R

Parallelization in R is important because the language’s speed in serial computations is
quite often disappointing in comparison with other alternatives (see Aruoba and Fernández-
Villaverde, 2015), and yet a researcher might want to code on it to take advantage of its
superior statistical and graphics capabilities.

R, as an open source language, has multiple parallel computing packages created by dif-
ferent developers. Here we will cover only the widely used parallel package, although there
are other alternatives, such as the foreach and doParallel (we use R 3.4.1, which includes
parallel by default). In later sections, we will describe how to perform parallel computing
with C++ and how to embed C++ code in R through the Rcpp package, allowing the user to
expand the use of parallel computing in R.

The main functions in the parallel package for parallel computing are the parLapply

and the parSapply function, which are Map-type functions that perform the same task as the
lapply and sapply functions, respectively. lapply applies a function to a list of variables.
sapply performs the same task in a more user-friendly manner. R has strong functional
programming capabilities to manipulate lists that are often overlooked (for a crip explanation
of them, see Wickham, 2014).

To access the parallel package in R, the user must first install it and open the library:

install.packages("parallel")

library("parallel")

This package has the parLapply function. This is a parallel Map kind of function. As we
did with Julia, when the parallel procedure employs a MapReduce scheme, the user must
define the function Value:

Value = function(x){

age = x$age

ix = x$ix
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...

VV = -10^3;

for(ixp in 1:nx){

# ...

}

return(VV);

}

In R there is no need to define a data structure, as the vector of parameter and state
variables can be set as a list. Also, as opposed to Julia, in R all variables are observable
and modifiable by the workers of the parallel pool. Therefore, it suffices to generate a list that
contains all parameters and every possible combination of state variables. In our example,
we perform this using the lapply function, which is a Map that returns a list with parameters
and all possible combinations of state variables:

states = lapply(1:(nx*ne), function(x) list(age=age,ix=x, ...,r=r))

Here we could have used the parLapply function to create the list of inputs to solve our
main problem. Since we want to emphasize the use of parallel computing to compute the
value function, we omit this step.

The function makeCluster initializes the desired number of workers:

cl <- makeCluster(8)

Finally, the function parLapply(cl, states, Value) computes the function Value at
every element of the list states, which contains all combinations of state variables. The
package uses the cluster cl initialized above:

for(age in T:1){

states = lapply(1:(nx*ne), function(x) list(age=age,ix=x, ...))

s = parLapply(cl, states, Value)

}

The output of the parLapply function is a list with the elements of the evaluation of
Value at each of the elements in states. To store them in a three-dimensional matrix V, the
user must finally loop over all the elements of s and store them at V.

The results of our computation are reported in Figures 11a and 11b, where we see that R
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is extremely slow at computing the model. It takes over 1600 seconds with one core, and over
800 seconds with 8 cores (that is why we only run 5 experiments; with long run times, small
differences in performance between one run and the next are negligible). Moreover, among
all the computing languages presented in this paper, the performance gains of parLapply in
R are the smallest. Using 4 workers for the parallel computation increases performance by
just over 1.5, and using all available 8 workers reduces total computing time almost by half.
These results imply that, among the languages included in this paper, R is the least desirable
one to use for the computation of this class of models (for a similar result, see Aruoba and
Fernández-Villaverde, 2015).
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Figure 11: Results in R with different number of processors. Number of experiments: 5.

7.5 Python

Python is an open-source, interpreted, general purpose language that has become popular
among many scientists due to its elegance, readability, and flexibility. It is also a very
easy language to learn for those without previous experience in coding in general domain
languages.

As was the case with R, there are multiple modules to perform parallel computing in
Python. In this section, we will review the Parallel function from the joblibmodule, which
is a Map-like function.17 Thus, the reader will notice the similarities to previous sections that
used Map-type functions.

17We use Python 2.7.6. joblib provides lightweight pipelining in Python and, thus, is a good choice for
our exercise. For a more general description of parallelization in Python, see Gorelick and Ozsvald (2014).
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First, we import the joblib and multiprocessing modules:

from joblib import Parallel, delayed

import multiprocessing

Next, we define a data structure that contains the parameters and state variables, which
is going to be one of the inputs of the Map-type function:

class modelState(object):

def __init__(self, age, ix, ...):

self.age = age

self.ix = ix

# ...

In Python, the variables declared are globally observable and modifiable by the workers in
the parallel pool, so there is no need to specify their scope when defining them.

Next, we define the function Value that computes the maximum given some values of the
states:

def Value(states):

nx = states.nx

age = states.age

# ...

VV = math.pow(-10, 3)

for ixp in range(0,nx):

# ...

return[VV];

The function Parallel, from the joblib package, receives as inputs the number of work-
ers of the parallel pool, the function Value, and a list of elements of the type modelState,
one for each combination of values of the state variables. This function returns the function
Value evaluated at each of the state variables. This parallelization is done at every age
t ∈ {1, . . . , T}:

results = Parallel(n_jobs=num_cores)(delayed(value_func) (modelState(ix,

age, ..., w, r)) for ind in range(0,nx*ne))

Finally, we construct the value function by storing the values of results in a matrix V:
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for age in reversed(range(0,T)):

results = Parallel(n_jobs=cores)(delayed(value_func)

(modelState(ind,ne, ...)) for ind in range(0,nx*ne))

for ind in range(0,nx*ne):

ix = int(math.floor(ind/ne));

ie = int(math.floor(ind%ne));

V[age, ix, ie] = results[ind][0];

The results of the computations with Python are displayed in Figures 12a and 12b. As
in R, total computing time with one core is extremely slow. It takes almost 2,000 seconds,
on average, to compute the life-cycle model. However, parallel gains turn out to be very
good, as increasing the number of cores up to 4 decreases computing time to almost a third.
Increasing the number of cores beyond 4 does not generate any time improvements.

When compared to Julia, Matlab, and R, the performance gains of using 4 computing
cores with the Parallel function in Python are the largest. However, given its absolute
performance, it is still not a desirable language to compute models such as the one presented
in this paper.
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Figure 12: Results in Python with different number of processors. Number of experiments:
20.

