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Appendix B Empirical Comparison with Petrin-Levinsohn

Figure 8 constructs the Petrin-Levinsohn decomposition with markups obtained from the
production-function approach, at the firm level. The factor-growth-miscounting term is
introduced to correct for the fact that the Petrin-Levinsohn decomposition applies to the
Solow residual, whereas ours applies to the distortion-adjusted Solow residual, where
both residuals weigh the growth of each factor differently. It does not affect the pure
technology and changes in allocative efficiency effects constructed using their procedure.

Figures 6a and 8 allow us to compare the different results that are obtained using our
decomposition and the Petrin-Levinsohn decomposition. Compared to ours, the Petrin-
Levinsohn decomposition finds lower contributions both for pure technology and for
allocative efficiency. The different weights used to weigh labor and capital growth in the
Solow residual vs. the distortion-adjusted Solow also lead to a sizable difference between
the Solow residual and the distortion-adjusted Solow residual. The cumulated Solow
residual is significantly lower than the cumulated distortion-adjusted Solow residual, and
this is reflected in a sizable positive contribution of factor-growth miscounting.
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Figure 8: Petrin-Levinsohn decomposition of changes in aggregate TFP into pure changes
in technology, changes in allocative efficiency, and factor under-counting, with markups
obtained from the production-function approach, at the firm level.
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Appendix C Data

We have two principal datasources: (i) aggregate data from the BEA, including the input-
output tables and the national income and product accounts; (ii) firm-level data from
Compustat. Below we describe how we treat the input-output data, merge it with firm-
level estimates of markups, and how we estimate markups at the firm-level.

C.1 Input-Output and Aggregate Data

Our measure of real GDP growth, and growth in real factor quantities (labor and capi-
tal) come from the San Francisco Federal Reserve’s dataset on total factor productivity.1

Specifically, we use the variable “dY” for real GDP growth, “dK” for real capital growth,
and “dLQ+dhours” for labor input growth.

Our input-output data comes from the BEA’s annual input-output tables. We calibrate
the data to the use tables from 1997-2015 before redefinitions. We also ignore the dis-
tinction between commodities and industries, assuming that each industry produces one
commodity. For each year, this gives us the revenue-based expenditure share matrix Ω as
well as the final demand budget shares b. We drop the government, scrap, and noncom-
parable imports sectors from our dataset, leaving us with 66 industries. We define the
gross-operating surplus of each industry to be the residual from sales minus intermediate
input costs and compensation of employees. The expenditures on capital, at the industry
level, are equal to the gross operating surplus minus the share of profits (how we calculate
the profit share is described shortly). If this number is negative, we set it equal to zero. If
any value in Ω is negative, we set it to zero.

We have three sources of markup data. For each markup series, we compute the profit
share (amongst Compustat firms) for each industry and year, and then we use that profit
share to separate payments to capital from gross operating surplus in the BEA data for that
industry and year. Conditional on the harmonic average of markups in each industry-
year, we can recover the cost-based Ω̃ = µΩ. If for an industry and year we do not observe
any Compustat firms, then we assume that the profit share (and the average markup) of
that industry is equal to the aggregate profit share (and the industry-level markup is the
same as the aggregate markup).

We assume that the economy has an industry structure along the lines of Appendix
H.4, so that all producers in each industry have the same production function up to a
Hicks-neutral productivity shifter. This means that for each producer i and j in the same

1Available at https://www.frbsf.org/economic-research/indicators-data/total-factor-productivity-tfp/
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industry Ω̃ik = Ω̃ jk. To populate each industry with individual firms, we divide the sales
of each industry across the firms in Compustat according to the sales share of these firms
in Compustat. In other words, if some firm i’s markup is µi and share of industry sales in
Compustat is x, then we assume that the mass of firms in that industry whose markups
are equal to µi is also equal to x. These assumptions allow us to use the markup data
and market share information from Compustat, and the industry-level IO matrix from the
BEA, to construct the firm-level cost-based IO matrix.

C.2 Estimates of Markups

Now, we briefly describe how our firm-level markup data is constructed. Firm-level
data is from Compustat, which includes all public firms in the U.S. The database covers
1950 to 2016, but we restrict ourselves to post-1997 data since that is the start of the
annual BEA data. We exclude firm-year observations with assets less than 10 million,
with negative book or market value, or with missing year, assets, or book liabilities. We
exclude firms with BEA code 999 because there is no BEA depreciation available for them;
and Financials (SIC codes 6000-6999 or NAICS3 codes 520-525). Firms are mapped to
BEA industry segments using ‘Level 3’ NAICS codes, according to the correspondence
tables provided by the BEA. When NAICS codes are not available, firms are mapped to
the most common NAICS category among those firms that share the same SIC code and
have NAICS codes available.

C.2.1 Accounting Profits Approach

For the accounting-profit approach markups, we use operating income before deprecia-
tion, minus depreciation to arrive at accounting profits. Our measure of depreciation is the
industry-level depreciation rate from the BEA’s investment series. The BEA depreciation
rates are better than the Compustat depreciation measures since accounting rules and tax
incentives incentivize firms to depreciate assets too quickly. We use the expression

pro f itsi =

(
1 −

1
µi

)
salesi,

to back out the markups for each firm in each year. We winsorize markups and changes
in markups at the 5-95th percentile by year. Intuitively, this is equivalent to assuming that
the cost of capital is simply the depreciation rate (equivalently, the risk-adjusted rate of
return on capital is zero).
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C.2.2 User Cost Approach

The user-cost approach markups are similar to the accounting profits but require a more
careful accounting for the user cost of capital. For this measure, we rely on the replication
files from Gutiérrez and Philippon (2016) provided German Gutierrez. For more informa-
tion see Gutiérrez and Philippon (2016). To recover markups, we assume that operating
surplus of each firm is equal to payments to both capital as well as economic rents due to
markups. We write

OSi,t = rki,tKi,t +

(
1 −

1
µi

)
salesi,t,

where OSi,t is the operating income of the firm after depreciation and minus income taxes,
rki,t is the user-cost of capital and Ki,t is the quantity of capital used by firm i in industry
j in period t. This equation uses the fact that each firm has constant-returns to scale. In
other words,

OSi,t

Ki,t
= rki,t +

(
1 −

1
µi

)
salesi,t

Ki,t
, (21)

To solve for the markup, we need to account for both the user cost (rental rate) of capital
as well as the quantity of capital. The user-cost of capital is given by

rki,t = rs
t + KRP j − (1 − δki,t)E(Πk

t+1),

where rs
t is the risk-free real rate, KPR j is the industry-level capital risk premium, δ j is the

industry-level BEA depreciation rate, and E(Πk
t+1) is the expected growth in the relative

price of capital. We assume that expected quantities are equal to the realized ones. To
calculate the user-cost, the risk-free real rate is the yield on 10-year TIPS starting in 2003.
Prior to 2003, we use the average spread between nominal and TIPS bonds to deduce the
real rate from nominal bonds prior to 2003. KRP is computed using industry-level equity
risk premia following Claus and Thomas (2001) using analyst forecasts of earnings from
IBES and using current book value and the average industry payout ratio to forecast future
book value. The depreciation rate is taken from BEA’s industry-level depreciation rates.
The capital gains E(Πk

t+1) is equal to the growth in the relative price of capital computed
from the industry-specific investment price index relative to the PCE deflator. Finally, we
use net property, plant, and equipment as the measure of the capital stock. This allows us
to solve equation (21) for a time-varying firm-level measure of the markup. We winsorize
markups and changes in markups at the 5-95th percentile by year.
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C.2.3 Production Function Estimation Approach