Python can be accelerated with tools such as Numba. Dealing with them here, however,
requires mixing both parallelization and acceleration in Python, complicating our expository
goals. See, for more information, Gorelick and Ozsvald (2014).
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7.6 C++ and OpenMP

So far, we have dealt with scripting languages such as Julia, Matlab, R, and Python that
allow for fast parallelization using either built-in directives or additional packages. This
approach had the advantage of simplicity: minor changes to the serial code deliver programs
that can be run in parallel. Thus, these scripting languages are great ways to start working
on parallel or to solve mid-size problems. On the other hand, our results also show the
limitations of the approach: scaling up the problem in terms of processors is difficult. And
even with parallel processing, a researcher might still need extra speed from each processor.

A more powerful, but also more cumbersome, approach is to switch to a compiled language
and take advantage of the tools available for parallel programming in that language. C++ is a
natural choice of a compiled language because of its speed, robustness, flexibility, industry-
strength capabilities, the existence of outstanding open-source compilers such as GCC (indeed,
for all the experiments with C++ in this paper, we will use GCC 4.8.5), excellent teaching
material, and broad user base.18

One of the easiest tools to implement parallel computing in C++ is OpenMP (Open Multi-
Processing). OpenMP is an open-source application programming interface (API) specification
for parallel programming in C, C++, and Fortran in multiprocessor/core, shared-memory
machines (wrappers for OpenMP exist for other languages, including Python and Mex files
in Matlab). OpenMP was released in 1997 and its current version, as of April 2018, is 4.5.
OpenMP is managed by a review board composed of major IT firms and it is implemented
by the common compilers such as GCC and supported by standard integrated development
environments (IDEs) such as Eclipse.

OpenMP can be learned quickly as it is easy to code, and yet rather powerful. For example,
most implementations of OpenMP (although not the standard!) allow for nested parallelization
and dynamic thread changes and advanced developers can take advantage of sophisticated
heap and stack allocations. At the same time, most problems in economics only require
a reduced set of instructions from the API. However, OpenMP is limited to shared-memory
machines, such as personal computers or certain computer clusters, and the coder needs to
worry about contention and cache coherence.19

18Future standards of C++, such as C++20, plan to include executors as a building block for asynchronous,
concurrent, and parallel work. Parallel programming in C++, then, might look closer to the code of the script-
ing languages. In comparison, explicitly parallel languages such as Unified Parallel C, µC++, Charm++,
Chapel, and X10 have never left the stage of small experimental languages, and we will not cover them
here. High Performance Fortran and Coarray Fortran have suffered from the demise of Fortran outside
a small niche of specialized users, dealing more often than not with legacy code from previous decades.

19See http://www.openmp.org/ for the complete documentation and tutorials. Particularly instructive is
the tutorial at https://computing.llnl.gov/tutorials/openMP/. A more exhaustive treatment is Chap-
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OpenMP follows a multithreading “fork-join” paradigm: it executes the code serially until
a directive for parallel computing is found in the code. At this point, the part of the code
that can be computed in parallel is executed using multiple threads, and communication
happens between the master thread and the rest of the workers in the parallel pool. After
the parallel region is executed, the rest of the code is computed serially. Figure 13 illustrates
the execution of an OpenMP code. This suggests that a good rule of thumb for OpenMP is to
employ one thread per core.

Figure 13: OpenMP computing

The “fork-join” scheme, however, means that it is the job of the user to remove possible
dependencies across threads (for instance, variable values in thread n required in thread
n − j) and synchronize data. To avoid race conditions (some variables being computed too
early or too late), the developer can impose fence conditions and/or make some data private
to the thread, but those choices may cause performance to deteriorate. Synchronization is
expensive and loops suffer from time overheads.

We implement OpenMP as follows. First, before compilation, we must set the environmental
variable OMP_NUM_THREADS equal to the number of cores used in the parallel computation of
the code. In a Linux/Unix computer, this can be done with a Bash shell by opening the
terminal window and typing:

export OMP_NUM_THREADS=32

Second, at compilation time, the user must add the specific flag, depending on the com-
piler. These flags tell the compiler to generate explicitly threaded code when it encounters
OpenMP directives. With the GCC compiler, the compilation flag is -fopenmp. With the PGI

compiler, the required flag is -ta=multicore. Our particular example compiles as:

man, Jost, and Pas (2007).
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g++ Cpp_main_OpenMP.cpp -fopenmp -o -O3 Cpp_main

In the absence of this flag, the code will be compiled as regular C++ code, always a good
first step to debug and optimize the code before running it in parallel (perhaps with a less
challenging computing task, such as smaller grids or more lenient convergence tolerances).
Note that we also use the -O3 flag to generate optimized code. This flag can be omitted in a
first exercise while we debug and test the code, but, in “production” code, it accelerates the
performance of the code considerably.

Inside the code, we include the header omp.h to load the relevant library:

#include <omp.h>

Then, we add the directive #pragma omp parallel for right before each for loop we
want to parallelize. This directive has multiple options, and has to be accompanied by the
variables that are private to each worker and those that are shared. This is done using the
shared(...) and private(...) directives:

#pragma omp parallel for shared(V, ...) private(VV, ...)

for(int ix=0; ix<nx; ix++){

// ...

}

The programmer can specify additional options for the parallelization, such as explicitly
setting barriers that synchronize every thread, setting access to shared-memory objects by
workers, dividing tasks between the master thread and the workers, setting private threads
for specific workers, and so on.

Given the simplicity of implementing parallel computing in OpenMP, it is worth using it
even for small tasks. First, as opposed to Julia and Matlab, the time taken to initialize the
parallel pool is negligible, and the code is executed almost immediately. Second, the coding
time needed to compute the code in parallel is relatively low, as only a couple of lines of
code are needed. Third, as mentioned above, you can always compile your code without the
-fopenmp flag to run the code serially to compare the results obtained with and without
parallelization and debug them.

Total computing times in OpenMP with a different number of cores are presented in Figure
14a. As can be observed, the total time with only one core is around 4 seconds, considerably
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Figure 14: Results in C++ with OpenMP with different number of processors. Number of
experiments: 20.

better than Julia in Section 7.1 and orders of magnitude better than Matlab, R, and Python.
This is not a surprise given the advantages of compiled languages over scripting ones. See,
for similar results, Aruoba and Fernández-Villaverde (2015). It is worth recalling that the
C++ code for these computations was compiled with the -O3 optimization flag. In its absence,
C++’s performance deteriorates to nearly 20 seconds (see the Appendix for details about the
consequences of different optimization options).20

Figure 14b illustrates the performance gains with a different number of cores. The perfor-
mance grows almost linearly up to the third core; using 3 cores improves computation speed
by a factor of more than 2.5. Although there seems to be no performance gain in adding the
fourth core on average, the best case of the experiments made shows that it is possible to
achieve an almost-linear gain. In the best experiment, using 4 cores improves computation
speed by a factor of more than 3.5.21 Also, in contrast to the scripting languages, there are
gains from adding virtual cores beyond the number of physical cores. When computing the
problem with 8 cores, the average computing time falls by more than a factor of 3.

20Compilers for C++ such as GCC and Intel have options for automatic parallelization (see https://gcc.
gnu.org/wiki/AutoParInGCC and https://software.intel.com/en-us/node/522532) that try to include
OpenMP-like directives without any direct intervention by the programmer. Our experiences with automatic
parallelization over the years and in different applications have been disappointing.

21The relatively high variance of the experiments is due to the short run time of the solution of the model in
C++. A fix to avoid this variance would be to increase the number of grid points. But then, the computation of
R and Python would take too long. Since the primary goal of this paper is to illustrate how each parallelization
method works –not to measure their time performance with utmost accuracy –we keep the experiments the
way they are.
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7.7 Rcpp and OpenMP

Having described the relatively poor performance of parallel computing in R and the great
gains in C++ at a relatively low cost, it is worth asking whether it is possible to perform
the computations in R by creating a C++ function that uses OpenMP. Fortunately, the Rcpp

package in R allows the user to create functions in C++. These functions can use OpenMP to
perform the computations in parallel.22

All the documentation of the Rcpp package is available on the Rcpp for Seamless R and
C++ Integration website. To use Rcpp, the user must first install the package and import
the library from within R:

install.packages("Rcpp")

library("Rcpp")

The user must write the C++ function with the appropriate C++ directives, as described
in Section 7.6:

#include <omp.h>

// ...

#pragma omp parallel for shared(...) private(...)

for(int ix = 0; ix<nx; ix++){

//...

}

Before importing the function with Rcpp, we must explicitly state which functions in the
C++ code are to be imported to R, by adding the following code on the line before the function
C++ code:

// [[Rcpp::export]]

There are three options to set the number of workers on the parallel pool. The first one is
to set the environmental variable OMP_NUM_THREADS to the desired number of workers directly
from the terminal. In a Linux/Unix machine, this can be done in a .bash_profile file or
from the terminal:

22Although other packages allow parallel computing with Rcpp, such as the RcppParallel, their imple-
mentation costs are higher. As described in the last section, with OpenMP, parallel computing can be achieved
by adding only a couple of lines of code. Also, a similar mixed-programming approach can be implemented
with Mex files in Matlab. Our experience is that Rcpp is much easier and efficient than Mex files. See, for
instance, the code and results in Aruoba and Fernández-Villaverde (2015).
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export OMP_NUM_THREADS=32

The second option is to include the following code right before the first parallel region of the
C++ code:

omp_set_num_threads(n)

The third option is to include the num_threads(n) option on the #pragma statement, where
n is the number of desired workers in the parallel pool:

#pragma omp parallel for shared(...) private(...) num_threads(n)

for(int ix=0; ix<nx; ix++){

// ...

}

Given that the C++ is compiled from within R, we must be sure that the OpenMP flag is
added at compilation. For this, we should add the −fopenmp flag using the Sys.setenv()

function from within R:

Sys.setenv("PKG_CXXFLAGS"=" -fopenmp")

Finally, the C++ code can be compiled and imported from R, so the function that computes
the value function can be called from R. The function sourceCpp is used to compile the C++
code and create such a function:

sourceCpp("my_file.cpp")

The sample codes in R and C++ can be found on the Github repository of this paper. The
user can compare how the C++ code has to be modified in order to to import it with Rcpp,
and how it can be executed from R.

The results, presented in Figures 15a and 15b, are outstanding and very similar to those
from C++ with OpenMP in Section 7.6. This is not surprising, as Rcpp is nothing different
than compiling and executing the C++ from within R. Again, the performance improvements
are almost linear up to the third core. The best-case scenario when adding the fourth core
is almost linear. Adding workers beyond the fourth core generates small improvements in
average performance. One difference with the C++ code is that the Rcpp code runs much
faster. This is because the C++ code in Section 7.6 was compiled without any optimization
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flag. In contrast, Rcpp compiles the code with the -O3 optimization flag by default, which
significantly improves absolute computation speeds. Section 10 presents the results when the
C++ code is compiled with different optimization flags.
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Figure 15: Results in Rcpp with OpenMP with different number of processors. Number of
experiments: 20.

7.8 MPI

Despite its simplicity, OpenMP requires, as we have repeated several times, the use of shared
memory. Such a requirement limits the range of machines that we can use for parallelization.
Most large computers use distributed memory as shared memory becomes unfeasible after
some size limit. Also, the use of shared memory by OpenMP might complicate the portability
of the code among machines with different memory structures. Beyond the requirement
of the reproducibility of research, portability matters in parallel computing more than in
serial applications because a researcher may want to develop, debug, and test the code on a
computer different from the one on which the final code will be run. For example, the former
tasks can be done on a regular workstation (cheap and convenient), while the latter is done
on a large server (expensive and more cumbersome).

The natural alternative is to use MPI in C++ (or other appropriate language; MPI has
bindings for other programming languages, such as Fortran, Python, and R). MPI stands for
message passing interface, and is a library and a set of function calls that allow communication
between parallel processes executed on distributed systems, such as computer clusters and
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multicore computers. MPI ensures that the code will be portable from one platform to another
with minimal changes and it allows for outstanding optimization of performance.