For the production function estimation approach markups, we follow the procedure PF1
described by De Loecker et al. (2019) with some minor differences. We estimate the
production function using Olley and Pakes (1996) rather than Levinsohn and Petrin (2003).
We use CAPX as the instrument and COGS as a variable input. We use the classification
based on SIC numbers instead of NAICS numbers since they are available for a larger
fraction of the sample. Finally, we exclude firms with COGS-to-sales and XSGA-to-sales
ratios in the top and bottom 2.5% of the corresponding year-specific distributions. As
with the other series, we use Compustat excluding all firms that did not report SIC or
NAICS indicators, and all firms with missing sales or COGS. Sales and COGS are deflated
using the gross output price indices from KLEMS sector-level data. CAPX and PPEGT –
using the capital price indices from the same source. Industry classification used in the
estimation is based on the 2-digit codes whenever possible, and 1-digit codes if there are
fewer than 500 observations for each industry and year.

To compute the PF Markups, we need to estimate elasticity of output with respect
to variable inputs. This is because once we know the output-elasticity with respect to a
variable input (in this case, the cost of goods sold or COGS), then following Hall (1988),
the markup is

µi =
∂ log Fi/∂ log COGSi

Ωi,COGS
,

where Ωi,COGS is the firm’s expenditures on COGS relative to its turnover.
The output-elasticities are estimated using Olley and Pakes (1996) methodology with

the correction advocated by Ackerberg et al. (2015). To implement Olley-Pakes in Stata,
we use the prodest Stata package. OP estimation requires:

(i) outcome variable: log sales,

(ii) ”free” variable (variable inputs): log COGS,

(iii) ”state” variable: log capital stock, measured as log PPEGT in the Compustat data,

(iv) ”proxy” variable, used as an instrument for productivity: log investment, measured
as log CAPX in Compustat data.

(v) in addition, SIC 3-digit and SIC 4-digit firm sales shares were used to control for
markups .

Given these data, we run the estimation procedure for every sector and every year.
Since panel data are required, we use 3-year rolling windows so that the elasticity estimates
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based on data in years t − 1, t and t + 1 are assigned to year t. The estimation procedure
has two stages: in the first stage, log sales are regressed on the 3-rd degree polynomial
of state, free, proxy and control variables in order to remove the measurement error and
unanticipated shocks; in the second stage, we estimate elasticities of output with respect
to variable inputs and the state variable by fitting an AR(1) process for productivity to
the data (via GMM). Just like in De Loecker et al. (2019), we control for markups using a
linear function of firm sales shares (sales share at the 4-digit industry level).

We use a Cobb-Douglas specification of industry production functions because of its
simplicity and stability. This means that to be entirely internally consistent, in our struc-
tural counterfactual exercise regarding the effect of removing markups on aggregate TFP,
we should focus on specifications with unitary elasticities across industries and factors.
For example, the benchmark should now be the CD+CES specification in the second col-
umn of Table 2 instead of that in the first column. Imposing elasticities across industries
and factors would only introduce minor quantitative differences as we navigate through
the other columns, and would not change the corresponding quantitative conclusions
much.

Appendix D Proofs

Throughout this appendix, we let the nominal GDP be the numeraire, so that PY =∑N
i=1 pici = 1 or equivalently d log(

∑N
i=1 pici) = 0. This numeraire is different from the GDP

deflator defined such that the ideal price index of the household is unitary P = 1, or
equivalently d log P =

∑N
i=1 bid log pi = 0. A price pi in the nominal GDP numeraire can

easily be converted into a price piY in the GDP deflator numeraire, so that d log(piY) =

d log pi + d log Y.

Proof of Theorem 1. We start by proving some preliminary results. Let Ω̃p be the N × N
matrix corresponding to the first N rows and columns (corresponding to goods prices)
of Ω̃, so that Ω̃

p
ij = Ω̃

p
ij for (i, j) ∈ [1,N]2. Since Ω̃ is block-diagonal over goods prices and

factor prices, we have that for all (i, j) ∈ [1,N]2,

[(I − Ω̃p)−1]i j = [(I − Ω̃)−1]i j = Ψ̃i j. (22)

In addition, using

1 =

N∑
j=1

Ω̃i j +

F∑
f=1

Ω̃i f , (23)
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which we can rewrite as
1p = Ω̃p1p + Ω̃1 f , (24)

where 1p is a N × 1 vector of ones and 1 f is a F× 1 vector of ones. This in turn implies that

1p = (I − Ω̃p)−1Ω̃1 f , (25)

and hence
1p = Ψ̃1 f , (26)

1 = b′Ψ̃1 f , (27)

and finally, using
b′Ψ̃ = λ̃′, (28)

we get

1 =

F∑
f=1

Λ̃ f . (29)

We now move on to the main proof. By Sheppard’s lemma, we have

d log pi = −d log Ai + d logµi +

N∑
j=1

Ω̃i jd log p j +

F∑
f=1

Ω̃i f d log w f . (30)

In the nominal GDP numeraire where
∑

pici = 1, we have w f L f = Λ f . Since we hold factor
supplies fixed, we have

d log w f = d log Λ f . (31)

This implies that

d log pi = −d log Ai + d logµi +

N∑
j=1

Ω̃i jd log p j +

F∑
f=1

Ω̃i f d log Λ f . (32)

We can rewrite this as

d log pi =

N∑
k=1

[(I − Ω̃p)−1]ik(−d log Ak + d logµk) +

F∑
f=1

N∑
k=1

[(I − Ω̃p)−1]ikΩ̃k f d log Λ f . (33)
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This implies that

d log pi =

N∑
k=1

Ψ̃ik(−d log Ak + d logµk) +

F∑
f=1

N∑
k=1

Ψ̃ikΩ̃k f d log Λ f . (34)

This in turn implies that

d log pi =

N∑
k=1

Ψ̃ik(−d log Ak + d logµk) +

F∑
f=1

Ψ̃i f d log Λ f . (35)

This can be rewritten in vector form as

d log p =

N∑
k=1

Ψ̃(k)(−d log Ak + d logµk) +

F∑
f=1

Ψ̃( f )d log Λ f , (36)

where Ψ̃(k) and Ψ̃( f ) are the k-th and f -th columns of Ψ̃, respectively. Since

d log Y = −b′d log p = −

N∑
i=1

bid log pi, (37)

and since
b′Ψ̃ = λ̃′, (38)

we get finally get

d log Y =

N∑
k=1

λ̃kd log Ak −

N∑
k=1

λ̃kd logµk −

F∑
f=1

Λ̃ f d log Λ f . (39)

which proves Theorem 1.
�

Proofs of Propositions 2 and 3. We have

dΩ ji = −Ω jid logµ j +
1
µ j

(θ j − 1)

d log pi −

∑
l

Ω̃ jld log pl

 . (40)

or equivalently

dΩ ji = −Ω jid logµ j +
1
µ j

(θ j − 1)CovΩ̃( j)(d log p, I(i)), (41)
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where I(i) is the ith column of the identity matrix I. Using

d log p = −
∑

k

Ψ̃(k)d log Ak +
∑

k

Ψ̃(k)d logµk +
∑

f

Ψ̃( f )d log Λ f , (42)

we can rewrite this as

dΩ ji = −Ω jid logµ j+
1
µ j

(θ j−1)CovΩ̃( j)(
∑

k

Ψ̃(k)d log Ak−

∑
k

Ψ̃(k)d logµk−

∑
g

Ψ̃(g)d log Λg, I(i)),

(43)
Using Ψ = (I −Ω)−1, we get

dΨ = ΨdΩΨ. (44)

Combining, we get

dΨmn = −
∑

j

Ψmjd logµ j

∑
i

Ω jiΨin

+
∑

j

Ψmj

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,
∑

i

I(i)Ψin).