More concretely, we will use a popular open source implementation of MPI, called Open

MPI, prepared by an extensive group of contributors and supported by many members and
partners (including AMD, Amazon, Intel, and NVIDIA). This implementation conforms with
the MPI-3.1 standards and is fully documented on Open MPI’s website.23

1

Send mα

Receive mγ

2

Receive mα

3

Send mβ

Send mγ

4

Receive mβ

Figure 16: MPI computing

In MPI, the whole code is executed simultaneously by every thread, and communication
directions are executed, which means that the programmer must explicitly give instructions
for the communication that should take place between workers in the parallel pool. Figure
16 illustrates the behavior of the threads in an MPI program; all workers perform tasks simul-
taneously, and communication happens between them at different moments. For instance,
thread 1 sends message mα to thread 2, while it receives message mγ from thread 3. You can
compare Figure 16 with the “fork-join” paradigm of OpenMP shown in Figure 13, where some
parts of the code are executed in parallel and some others serially.

In particular, MPI can broadcast (transfers an array from the master to every thread),
scatter (transfers different parts of an array from the master node to every thread; note the
difference with broadcasting), and gather information (transfers an array from each of the
threads to a single array in the master node). Figure 17 illustrates the ideas of broadcasting,
scattering, and gathering of information among workers.

23A basic tutorial of MPI can be found at Linux Magazine. More advanced tutorials are at LLNL tutorials
and An MPI Tutorial. Gropp, Lusk, and Skjellum (2014) is an excellent textbook on MPI.
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Figure 17: MPI Functions

This richness in capabilities means that, in comparison with the simplicity of OpenMP, MPI
is much more complex. For example, MPI 3.1 has more than 440 functions (subroutines). This
richness is required to provide the multiple directives for communication between threads to
ensure that the library can handle even the most challenging numerical problems. While a
description of all the MPI functions and their inputs would require a whole book, some of the
main ones are:

• MPI_Init: initializes the threads.

• MPI_Comm_size: returns the total number of MPI processes in the specified communi-
cator.

• MPI_Comm_rank: returns processor rank within a communicator.

• MPI_Bcast: broadcasts an array.

• MPI_Scatter: scatters an array.

• MPI_Gather: gathers an array.

48



• MPI_Barrier: stops the execution until every thread reaches that point.

• MPI_Send: sends messages between threads.

• MPI_Recv: receives messages from another thread.

• MPI_Finalize: finalizes the threads.

Other functions, such as MPI_Barrier, are used to synchronize the work of each thread
in the parallel pool, as illustrated in Figure 18.

Figure 18: MPI synchronization with barrier function

The MPI programmer must explicitly divide the state space between the workers in the
parallel pool and assign specific tasks to each worker. This strategy is, therefore, very different
from the parallel computing routines in previous subsections, in which it sufficed to state the
loop that had to be parallelized or to use a Map-type function.

The first step to start the parallel pool is to initialize the threads with the MPI_Init()

function:

MPI_Init(NULL, NULL)

Then, we store the total number of threads and thread id to assign jobs:
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int tid, nthreads;

MPI_Comm_rank(MPI_COMM_WORLD, &tid)

MPI_Comm_size(MPI_COMM_WORLD, &nthreads)

Next, we define the portion of state space that each thread must execute, according to
the thread id, tid:

int loop_min = (int)(tid * ceil((float) nx*ne/nthreads))

int loop_max = (int)((tid+1) * ceil((float) nx*ne/nthreads))

The MPI_Bcast function instructs the master thread to send copies of the same informa-
tion to every worker in the parallel pool. In our model, at every iteration t, we need the
master thread to send a copy of the value function at t+1. For this reason, we must employ
the MPI_Bcast function at the beginning of the loop:

MPI_Bcast(Value, T*ne*nx, MPI_FLOAT, 0, MPI_COMM_WORLD);

Given that every thread will execute the same task, each one for a different portion of
the state space, we must make this explicit on the for:

for(int ind = loop_min; ind < loop_max; ind++){

ix = floor(ind/ne);

ie = ind % ne;

// ...

}

The MPI_Gatherv function collects information from each worker in the pool and stacks
it in a matrix. At the end of the for loop, the master thread needs to collect the respective
computations of the value function made by each worker, and stack them in a matrix that
stores the value function. This value function is then broadcast in the next iteration to
workers, and so on:

MPI_Gatherv(Valp, ..., MPI_COMM_WORLD);

The last step is finalizing the multithreading with the function MPI_Finalize.

MPI_Finalize();
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The complete code can be found on the Github repository of this paper and deserves
some attention to fully understand our paragraphs above.

When applied to our life-cycle model, the performance of MPI with C++ is excellent. MPI
takes advantage of all 8 processors and computes the problem nearly four times faster than in
serial mode (see Figures 19a and 19b). At the same time, the performance is not outstandingly
better than OpenMP’s. Up to 4 cores, the performance is almost equivalent, being linear on
average up to the third core, and the variance of performance gains growing with the fourth
core. The only significant difference is that with MPI, the variance of performance across
experiments is smaller and the average larger when using more than four threads.

Physical cores

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

# of cores

T
im

e 
(s

)

Mean Min−max

(a) Computing time (s)

Physical cores

45°

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

# of cores

R
el

at
iv

e 
pe

rf
or

m
an

ce

Mean Min−max

(b) Performance gains.

Figure 19: Results in C++ with MPI with different number of processors. Number of experi-
ments: 20.

But our example was not ideal for MPI: we run the code in a machine with shared memory
and only 8 cores. If we wanted to run the code with dozens of cores, MPI would shine and
show all its potential, while OpenMP would reach its limits.

Our results highlight the trade-off between OpenMP and MPI: OpenMP is much simpler to
code and its performance is nearly as good as MPI, but it requires shared memory. MPI

can handle even the most difficult problems (state-of-the-art numerical problems in natural
sciences and engineering are computed with MPI), but it is much harder to employ.

Our educated guess is that, for most of the computations performed in economics (and the
machines many researchers will have access to), economists will find OpenMP more attractive
than MPI, but with a sufficient number of exceptions as to justify some basic familiarity with
the latter.
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8 Parallelization Schemes on GPUs

Over the last ten years, parallel computation on GPUs has gained much popularity among
researchers and in industry. Although initially developed for graphics rendering (thus, their
name), GPUs are particularly convenient for operations on matrices, data analysis, and
machine learning. The reason is that tasks involved in these algorithms require operations
with array manipulation similar to the ones for which GPUs are optimized. In these problems,
the serial part of the code is run in the CPU, and the GPU is used only when the user
explicitly states the part of the code to be computed in parallel. Furthermore, GPUs are
comparatively cheap and come pre-installed on nearly all computers for sale nowadays. See
Aldrich, Fernández-Villaverde, Gallant, and Rubio-Ramírez (2011) and Aldrich (2014) for
detailed explanations of how GPUs work and for the application of their computational
power to economics.

GPU CUDA Cores Memory

GeForce GTX TITAN Z 5760 12 GB
NVIDIA TITAN Xp 3840 12 GB
GeForce GTX 1080 Ti 3584 11 GB
GeForce GTX 690 3072 4 GB

GeForce GTX 780 Ti 2880 3 GB
GeForce GTX 1080 2560 8 GB
GeForce GTX 780 2304 3 GB
GeForce GTX 980 2048 4 GB
GeForce GTX 1070 1920 8 GB
GeForce GTX 970 1664 4 GB
GeForce GTX 770 1536 2 GB

Table 1: Number of CUDA cores and memory in NVIDIA GPUs.

The advantage of GPU computing is that, unlike CPUs, which have at most a couple of
dozen processing cores, GPUs have thousands of computing cores. Table 1 presents the num-
ber of computing cores and memory of some of the available desktop NVIDIA GPUs (NVIDIA
is the leading vendor of GPUs). And just as you can stack several CPUs in one machine, it
is also possible to install several GPUs in the same computer, which increases performance
even more (although it also complicates programming). Thus, through GPU computing, the
user can achieve much larger speed gains than with CPU parallel computing. Depending
on the type of computations performed and on the memory handling and communication
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management between the CPU and the GPU, the performance gains range from 10 times as
fast as the serial code, up to hundreds of times faster. Examples of applications in economics
well-suited for GPUs include dense linear algebra, value function iteration, Monte Carlos,
and sequential Monte Carlos.

But the thousands of cores of a GPU come at a cost: GPUs devote more transistors
to arithmetic operations rather than flow control (i.e., for branch prediction, as when you
execute an “if” conditional) and data caching. Thus, not all applications are well-suited for
computation on a GPUs (or the corresponding algorithms may require some considerable
rewriting). For instance, applications involving searching or sorting of vectors typically re-
quire too much branching for effective GPU computing. Also, memory management can be
difficult.

Figure 20: CUDA GPU architecture.

Figure 20 illustrates the architecture of an NVIDIA GPU.24 The CPU is referred to as
the “host,” and the GPU is referred to as the “device.” The device is composed of grids,
where each grid is composed of two-dimensional blocks. The dimensions of the grids and
blocks are defined by the user, with the only restriction being that each block can handle up

24Source for the figure: NVIDIA CUDA Compute Unified Device Architecture, Programming Guide
1.0, http://developer.download.nvidia.com/compute/cuda/1.0/NVIDIA_CUDA_Programming_Guide_1.
0.pdf.
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to 512 threads. This limitation means that the programmer must carefully divide the tasks
such that each of these blocks does not have more than 512 jobs. The user must also take
care in regard to communication and memory handling. More concretely, at every parallel
region of the code, the user must explicitly transfer variables from the CPU to the GPU by
appropriately managing the memory available in the GPU.

In this section, we will present two approaches to parallelization in GPUs: CUDA, in
Subsection 8.1, and OpenACC, in Subsection 8.2. CUDA is the traditional environment for
coding in GPUs, with plenty of examples and a wide user base. The drawback is that CUDA
requires the codes to include many low-level instructions to communicate between the CPU
and GPU and for memory management.25 OpenACC is a more recent, but rather promising,
avenue to simplify computation in GPUs. OpenACC requires much less effort by the coder and
can work across different platforms and mixed processing environments, but at the potential
cost of slower code. We will skip a description of OpenCL, an open standard for computing
in heterogeneous platforms. While OpenCL has the advantage of not being tied to NVIDIA

GPUs, its user base is thinner and less dynamic, and its performance is generally inferior to
CUDA’s. Similarly, one can program in the GPU with the Matlab parallel toolbox and in
R with the gpuR package. However, if a researcher needs enough speed as to require the use
of a GPU, perhaps moving first to a language more efficient than Matlab or R before diving
into GPUs seems a wiser course of action.26

8.1 CUDA

CUDA, which stands for Computer Unified Device Architecture, is a parallel computing model
with extensions for C, C++, Fortran, and Python, among others, that allows the implemen-
tation of parallel computing on the GPU of a computer. The CUDA model was designed by
NVIDIA. It was first released in 2007 and the current stable version, as of April 2018, is 9.2,
with an extensive range of applications and a deep user base.27

The first step for parallel computing in CUDA is to explicitly define the functions that are
going to be executed from within the GPU, as opposed to those that are executed from the

25This disadvantage can partially be addressed by the use of libraries such as ArrayFire (https:
//arrayfire.com/), which allow high-level instructions and function calls. In our assessment, however,
going with OpenACC seems at this moment a better idea for the long run.

26The repository https://github.com/JuliaGPU lists several alternatives for GPU computing in Julia,
but the packages are still far from easy to employ by less experienced users.

27An excellent exposition of CUDA is offered by Kirk and Hwu (2014). Some tutorials
and links are https://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf, https:
//developer.nvidia.com/cuda-education, and https://devblogs.nvidia.com/parallelforall/
easy-introduction-cuda-c-and-c/.
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CPU.28 The former should be preceded by the directive __device__, while the latter should
be preceded by __global__:

// Functions to be executed only from GPU

__device__ float utility(float consumption, float ssigma){

float utility = pow(cons, 1-ssigma) / (1-ssigma);

// ...

return(utility);

}

// Functions to be executed from CPU and GPU

__global__ float value(parameters params, float* V, ...){

// ...