(45)

Using ΩΨ = Ψ − I, we can re-express this as

dΨmn = −
∑

j

Ψmj(Ψ jn − δ jn)d logµ j

+
∑

j

Ψmj

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,Ψ(n)). (46)

Using b′Ψ = λ in turn implies that

dλn = −
∑

j

λ j(Ψ jn − δ jn)d logµ j

+
λ j

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,Ψ(n)). (47)

Finally, dividing trough by λn, we get

d logλn = −
∑

j

λ j
Ψ jn − δ jn

λn
d logµ j
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+
λ j

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,
Ψ(n)

λn
). (48)

Applying this to a factor share yields

d log Λ f = −
∑

j

λ j
Ψ j f

Λ f
d logµ j

+
λ j

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,
Ψ( f )

Λ f
). (49)

Re-arranging the indices to make them consistent with the results stated in the main
text, we get

d logλi = −
∑

k

λk
Ψki − δki

λi
d logµk

+
λ j

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,
Ψ(i)

λi
). (50)

Applying this to a factor share yields

d log Λ f = −
∑

k

λk
Ψk f

Λ f
d logµk

+
λ j

µ j
(θ j − 1)CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak −

∑
k

Ψ̃(k)d logµk −

∑
g

Ψ̃(g)d log Λg,
Ψ( f )

Λ f
). (51)

�

Proof of Proposition 5. From Baqaee and Farhi (2019b), we know that the output losses can
be expressed as

L = −
1
2

∑
l

(d logµl)λld log yl. (52)

We have
d log yl = d logλl − d log pl, (53)

d log pl =
∑

f

Ψl f d log Λ f +
∑

k

Ψlkd logµk, (54)
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where, from Proposition 3

d logλl =
∑

k

(δlk−
λk

λl
Ψkl)d logµk−

∑
j

λ j

λl
(θ j−1)CovΩ( j)(

∑
k

Ψ(k)d logµk+
∑

g

Ψ(g)d log Λg,Ψ(l)),

(55)

d log Λ f = −
∑

k

λk
Ψk f

Λ f
d logµk−

∑
j

λ j(θ j−1)CovΩ( j)(
∑

k

Ψ(k)d logµk +
∑

g

Ψ(g)d log Λg,
Ψ( f )

Λ f
).

(56)
We will now use these expressions to replace in formula for the second-order loss

function. We get

L = −
1
2

∑
l

∑
k

(
δlk

λk
−

Ψkl

λl
−

Ψlk

λk
)λkλld logµkd logµl +

1
2

∑
l

λld logµl

∑
f

Ψl f d log Λ f

+
1
2

∑
l

∑
j

(d logµl)λ j(θ j − 1)CovΩ( j)(
∑

k

Ψ(k)d logµk +
∑

g

Ψ(g)d log Λg,Ψ(l)).

We can rewrite this expression as
L = LI +LX (57)

where

LI =
1
2

∑
k

∑
l

[
Ψkl − δkl

λl
+

Ψlk − δlk

λk
+
δkl

λl
− 1]λkλld logµkd logµl

+
1
2

∑
k

∑
l

∑
j

d logµkd logµlλ j(θ j − 1)CovΩ( j)(Ψ(k),Ψ(l)),

LX =
1
2

∑
l

∑
f

(
Ψl f

Λ f
− 1)λlΛ f d logµld log Λ f

+
1
2

∑
l

∑
g

d logµld log Λg

∑
j

λ j(θ j − 1)CovΩ( j)(Ψ(g),Ψ(l)),

where d log Λ is given by the usual expression.2 The proof is finished by use of the

2We have used the intermediate step

LX =
1
2

∑
l

∑
k

λkλld logµkd logµl +
1
2

∑
l

∑
f

d logµld log Λ fλlΨl f
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following lemma. �

Lemma 2. The following identity holds:

∑
j

λ jµ
−1
j CovΩ̃( j)(Ψ̃(k),Ψ(l)) = λlλk[

Ψ̃lk − δlk

λk
+

Ψkl − δkl

λl
+
δlk

λk
−
λ̃k

λk
]. (58)

This holds for inefficient economies with multiple factors and applies when k and l are goods or
factors.

Proof. We have∑
j

λ jµ
−1
j CovΩ̃( j)(Ψ̃(k),Ψ(l)) =

∑
j

λ jµ
−1
j

∑
m

Ω̃ jmΨ̃mkΨml −

∑
m

Ω̃ jmΨ̃mk

 ∑
m

Ω̃ jmΨml

 ,
or∑

j

λ jµ
−1
j CovΩ̃( j)(Ψ̃(k),Ψ(l)) =

∑
j

λ j

∑
m

Ω jmΨ̃mkΨml −

∑
j

λ jµ
−1
j

∑
m

Ω̃ jmΨ̃mk

 ∑
m

Ω̃ jmΨml

 ,
or∑

j

λ jµ
−1
j CovΩ̃( j)(Ψ̃(k),Ψ(l)) =∑

j

λ j

∑
m

Ω jmΨ̃mkΨml −

∑
j

λ jΨ̃ jkΨ jl

+
∑

j

λ jΨ̃ jkΨ jl −

∑
j

λ jµ
−1
j

∑
m

Ω̃ jmΨ̃mk

 ∑
m

Ω̃ jmΨml

 .
From the fact that ∑

j

λ j

Ψ jkΨ jl −

∑
m

Ω jmΨmkΨml

 = λkλl. (59)

+
1
2

∑
l

∑
g

d logµld log Λg

∑
j

λ j(θ j − 1)CovΩ( j) (Ψ(g),Ψ(l)).
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the equation above can be simplified to∑
j

λ jµ
−1
j CovΩ̃( j)(Ψ̃(k),Ψ(l)) = −λ̃kλl +

∑
j

λ jΨ̃ jkΨ jl −

∑
j

λ j

(
Ψ̃ jk − δ jk

)
(Ψ jl − δ jl), (60)

and finally

∑
j

λ jµ
−1
j CovΩ̃( j)(Ψ̃(k),Ψ(l)) = λlλk[

Ψ̃lk − δlk

λk
+

Ψkl − δkl

λl
+
δlk

λk
−
λ̃k

λk
]. (61)

�

Appendix E Basu-Fernald and Petrin-Levinsohn in a Sim-

ple Example

To compare our decomposition with that of Basu-Fernald and Petrin-Levinsohn, we con-
sider the simple economy in Figure 9. There are two factors L1 and L2. There are two
producers 1 and 2. Producer 2 produces linearly from factor L2 with productivity A2. It
does not charge any markup µ2 = 1. Producer 1 uses the factor L1 and output of producer
2 to produce according to a CES production function with steady-state revenue-based
expenditure shares ω1L1 and ω12, and with elasticity of substitution θ1 (this elasticity will
not matter in the calculations below). It charges a markup µ1 > 1.