}

Next, the user must allocate memory in the device (GPU) for the variables that are
going to be transferred from the host (CPU) at the beginning of the parallel computation.
Analogous to the malloc function in C++, the cudaMalloc allocates the required memory
in the GPU. This function has as input the name of the variable to be copied and its size,
which is defined as an element of type size_t. In our case, we are going to initialize the
value function in the GPU with the name V:

float *V;

size_t sizeV = T*ne*nx*sizeof(float);

cudaMalloc((void**) &V, sizeV);

Since we now have to handle memory in the CPU and memory in the GPU, we must
assign different names to objects that live in both. For example, the value function is going
to be kept in the host memory, but will be transferred to the device and updated at each
iteration. Hence, we must assign a name to the value function in the host, and a different
name for the value function in the device. With the cudaMalloc function above, we named
the value function living in the device as V.

Now we have to initialize the value function that lives in the host. For ease of reference,
we will precede the name of variables in the host with h, so the value function in the host is
called hV:

28The reader will benefit much from following the next pages while checking the code posted on the Github
repository.
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float *hV;

hV = (float *)malloc(sizeV);

Once memory is allocated in the GPU, the user must transfer from host to device the
variables that need to be accessed and/or modified in the parallel computations. The function
used to transfer information between host and device is cudaMemcpy, which uses as input the
object in the device memory that was already initialized (V), the object in the host memory
that is going to be copied to the device (hV), the size of the object (sizeV) and the reserved
word cudaMemcpyHostToDevice that specifies the direction of the transfer:

cudaMemcpy(V, hV, sizeV, cudaMemcpyHostToDevice);

The user should initialize and transfer any other variables that will be used in the device for
every computation in the same way.

Next, we must take care of defining the dimensions of the blocks and grids for paral-
lelization in the GPU. Each thread in the GPU will have a 5-dimensional “coordinate” given
by the number of its grid, the 2-dimensional coordinate of its block, and its 2-dimensional
coordinate within the block. This 5-dimensional “coordinate” facilitates parallelization. For
example, if the user only wants to parallelize along one dimension –such as the capital x
dimension– she can define only one grid and one block of dimensions 1×nx. In this way, the
thread i will be assigned the task of computing the value function at the i-th point in the
grid for capital. Here, we must be careful not to violate the restriction that any given block
can have at most 512 threads, which means that nx ≤ 512 must hold.

Similarly, if the user wants to parallelize across 2 dimensions –say, the productivity e and
capital x dimensions– she can define one grid with one block of dimensions ne × nx. Here,
the thread with coordinates (i, j) inside the block will be assigned the task of computing the
value function at the i-th entry of the productivity grid and the j-th entry of the capital grid.
Again, we must ensure that ne · nx ≤ 512.

The dimensions of blocks and grids are defined as objects of type dim3, using the CUDA

constructors dimBlock and dimGrid. Remember not to assign more than 512 threads per
grid!

int block_height = 20;

int block_width = ne;

dim3 dimBlock(block_height, block_width);

dim3 dimGrid(nx/block_size, 1);
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Given that it is very likely that the restriction nx · ne ≤ 512 will be violated, we define
only one grid with multiple blocks. Each block has a width of size ne and a height of size
20. We define as many blocks as necessary to cover all points in the productivity and capital
grids.

As already explained, the job assigned to each thread should be a function of its coordi-
nates inside the 5-dimensional structure defined by the user within the device. The variables
blockIdx.x, blockIdx.y, blockIdx.z, blockDim.x, ..., are used to access the coordinates
of each thread. Given these coordinates, the user should define the tasks assigned to every
thread. For example, in the case where we want to parallelize across the productivity and
capital dimensions, the function that computes the value function will start as follows:

__global__ float value(parameters params, float* V, ...){

int ix = blockIdx.x * blockDim.x + threadIdx.x;

int ie = threadIdx.y;

// ...

}

This function will compute the value function at the ix point in the capital grid and
ie point in the productivity grid. Here, ie is simply given by the y-coordinate inside the
block, threadIdx.y, but ix is given both by the coordinate of the block, blockIdx.x, and
the x-coordinate within the block, threadIdx.x.

Finally, to compute the value function in parallel, the user can call the function value,
explicitly stating the dimensions defined above within <<<...>>>. After calling the func-
tion, we must check that all workers finish their job before iterating to t − 1. For this, we
use the function cudaDeviceSynchronize right after calling the function value:

value<<<dimGrid, dimBlock>>>(params, V, ...);

cudaDeviceSynchronize();

The function value is executed in the device, but is called from the host, so it is defined
as __global__. Only functions that are called by the device, within parallel executions,
should be preceded by __device__.

The function value is called at every iteration t ∈ {1, . . . , T}. Once the value function is
computed for a given t, the value function must be copied back to the CPU, again using the
cudaMemcpy function. However, the last input must be set as cudaMemcpyDeviceToHost, to
specify that V must be copied from device to host:
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cudaMemcpy(hV, V, sizeV, cudaMemcpyDeviceToHost);

Finally, the function cudaFree is used to free the memory in the device at the end of the
computation:

cudaFree(V);

We run our CUDA code on the same machine as all the previous experiments. The computer
is equipped with a GeForce GTX 860M GPU with 640 CUDA cores and 4GiB of memory.
The average run time in 20 experiments is 1.86 seconds, slightly better, for instance, than
C++–OpenMP in 8 cores. As in the case with MPI, our problem is not complex enough to
show all the power of CUDA, but the results give, at least, a flavor of how to use it and its
potentialities.

8.2 OpenACC

OpenACC is a model designed to allow parallel programming across different computer ar-
chitectures with minimum effort by the developer. It is built around a very simple set of
directives, very similar in design to OpenMP. To implement parallel computing, it suffices to
add a couple of lines of code, or directives, before a section of the code the researcher wants
to parallelize. Moreover, it is explicitly designed to be portable across different computer
architectures. This means that the same program can be compiled to be executed in paral-
lel using the CPU or the GPU (or mixing them), depending on the hardware available. In
this way, OpenACC can be used to perform the same task as OpenMP and MPI, with a similar
performance, but can also be used to perform GPU computing when available. Given the
similarities to its implementation in OpenMP, but the clear advantage of allowing the user to
execute the code in the GPU in addition to the CPU, OpenACC represents a more powerful
tool, although one still in relatively early stages of development. There are only a couple
of books written about it, for example, Farber (2017) and Chandrasekaran and Juckeland
(2017), neither of which is fully satisfactory.