Because this economy is acyclic, there is a unique feasible allocation, and it is efficient.
There is no misallocation, and there cannot be any change in allocative efficiency. Our
decomposition gives

d log Y
d log A2

= λ̃2︸︷︷︸
∆Technology

+ 0︸︷︷︸
∆Allocative Efficiency

,

and the decompositions of Basu-Fernald and Petrin-Levinsohn both give

d log Y
d log A2

= λ2︸︷︷︸
∆Technology

+ λ̃2 − λ2︸  ︷︷  ︸
∆Allocative Efficiency

,

where λ2 = ω12, and λ̃2 = µ1ω12.Since λ̃2 = µ1λ2 > λ2, this immediately implies that
while our decomposition does not detect any change in allocative efficiency, those of
Basu-Fernald, and Petrin-Levinsohn do detect changes in allocative efficiency.
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HH 1 2

L2L1

Figure 9: Acyclic economy where the solid arrows represent the flow of goods. The flow
of profits and wages from firms to households has been suppressed in the diagram. The
two factors in this economy are L1 and L2.

Appendix F Applying our Results with Endogenous Markups

in a Simple Example

Consider the following endogenous-markup economy. There is a large number of indus-
tries indexed by I. Within each industry, there is a finite number of producers i ∈ I.
Each producer produces linearly from labor with productivity Ai and charges a markup
µi. The outputs of the different producers in each industry are combined into an industry
output via a CES aggregator with elasticity θ1 > 1. The outputs of the different industries
are combined into a final good via a Cobb-Douglas aggregator so that θ0 = 1. Following
Atkeson and Burstein (2008), assume that producers play a static game of quantity com-
petition. Specifically, each producer chooses its quantity taking as given the quantities
chosen by the other producers as well as the wage and the price quantity of the final good.
Under this assumption, producers do recognize that industry prices and quantities vary
when that they change their quantities. This gives rise to endogenous markups i:

1
µi

= (1 −
λi

λI(i)
)(1 −

1
θ1

), (62)

where I(i) is the industry of i, λi is its sales share, and λI(i) is the sales share of its industry.
Hence, the markup of i is increasing in the relative sales share λi/λI(i) of i in its industry,
and decreasing in the elasticity of substitution θ1 across producers within an industry.

Suppose that all the industries are ex-ante identical. In each industry I, there is a
large producer k with λk/λI > 0 and a continuum of atomistic producers, each with
an infinitesimal relative sales share, but with strictly positive total relative sales share
1 − λk/λI(k) > 0. This implies that the markups of the atomistic producers are all constant
at 1/(1 − 1/θ1).
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Now consider a shock the productivity Ak of a single large producer k in a single
industry I(k). The markup of producer i does not change if it is not in the industry of the
shocked producer. The markup of an atomistic producer in the industry of the shocked
producer does not change. And we can solve jointly for the change d logµk in the markup
of producer k and for the change d logλk in its sales share:

d logµk =
λk/λI(k)

1 − λk/λI(k)
d logλk, d logλk = (θ1 − 1)(1−λk/λI(k))(d log Ak −d logµk), (63)

where the first equation can be obtained by differentiating the markup equation (62),
and where the second equation can be obtained by applying the propagation equations
in Propositions 2 and 3 applied to producer k’s sales share rather than to factor shares.
This in turn implies that the markup µk of producer k increases endogenously with its
productivity Ak according to

d logµk

d log Ak
=

λk
λI(k)

(θ1 − 1)

1 + λk
λI(k)

(θ1 − 1)
> 0. (64)

There is therefore imperfect pass-through of productivity shocks to prices. We then
use the chain rule equation (16) with Z = log Ak, in conjunction with the expressions
for d log Λ/d log Ak and for d log Λ/d logµk given by Propositions 2 and 3. We find that
taking into account the endogenous change of the markups responsible for imperfect pass-
through, the change d log Y resulting from an increase d log Ak > 0 in the productivity of
producer k is

d log Y =
d log Y
d log Ak

d log Ak +
d log Y
d logµk

d logµk

d log Ak
d log Ak

= λk

1 +
1 − λk

λI(k)

1 + λk
λI(k)

(θ1 − 1)

λi
λI(k)

(θ1 − 1)

1 + λk
λI(k)

 d log Ak.

If instead markups were exogenously fixed, we would have

d log Y =
d log Y
d log Ak

d log Ak = λk

1 +

λk
λI(k)

(θ1 − 1)

1 + λk
λI(k)

 d log Ak,

which is strictly higher. We therefore see that imperfect pass-through via endogenous
markups mitigates the impact of the shock.
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Appendix G Standard-Form for Nested CES Economies

Throughout this section, variables with over-lines are normalizing constants equal to the
values in steady-state. Since we are interested in log changes, the normalizing constants
are irrelevant.3

Nested CES Economies in Standard Form

A CES economy in standard form is defined by a tuple (ω, θ, µ, F) and a set of normalizing
constants (y, x). The (N + F + 1) × (N + F + 1) matrix ω is a matrix of input-output
parameters where the first row and column correspond to the reproducible final good,
the next N rows and columns correspond to reproducible goods and the last F rows and
columns correspond to non-reproducible factors. The (N + 1) × 1 vector θ is a vector
of microeconomic elasticities of substitution. Finally, the N × 1 vector µ is a vector of
markups/wedges for the N non-final reproducible goods.4

The F factors are modeled as non-reproducible goods and the production function of
these goods are endowments

y f

y f
= 1.

The other N + 1 other goods are reproducible, and the production of a reproducible good
k can be written as

yk

yk
= Ak

∑
l

ωkl

(
xkl

xkl

) θk−1
θk


θk
θk−1

,

where xlk are intermediate inputs from l used by k. Each producer charges a markup over
its marginal cost µk. Producer 0 represents final-demand and its production function the
final-demand aggregator so that

Y

Y
=

y0

y0
, (65)

where Y is output and y0 is the final good.
Through a relabelling, this structure can represent any CES economy with an arbitrary

pattern of nests, markups/wedges and elasticities. Intuitively, by relabelling each CES
aggregator to be a new producer, we can have as many nests as desired.

3We use normalized quantities since it simplifies calibration, and clarifies the fact that CES aggregators
are not unit-less.

4For convenience we use number indices starting at 0 instead of 1 to describe the elements of ω and θ,
but number indices starting at 1 to describe the elements of µ. We impose the restriction that ωi j ∈ [0, 1],∑

j ωi j = 1 for all 0 ≤ i ≤ N, ω f j = 0 for all N < f ≤ N + F, ω0 f = 0 for all N < f ≤ N + F, and ωi0 = 0 for all
0 ≤ i ≤ N.
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Consider some initial allocation with markups/wedges µ and productivity shifters
normalized, without loss of generality, at A = 1. The normalizing constants (y, x) are
chosen to correspond to this initial allocation. Let b and Ω̃ be the corresponding vector
of consumption shares and cost-based input-output matrix. Then we must have ω0i = bi

and ω(i+1)( j+1) = Ω̃i j. From there, all the other cost-based and revenue-based input-output
objects can be computed exactly as in Section 2.2.

Appendix H Robustness and Extensions

In this section, we discuss some of the extensions mentioned in the body of the paper.
Specifically, we address in more detail how are results extend to situations with arbi-
trary non-CES production functions, elastic factors, capital accumulation/dynamics, and
nonlinearities. Proofs for the results are at the end of this section.

H.1 Beyond CES

The input-output covariance operator defined in Section 4 is a key concept capturing the
substitution patterns in economies where all production and utility functions are nested-
CES functions. In this section, we generalize this input-output covariance operator in
such a way that allows us to work with arbitrary production functions.

For a producer j with cost function C j, we define the Allen-Uzawa elasticity of substi-
tution between inputs x and y as

θ j(x, y) =
C jd2C j/(dpxdpy)

(dC j/dpx)(dC j/dpy)
=
ε j(x, y)

Ω jy
,

where ε j(x, y) is the elasticity of the demand by producer j for input x with respect to the
price py of input y, and Ω jy is the expenditure share in cost of input y.

Note the following properties. Because of the symmetry of partial derivatives, we
have θ j(x, y) = θ j(y, x). Because of the homogeneity of degree one of the cost function in
the prices of inputs, we have the homogeneity identity

∑
1≤y≤N+1+F Ω jyθ j(x, y) = 0.

We define the input-output substitution operator for producer j as

Φ j(Ψ̃(k),Ψ( f )) = −
∑

1≤x,y≤N+1+F

Ω jx[δxy + Ω jy(θ j(x, y) − 1)]Ψ̃xkΨy f , (66)

=
1
2

EΩ( j)

(
(θ j(x, y) − 1)(Ψ̃k(x) − Ψ̃k(y))(Ψ f (x) −Ψ f (y))

)
, (67)
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where δxy is the Kronecker symbol, Ψ̃k(x) = Ψxk and Ψ f (x) = Ψx f , and the expectation on
the second line is over x and y. The second line can be obtained from the first using the
symmetry of Allen-Uzawa elasticities of substitution and the homogeneity identity.

In the CES case with elasticity θ j, all the cross Allen-Uzawa elasticities are identical
with θ j(x, y) = θ j if x , y, and the own Allen-Uzawa elasticities are given by θ j(x, x) =

−θ j(1 − Ω jx)/Ω jx. It is easy to verify that we then recover the input-output covariance
operator:

Φ j(Ψ̃(k),Ψ( f ) = (θk − 1)CovΩ( j)(Ψ̃(k),Ψ( f )).

Even outside the CES case, the input-output substitution operator shares many prop-
erties with the input-output covariance operator. For example, it is immediate to verify,
that: Φ j(Ψ̃(k),Ψ( f )) is bilinear and symmetric in Ψ̃(k) and Ψ( f ); Φ j(Ψ̃(k),Ψ( f )) = 0 whenever
Ψ̃(k) or Ψ( f ) is a constant.

Luckily, it turns out that all of the results stated in Sections 4 and 5 can be generalized
to non-CES economies simply by replacing terms of the form (θ j − 1)CovΩ( j)(Ψ̃(k),Ψ( f )) by
Φ j(Ψ̃(k),Ψ( f )).

Intuitively, Φ j(Ψ̃(k),Ψ( f )) captures the way in which j redirects demand expenditure
towards f in response to proportional unit decline in the price of k. To see this, we make use
of the following observation: the elasticity of the expenditure share of producer j on input
x with respect to the price of input y is given by δxy+Ω jy(θ j(x, y)−1). Equation (66) requires
considering, for each pair of inputs x and y, how much the proportional reduction Ψyk in
the price of y induced by a unit proportional reduction in the price of k causes producer
j to increase its expenditure share on x (as measured by −Ω jx[δxy + Ω jy(θ j(x, y) − 1)]Ψ̃yk)
and how much x is exposed to f (as measured by Ψx f ).

Equation (67) says that this amounts to considering, for each pair of inputs x and
y, whether or not increased exposure to k as measured by Ψ̃k(x) − Ψ̃k(y), corresponds to
increased exposure to i as measured by Ψi(x)−Ψi(y), and whether x and y are complements
or substitutes as measured by (θ j(x, y) − 1). If x and y are substitutes, and Ψ̃k(x) − Ψ̃k(y)
and Ψ f (x) −Ψ f (y) are both positive, then substitution across x and y by k, in response to
a shock to a decrease in the price of k, increases demand for f .

H.2 Elastic Factor Supplies

In this section, we fully flesh out one such extension by showing to generalize our analysis
to allow for endogenous factor supplies.

To model elastic factor supplies, let G f (w f Y,Y) be the aggregate supply of factor f ,
where w f Y is the price of the factor in the GDP deflator numeraire (w f is the price of
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the factor in the nominal GDP numeraire) and Y is real aggregate income. Let ζ f =

∂ log G f/∂ log(w f Y) be the elasticity of the supply of factor f to its real wage, and γ f =

−∂ log G f/∂ log Y be its income elasticity. We then have the following characterization:

d log Y
d log Ak

= %

λ̃k −

∑
f

1
1 + ζ f

Λ̃ f
d log Λ f

d log Ak

 , (68)

and
d log Y
d logµk

= %

−λ̃k −

∑
f

1
1 + ζ f

Λ̃ f
d log Λ f

d logµk

 , (69)

where % = 1/(
∑

f Λ̃ f
1+γ f

1+ζ f
).

With inelastic factors, a decline in factor income shares, ceteris paribus, increases output
since it represents a reduction in the misallocation of resources and an increase in aggregate
TFP. With elastic factor supply, the output effect is dampened by the presence of 1/(1+ζ f ) <
1. This is due to the fact that a reduction in factor income shares, while increasing aggregate
TFP, reduces factor payments and factor supplies, which in turn reduces output. Hence,
when factors are elastic, increases in allocative efficiency from assigning more resources
to more monopolistic producers are counteracted by reductions in factor supplies due to
the associated suppression of factor demand.5

We can provide an explicit characterization of d log Λ f and d log Y in terms of microe-
conomic elasticities of substitution in a nested-CES structure similar to the one in Section
4. Changes in factor shares and output solve the following system of equations:

d log Λ f = −
∑

k

λk
Ψk f

Λ f
d logµk+

∑
j

(θ j−1)
λ j

µ j
CovΩ̃( j)(

∑
k

Ψ̃(k)d log Ak−

∑
k

Ψ̃(k)d logµk,
Ψ( f )

Λ f
)

−

∑
j

(θ j − 1)
λ j

µ j
CovΩ̃( j)(

∑
g

Ψ̃(g)
1

1 + ζg
d log Λg +

∑
g

Ψ̃(g)
γg − ζg

1 + ζg
d log Y,

Ψ( f )

Λ f
),

d log Y = ρ

∑
k

λ̃kd log Ak −

∑
k

λ̃kd logµk −

∑
f

Λ̃ f
1

1 + ζ f
d log Λ f

 .
5In the limit where factor supplies become infinitely elastic, the influence of the allocative efficiency

effects disappear from output, since more factors can always be marshaled on the margin at the same
real price. To see this, consider the case with a single factor called labor, and factor supply function
GL(wY,Y) = Y−ν(wY)ν, which can be derived from a standard labor-leisure choice model. In this case,
ζL = γL = ν, and so equation (68) implies that d log Y/d log Ak = λ̃k − 1/(1 + ν) d log ΛL/d log Ak. When
labor supply becomes infinitely elastic ν → ∞, this simplifies to d log Y/d log Ak = λ̃k, so that changes in
allocative efficiency have no effect on output, even though they affect TFP.
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Equations (68) and (69) can also be applied to frictionless economies with endogenous
factor supplies. They show that even without any frictions, Hulten’s theorem cannot be
used to predict how output will respond to microeconomic TFP shocks, due to endogenous
responses of factors. These results therefore also extend Hulten’s theorem to efficient
economies with endogenous factor supplies.