OpenACC, like OpenMP, executes the code serially using the fork-join paradigm, until a
directive for parallel computing is found. The section of the code that is parallelizable is
then computed with the use of multiple CPU (or GPU) threads. Communication between
the master and worker threads in the parallel pool is automatically handled, although the
user can state directives to grant explicit access to variables, and to transfer objects from the
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CPU to the GPU when required. After the parallel region is executed, the code is serially
executed until a new directive is found. As was the case with OpenMP, Figure 13 illustrates
code execution in OpenACC.

The OpenACC website describes multiple compilers, profilers, and debuggers for OpenACC.
We use the PGI Community Edition compiler, which is a free release of PGI. The reason for
using PGI rather than GCC, as in Section 7.6 with OpenMP, is that the PGI compiler can be
used with the CPUs and with NVIDIA Tesla GPUs. In this way, it suffices to select different
flags at compilation time to execute the code in the CPU or the GPU, as will become clear
in this section.

To implement the parallelization, we must include the directive #pragma acc parallel

loop right before the for loop:

#pragma acc parallel loop

for(int ix=0; ix<nx; ix++){

// ...

}

This directive has multiple options, among which the private(...) option allows the
user to specify which variables are private to each worker. The programmer can also explicitly
set barriers that synchronize every thread, synchronize the memory in the CPU and the GPU,
and so on. If we want to perform parallelization only with the CPU, in which the memory is
shared by workers, this directive and any options included are all that is required. We can go
on to compile the code, as explained below, and execute the program. If we want to execute
the code with the GPU, a data movement must be specified between the host memory (CPU)
and the device memory (GPU), given that the CPU and GPU do not share memory.

Once compiled, the OpenACC code works as follows. The program is executed in serial by
the CPU until the first parallelization directive is encountered in the code. At this point, the
variables and objects required for each computation must be copied from the host memory
(CPU) to the device memory (GPU), before executing the code in parallel. Once the parallel
region is executed, for the program to work correctly, the objects that were stored in the device
memory must be copied back to the host memory. After that, the program is executed by
the CPU in serial, until another parallel directive is encountered. For this reason, the user
must specify the points at which data movements should occur between the CPU and the
GPU.

The main directive for data movements is #pragma acc data copy(...), where the
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variables that should be copied back and forth from CPU to GPU are specified inside the
copy(...) option. There are different options for data movements, such as copyin(...),
which only moves data from CPU to GPU, copyout(...), which only moves data from
GPU to CPU, and so on. This directive should be specified right before the #pragma acc

parallel loop that declares the beginning of a parallel region:

#pragma acc data copy(...)

#pragma acc parallel loop

for(int ix = 0; ix<nx; ix++){

//...

}

If we include the directive #pragma acc data copy(...), but compile the code to be exe-
cuted only with the CPU, this data movement directive is ignored, a convenient feature for
debugging and testing.

At this point, by choosing the appropriate compilation flag, the user can choose to compile
the code to be executed in parallel only in the CPU or in the GPU. To compile the code to be
executed by the CPU, we must include the -ta=multicore flag at compilation. In addition,
the -acc flag must be added to tell the compiler this is OpenACC code:

pgc++ Cpp_main_OpenACC.cpp -o Cpp_main -acc -ta=multicore

If, instead, the user wants to execute the program with an NVIDIA GPU, we rely on the
-ta=nvidia flag:

pgc++ Cpp_main_OpenACC.cpp -o Cpp_main -acc -ta=nvidia

Importantly, we do not need to modify the code to parallelize with a multicore CPU or
with a GPU. This makes OpenACC a very portable parallel computing extension, and reduces
significantly the barriers to GPU computing.

When we run the code 20 times on the same computer and GPU described in previous
sections, we measure an average run time of 1.42 seconds, a record among all the options
presented so far. This result is impressive: given how easy it is to code in OpenACC and the
portability of the code among machines and processing units, OpenACC seems to be one of
the best available avenues for parallelization.
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9 Beyond CPUs and GPUs

There are several alternatives for parallel computation beyond using CPUs and GPUs. First,
there is an intermediate option, the bootable host processors Intel Xeon PhiTM, which can
pack, in the current generation, up to 72 cores. In this guide, it is not necessary to cover these
processors, since MPI and OpenACC can easily handle them with straightforward adaptations
of the material presented in previous pages.

Similarly, we will not discuss how to use tensor processing units (TPUs) and field-
programmable gate arrays (FPGA). The former have just come on the market and are still
in an early stage of development, and we are not aware of any application in economics that
uses them. The latter are probably not efficient for most problems in economics due to the
hardware development cost. Nevertheless, for examples of this approach in finance, where
the cost considerations might be different, see the papers in Schryver (2015).

10 Conclusion

As a summary of our discussion, Figure 21 illustrates the absolute performance of the com-
putation with each of the programming languages, according to the number of threads used
in the parallel pool (for codes in the GPU, we report a constant line, since, by construction,
we do not change the number of cores). The computation times for Julia are calculated
with the pmap function. Matlab, Python, and R are not included, because they take much
longer than the rest of the languages.

The best performance is attained when computing the model with CUDA and OpenACC

(when the latter performs the computations with the GPU). When looking only at parallel
CPU computing, the best performance is obtained with C++–OpenMP and C++–MPI. Rcpp
does an excellent job, nearly matching the speed of C++–OpenMP and C++–MPI. Julia falls
somewhat behind, pointing perhaps to the need to reconfigure our code to take advantage
of the peculiarities of the language. Our results show also that employing Matlab, Python,
and R for this class of problems is not recommended and that parallelization does not fix the
speed problem of these languages.

We conclude our guide by reiterating that parallelization offers a fantastic avenue to
improve the performance of computations in economics. Furthermore, parallelization is rel-
atively easy to implement once one understands the basic concepts. Even in Julia, where
parallelization is trivial, and with a standard laptop, one can cut in half the run time of a
realistic model. If the researcher is willing to jump to OpenMP and OpenACC, the gains are
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Figure 21: Computing time (s) by language with different number of processors.

potentially much larger, especially if she has access to a more powerful computer or cloud
services.