H.3 Capital Accumulation, Adjustment Costs, and Capacity Utilization

In mapping this set-up to the data, there are two ways to interpret this model: either we
could interpret final demand as a per-period part of a larger dynamic problem, or we
could interpret final demand as an intertemporal consumption function where goods are
also indexed by time à la Arrow-Debreu. When we interpret the model intratemporally,
the output function encompasses demand for consumption goods and for investment
goods. When we interpret the model intertemporally, the process of capital accumulation
is captured via intertemporal production functions that transform goods in one period
into goods in other periods. This modeling choice would also be well-suited to handle
technological frictions to the reallocation of factors such as adjustment costs and variable
capacity utilization. Our formulas would apply to these economies without change, but of
course, in such a world, input-output definitions would now be expressed in net-present
value terms.

H.4 Nonlinear Impact of Shocks and Duality with Industry Structure

Another limitation of our results is that we neglect nonlinearities. As discussed by Baqaee
and Farhi (2017a), models with production networks can respond very nonlinearly to pro-
ductivity shocks. We plan to extend these results to inefficient economies in full generality,
but as a first step, we stipulate some conditions under which we can directly leverage
these results to inefficient economies. In particular, we show that the amplification of
negative shocks due to complementarities emphasized in Baqaee and Farhi (2017a) can
also work to amplify the negative effects of misallocation.

Consider the quantitative parametric model in Section 7. Let δk(i), µk(i), and Ak(i)
denote firm i in industry k’s share of industry sales, markup, and productivity. Define
industry k’s average markup and productivity to be

µk =

∑
i

δk(i)
µk(i)

−1
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and

Ak/Ak =
µk/µk(∑

i δk(i)
(
µk(i)/µk(i)

Ak(i)/Ak(i)

)1−ξk
) 1

1−ξk

,

where overline variables denote steady-state values.
To the original firm-level economy, we associate a dual industry-level economy, for

which the input output-matrix is aggregated at the industry level. Define the output level
of the dual economy by Y̌ and the revenue-based Domar weight of industry k by λ̌k. The
dual industry-level economy has initial industry-level markups equal to

µk =

∑
i

δk(i)
µk(i)

−1

.

The next proposition shows that productivity and markup shocks in the original firm-level
economy can be translated into productivity and markup shocks in the dual industry-level
economy.

Proposition 6 (Exact Duality). The discrete (nonlinear) output response ∆ log Y to shocks to
productivities and markups of the original economy is equal to the output response ∆ log Y̌ to the
dual shocks to productivity and markups of the dual economy.

Corollary 3 (Efficient Duality). Consider an economy where µk = 1 for every k, and consider a
transformation µk(i)(tk) which changes markups but maintains µk = 1. Then

d log Y
d log tk

=
d log Y̌
d log tk

= λ̌k
d log Ǎk

d log tk
(70)

and
d2 log Y
d log t2

k

=
d2 log Y̌
d log t2

k

= λ̌k
d log λ̌k

d log Ǎk

(
d log Ǎk

d log tk

)2

+ λ̌k
d2 log Ǎk

d log t2
k

, (71)

where d log λ̌k/d log Ǎk is given by the formulas in Baqaee and Farhi (2017a).

If firms within an industry are substitutes, then increases in the dispersion of markups,
which keep the harmonic average of markups equal to one, are isomorphic to negative
productivity shocks in a model which is efficient at the industry level. Hence, shocks
which increase markup dispersion in an industry can have outsized nonlinear effects on
output, if those industries are macro-complementary with other industries in the sense
defined by Baqaee and Farhi (2017a) so that d log λ̌k/d log Ǎk < 0.
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This helps flesh out the insight in Jones (2011) that complementarities can interact with
distortions to generate large reductions in output, and that these can be quantitatively
important enough to explain the large differences in cross-country incomes. Given the ex-
amples in Baqaee and Farhi (2017a), it should be clear how misallocation in a key industry
like energy production can significantly reduce output through macro-complementarities.
Investigating these nonlinear forces more systematically is an interesting exercise that we
leave for future work.

Proof of Proposition 6. To streamline the exposition, we focus on a single industry, and we
use different but more straightforward notation. Consider an industry where: all firms i
use the same upstream input bundle with cost C; firms transform this input into a firm-
specific variety of output using constant return to returns to scale technology; each firm i
has productivity ai and charges a markup µi; the varieties are combined into a composite
good by a competitive downstream industry according to a CES production function with
elasticity σ on firm i. Without loss of generality, and only for convenience, we normalize
all prices in steady-state to be equal to C, which means that we normalize the levels of
productivities in steady state (and only in steady state) to be equal to the markups.

We denote the quantity of composite good produced as

Q =
[∑

b
1
σ

i q
σ−1
σ

i

] σ
σ−1

. (72)

Firm i charges a price

pi =
µi

ai
C. (73)

The resulting demand for firm i’s variety is

qi = (
pi

P
)−σbiQ, (74)

where the price index is given by

P =
[∑

bip1−σ
i

] 1
1−σ
. (75)

Total profits are given by

Π =
∑

i

(pi − C)(
pi

P
)−σbiQ. (76)
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We solve out the price index and profits explicitly and get

P =

∑
i

bi

(µi

ai

)1−σ


1
1−σ

C, (77)

Π =
∑

i

(µi

ai
−

1
ai

)


µi
ai[∑

j b j

(
µ j

a j

)1−σ] 1
1−σ



−σ

biCQ. (78)

For completeness we can also solve for the sales of each firm as a fraction of the sales of
the industry

λi =
piqi

PQ
=

bi

(
µi
ai

)1−σ

∑
j b j

(
µ j

a j

)1−σ . (79)

We want to understand how to aggregate this industry into homogenous industry
with productivity A and markup µ. These variables must satisfy

P =
µ

A
C, (80)

Π =
(µ
A
−

1
A

)
CQ. (81)

This implies that A and µ are the solutions of the following system of equations

µ

A
=

∑
i

bi

(µi

ai

)1−σ


1
1−σ

, (82)

(µ
A
−

1
A

)
=

∑
i

(µi

ai
−

1
ai

)


µi
ai[∑

j b j

(
µ j

a j

)1−σ] 1
1−σ



−σ

bi. (83)

The solution is

A =
1

[∑
i bi

(
µi
ai

)1−σ] 1
1−σ

−
∑

i

(
1 − 1

µi

) 
µi
ai∑ j b j

( µ j
a j

)1−σ 
1

1−σ


−σ

µi
ai

bi

, (84)
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µ =
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ai
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1−σ

[∑
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ai
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−
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(
1 − 1

µi

) 
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ai∑ j b j

( µ j
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ai

bi
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We can also rewrite this in a useful way as

A =
1[∑

i bi

(
µi
ai

)1−σ] 1
1−σ

1∑
i

1
µi

(
µi
ai

)1−σ
bi∑

j b j

( µ j
a j

)1−σ

=
1[∑

i bi

(
µi
ai

)1−σ] 1
1−σ

1∑
i

1
µi
λi
, (86)

µ =
1∑

i
1
µi

(
µi
ai

)1−σ
bi∑

j b j

( µ j
a j

)1−σ

=
1∑

i
1
µi
λi
. (87)

The theorem follows by applying this analysis to an industry k, with δk(i) = λi and
bi = δk(i).

�

Appendix I Aggregation of Cost-Based Domar Weights

In this Appendix we show that recovering cost-based Domar weights from aggregated
data is, in principle, not possible. The vertical economy in Figure 1a also shows the failure
of the aggregation property implied by Hulten’s theorem. The easiest way to see this is to
consider aggregating the input-output table for the economy in Figure 1a. For simplicity,
suppose that markups are the same everywhere so that µi = µ for all i. Since there is no
possibility of reallocation in this economy, and since markups are uniform, this is our best
chance of deriving an aggregation result, but even in this simplest example, such a result
does not exist. Suppose that we aggregate the whole economy S = {1, . . . ,N}. Then, in
aggregate, the economy consists of a single industry that uses labor and inputs from itself
to produce. In this case, the input-output matrix is a scalar, and equal to the intermediate
input share of the economy

ΩSS =
1 − 1

µN−1

1 − 1
µN

, (88)
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and the aggregate markup for the economy is given by µ. Therefore, λ̃S constructed using
aggregate data is

λ̃S = 1′(I − µΩ)−1 =
µN−1

−
1
µ

1 − 1
µ

. (89)

However, we know from the example that

d log Y
d log A

=
∑
i∈S

λ̃i = N , λ̃S =
µN−1

−
1
µ

1 − 1
µ

, (90)

except in the limiting case without distortions µ→ 1. Therefore, even in this simplest case,
with homogenous markups and no reallocation, aggregated input-output data cannot be
used to compute the impact of an aggregated shock.

Appendix J Extra Examples

Example J.1. We build a simple example to underscore the importance of properly ac-
counting for the multiplicity of factors to assess the macroeconomic impact of microeco-
nomic shocks in inefficient economies. The example is depicted in Figure 10.

HH

1

2
3

L

K

Figure 10: An economy with two factors of production L and K. The subgraph from
L to the household contains a cycle, and hence can be subject to misallocation. On the
other hand, there is only a unique path connecting K to the household, so there is no
misallocation.

We have

Γ = −(θ0 − 1)

 Covb(Ψ̃(L),Ψ(L)) Covb(Ψ̃(K),Ψ(L))
Covb(Ψ̃(L),Ψ(K)) Covb(Ψ̃(K),Ψ(K))

 , (91)

and

δ(i) = (θ0 − 1)

 Covb(Ψ̃(i),Ψ(L))
Covb(Ψ̃(i),Ψ(K))

 .
Substituting in the values and solving the system of equations (11), using Proposition 2,
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and noting that λi = λ̃i for all i, we find that

d log Y
d log Ai

= λi + λi(θ0 − 1)

1 −
µ−1

i
λ1

λ1+λ2
µ−1

1 + λ2
λ1+λ2

µ−1
2

 , (i = 1, 2)

but
d log Y
d log Ai

= λi, (i = 3).

A lesson is that changes in allocative efficiency are only present for shocks to producers 1
and 2 which share a factor of production, but not for producer 3 which has its own factor
of production. Moreover, the changes in allocative efficiency for shocks to producers 1
and 2 only depends on the markups of these two producers and not on the markup of
producer 3.

Example J.2. We consider a simple example with two elasticities of substitution, which
demonstrates the principle that changes in misallocation are driven by how each node
switches its demand across its supply chain in response to a shock. To this end, we apply
Proposition 2 to the economy depicted in Figure 11.

HH

1

3 4

L

2

Figure 11: An economy with two elasticities of substitution.

d log Y
d log A3

=λ̃3 −
1

ΛL

(
(θ0 − 1)

[
b1(ω13µ

−1
1 (ω13µ

−1
3 + ω14µ

−1
4 )) − ω13b1ΛL

]
+(θ1 − 1)µ−1

1 λ1

[
ω13µ

−1
3 − ω13

(
ω13µ

−1
3 + ω14µ

−1
4

)])
.
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The term multiplying (θ0 − 1) captures how the household will shift their demand across
1 and 2 in response to the productivity shock, and the relative degrees of misallocation in
1 and 2’s supply chains. The term multiplying (θ1 − 1) takes into account how 1 will shift
its demand across 3 and 4 and the relative amount of misallocation of labor between 3 and
4. Not surprisingly, if instead we shock industry 1, then only the household’s elasticity of
substitution matters, since industry 1 will not shift its demand across its inputs in response
to the shock to industry 2:

d log Y
d log A1

=b1 −
1

ΛL
(θ0 − 1)

[
b1µ

−1
1 (ω13µ

−1
3 + ω14µ

−1
4 ) − b1ΛL

]
.

This illustrates the general principle in Proposition 2 that an elasticity of substitution θ j

matters only if j is somewhere downstream from k.

Example J.3. We build a simple example to illustrate the macroeconomic impact of mi-
croeconomic markup/wedge shocks and their difference with microeconomic productivity
shocks.

We consider a Cobb-Douglas economy, which helps to isolate the importance of the new
term in Proposition 3. For a Cobb-Douglas economy, the only source factor reallocation
comes from the fact that the producer which increases its markup/wedge releases some
labor. Let θ j = 1 for every j, which is the Cobb-Douglas special case. Now, applying
Proposition 3, we get

d log Y
d logµk

= −λ̃k + λk
ΨkL

ΛL
= −λ̃k

(
1 −

λk

λ̃k

ΨkL

ΛL

)
.

As before, ΨkL/ΛL is a measure of how distorted the supply chain of k is relative to the
economy as a whole. If ΨkL/ΛL < 1, then this means that for each dollar k earns, a
smaller share reaches workers than it would if that dollar was spent by the household. In
other words, producer k’s supply chain has inefficiently too few workers. On the other
hand, λk/λ̃k is a measure of how distorted the demand of chain of k is. If λk/λ̃k < 1, this
implies that k is facing double-marginalization. When the product of the downstream
and upstream terms is less than one, this means that producer k is inefficiently starved of
demand and workers. Hence, an increase in the markup/wedge of k reduces the allocative
efficiency of the economy. On the other hand, when the product of these two terms is
greater than one, the path connecting the household to labor via producer k is too large.
Therefore, an increase in the markup/wedge of k reallocates resources to the rest of the
economy where they are more needed and increases allocative efficiency.
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With multiple factors, we get

d log Y
d logµk

= −λ̃k + λk

∑
f

Λ̃ f
Ψk f

Λ f
= −λ̃k

1 −
λk

λ̃k

∑
f

Λ̃ f
Ψk f

Λ f

 .
This generalizes the intuitions discussed earlier for markup/wedge shocks in the Cobb-
Douglas economy with a single factor to the case of multiple factors. In particular, the
amount of factor f released by sector k as a fraction of total factor f per unit of shock is
λkΨk f/Λ f and the impact of that release on output per unit of shock is Λ̃ f . We also see
again the roles of the index of downstream distortions λk/λ̃k and of the generalized index
of upstream distortions

∑
f Λ̃ f Ψk f/Λ f .