Appendix

To understand the role that optimization flags play in the performance of the C++ codes, we
plot in Figure 22 the run times for a different number of processors with no optimization
flags and with three flags (from less aggressive, -O1, to most aggressive, -O3) in the case of
C++–OpenMP.
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Figure 22: Computing time(s) in C++ with different number of processors and optimization
flags.

References

Aldrich, E. M. (2014): “GPU Computing in Economics,” in Handbook of Computational
Economics Vol. 3, ed. by K. Schmedders, and K. L. Judd, vol. 3 of Handbook of Computa-
tional Economics, pp. 557 – 598. Elsevier.

Aldrich, E. M., J. Fernández-Villaverde, A. R. Gallant, and J. F. Rubio-

Ramírez (2011): “Tapping the Supercomputer under your Desk: Solving Dynamic Equi-
librium Models with Graphics Processors,” Journal of Economic Dynamics and Control,
35(3), 386–393.

Aruoba, S. B., and J. Fernández-Villaverde (2015): “A Comparison of Programming
Languages in Macroeconomics,” Journal of Economic Dynamics and Control, 58, 265 –
273.

Ben-Porath, Y. (1967): “The Production of Human Capital and the Life Cycle of Earn-
ings,” Journal of Political Economy, 75(4), 352–365.

Calderhead, B. (2014): “A General Construction for Parallelizing Metropolis-Hastings

63



Algorithms,” Proceedings of the National Academy of Sciences of the United States of
America, 111(49), 17408–17413.

Chandrasekaran, S., and G. Juckeland (2017): OpenACC for Programmers: Concepts
and Strategies. Addison-Wesley.

Chang, M. (2017): “Marriage, Portfolio Choice, and Labor Supply,” Working Paper, Uni-
versity of Pennsylvania.

Chapman, B., G. Jost, and R. v. d. Pas (2007): Using OpenMP: Portable Shared Memory
Parallel Programming. The MIT Press.

Cocco, J. F. (2005): “Consumption and Portfolio Choice over the Life Cycle,” Review of
Financial Studies, 18(2), 491–533.

Conesa, J. C., and D. Krueger (1999): “Social Security Reform with Heterogeneous
Agents,” Review of Economic Dynamics, 2(4), 757–795.

Devroye, L. (1986)): Non-Uniform Random Variate Generation. Springer-Verlag.

Farber, R. (ed.) (2017): Parallel Programming with OpenACC. Morgan Kaufmann.

Fernández-Villaverde, J., and D. Krueger (2011): “Consumption and Saving over the
Life Cycle: How Important are Consumer Durables?,” Macroeconomic Dynamics, 15(5),
725–770.

Fernández-Villaverde, J., and J. F. Rubio-Ramírez (2007): “Estimating Macroeco-
nomic Models: A Likelihood Approach,” Review of Economic Studies, 74(4), 1059–1087.

Gorelick, M., and I. Ozsvald (2014): High Performance Python: Practical Performant
Programming for Humans. O’Reilly Media.

Gourieroux, C., and A. Monfort (1997): Simulation-based Econometric Methods. Ox-
ford University Press.

Gropp, W., E. Lusk, and A. Skjellum (2014): Using MPI: Portable Parallel Program-
ming with the Message-Passing Interface. The MIT Press, 3rd edn.

Hager, G., and G. Wellein (2011): Introduction to High Performance Computing for
Scientists and Engineers. CRC Press.

Ingvar, S. (2010): “Efficient Parallelisation of Metropolis-Hastings Algorithms using a
Prefetching Approach,” Computational Statistics & Data Analysis, 54(11), 2814 – 2835.

64



Kirk, D. B., and W. W. Hwu (2014): Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann, 3rd edn.

Lin, Y. C., and L. Snyder (2008): Principles of Parallel Programming. Pearson/Addison
Wesley.

McCool, M. D., A. D. Robison, and J. Reinders (2012): Structured Parallel Program-
ming Patterns for Efficient Computation. Elsevier/Morgan Kaufmann.

Moore, G. E. (1965): “Cramming More Components onto Integrated Circuits,” Electronics,
38(8).

(1975): “Progress in Digital Integrated Electronics,” Electron Devices Meeting, 21,
11–13.

Murray, C. J. (1997): The Supermen: The Story of Seymour Cray and the Technical
Wizards Behind the Supercomputer. John Wiley & Sons, Inc.

Nishiyama, S., and K. Smetters (2014): “Analyzing Fiscal Policies in a Heterogeneous-
Agent Overlapping-Generations Economy,” in Handbook of Computational Economics, ed.
by K. Schmedders, and K. L. Judd, vol. 3, pp. 117–160. Elsevier.

Pacheco, P. (2011): An Introduction to Parallel Programming. Morgan Kaufmann.

Robert, C. (2007)): The Bayesian Choice: From Decision-Theoretic Foundations to Com-
putational Implementation. Springer-Verlag, 2nd edn.

Roberts, G. O., A. Gelman, and W. R. Gilks (1997): “Weak Convergence and Optimal
Scaling of Random Walk Metropolis Algorithms,” The Annals of Applied Probability, 7(1),
110–120.

Rünger, G., and T. Rauber (2013): Parallel Programming - for Multicore and Cluster
Systems. Springer, 2nd edn.

Schryver, C. d. (2015): FPGA Based Accelerators for Financial Applications. Springer.

Wickham, H. (2014): Advanced R, Chapman & Hall/CRC The R Series. Taylor & Francis.

Zarruk-Valencia, D. (2017): “Wall Street or Main Street: Who to Bail Out?,” Job market
paper, University of Pennsylvania.

65


	Introduction
	Why Parallel?
	What Is Parallel Programming?
	When Do We Parallelize?
	An application where parallelization works: Value function iteration
	An application where parallelization struggles: A random walk Metropolis-Hastings
	The road ahead

	A Life-Cycle Model
	Different Computers
	Parallelization Schemes on CPUs
	Julia - Parallel for
	Julia - MapReduce
	Matlab
	R
	Python
	C++ and OpenMP
	Rcpp and OpenMP
	MPI

	Parallelization Schemes on GPUs
	CUDA
	OpenACC

	Beyond CPUs and GPUs
	Conclusion