Example J.4. We consider an example showing how, in general, the correlation between
productivity and wedges matters. Consider the horizontal economy example discussed in
Section 5.1, but instead of assuming log-normality, consider the binomial case where Ai ∈

{0,A} with probability 1/2 and ∆ logµi ∈ {0,∆ logµ} with probability 1/2. An immediate
application of formula (19) shows that L ≈ (1/8)θ0(∆ logµ)2 if Ai and µi are independent,
but that L ≈ 0 if Ai and µi are perfectly correlated.

Appendix K Volatility of Aggregate TFP

In this section, we use the quantitative structural model of Section 7.3 to assess the
volatility of aggregate output arising from firm-level and industry-level productivity and
markup shocks.6 For this section, we do not assume that each Compustat firms’ share of
industry sales in Compustat is the same as its share of total industry sales in the BEA data.
Instead, we assign to each firm its actual sales, and assume that any leftover sales are
sold by a residual producer whose markup is equal to the average industry-level markup
and who experiences no shocks (this effectively means we assume that the residual (non-
Compustat) producer in each industry is really a representative of a mass of infinitesimal
firms and experiences no shocks due to the law of large numbers).

We use our ex-post structural results on the elasticities of aggregate output to these
shocks

log Y ≈ log Y +
∑

i

d log Y
d log Ai

d log Ai +
∑

i

d log Y
d logµi

d logµi,

6When we consider firm-level shocks, we assess only the contribution of shocks to Compustat firms, i.e.
we account for the macro-volatility arising from firm-level shocks when only Compustat firms are being
shocked, and not non-Compustat firms. We focus on this exercise because we do not have the data required
to compute the contribution of shocks to all firms.
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to approximate the implied volatility of output in response to microeconomic shocks.
Assuming productivity shocks and markup shocks are independent and identically dis-
tributed, get

Var(log Y) ≈
∑

i

(
d log Y
d log Ai

)2

Var(d log Ai) +
∑

i

(
d log Y
d logµi

)2

Var(d logµi),

= ‖Dlog A log Y‖2Var(d log A) + ‖Dlogµ log Y‖2Var(d logµ).

Hence, the Euclidean norm ‖Dlog A log Y‖ of the Jacobian of log Y with respect to log A
gives the degree to which microeconomic productivity shocks are not “diversified” away
in the aggregate. Similarly, ‖Dlogµ log Y‖ measures the diversification factor relative to
markup shocks.7

Table 3 displays the diversification factor, for both markup shocks and productivity
shocks at the firm level and at the industry level, for our benchmark model. We also com-
pute the results for a Cobb-Douglas distorted economy where all elasticities are unitary, as
well as for a perfectly competitive model without wedges. Across the board, the distorted
model is more volatile than the competitive model, however the extent of this depends
greatly on the type of shock and the level of aggregation. We discuss these different cases
in turn.

First, consider the case of productivity shocks: as mentioned previously, the benchmark
model is more volatile than the perfectly competitive model for both sets of shocks.
However, the more interesting comparison is with respect to the distorted Cobb-Douglas
economy. As explained in Section 4, the allocation of factors is invariant to productivity
shocks in the Cobb-Douglas model. Hence, the Cobb-Douglas model lacks the reallocation
channel, and hence can tell us in which direction the reallocation force is pushing. In
the case of industry-level shocks, the benchmark model is slightly less volatile than the
Cobb-Douglas model, whereas in the case of firm-level shocks, the benchmark model is
significantly more volatile.

A partial intuition here relates to the elasticities of substitution: whereas industries
are complements, firms within an industry are strong substitutes. Recall that loosely
speaking, changes in allocative efficiency scale with the elasticity of substitution minus
one. Firm-level shocks cause a considerable amount of changes in allocative efficiency
whereas industry-level shocks cause much milder changes. At both levels of aggregation,

7Although Baqaee and Farhi (2017a) suggest that log-linear approximations can be unreliable for model-
ing the mean, skewness, or kurtosis of output in the presence of microeconomic shocks, their results indicate
the log-linear approximations of variance are less fragile (although still imperfect). In the final section of
this paper, we discuss how our results can be extended to understanding the nonlinear impact of shocks.
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Benchmark Competitive Cobb-Douglas Constant X

Firm Productivity Shocks (UC) 0.0491 0.0376 0.0396 0.0396
Firm Markup Shocks (UC) 0.0296 0.0000 0.0077 0.0000
Industry Productivity Shocks (UC) 0.3162 0.3118 0.3259 0.3259
Industry Markup Shocks (UC) 0.0084 0.0000 0.0391 0.0000

Firm Productivity Shocks (AP) 0.0524 0.0376 0.0415 0.0415
Firm Markup Shocks (AP) 0.0368 0.0000 0.0085 0.0000
Industry Productivity Shocks (AP) 0.3188 0.3118 0.3375 0.3375
Industry Markup Shocks (AP) 0.0127 0.0000 0.0500 0.0000

Firm Productivity Shocks (PF) 0.0598 0.0376 0.0398 0.0398
Firm Markup Shocks (PF) 0.0321 0.0000 0.0112 0.0000
Industry Productivity Shocks (PF) 0.3299 0.3418 0.3618 0.3618
Industry Markup Shocks (PF) 0.0216 0.0000 0.0760 0.0000

Table 3: Diversification factor for different productivity and markup shocks at firm and
industry level for different specifications of the model. A diversification factor of 1 means
that the variance of microeconomic shocks moves aggregate variance one-for-one. A
diversification factor of 0 means that microeconomic shocks are completely diversified
away at the aggregate level. The final column is the allocation that holds the allocation
matrix X constant in response to shocks.
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these changes in allocative efficiency amplify some shocks and mitigate some others
compared to the Cobb-Douglas model with no change in allocative efficiency.8 On the
whole, at the firm level, the changes in allocative efficiency are so large that they dwarf the
pure technology effects picked up by the Cobb-Douglas model and amplify the volatility
of these shocks. By contrast, at the industry level, changes in allocative efficiency are more
moderate and turn out to slightly mitigate the volatility of these shocks.

These intuitions are confirmed in the first two columns of Figure 12, where we plot the
output elasticity with respect to productivity shocks to specific firms or industries relative
to their revenue-based Domar weight. This represents a comparison of our benchmark
model to a competitive model where Hulten’s theorem holds. We find considerable
dispersion in the response of the model relative to both, but much more so at the firm
level than at the industry level. We could plot the same graph but with the cost-based
Domar weight as a reference point in order to represent the comparison of our benchmark
model to the Cobb-Douglas model, and the results would be visually similar.

Next, consider the effects of markup shocks. In this case, the distorted Cobb-Douglas
economy is not necessarily a very natural benchmark since even with Cobb-Douglas,
shocks to markups will reallocate factors across producers. Nonetheless, it is still instruc-
tive to compare the benchmark model to the Cobb-Douglas one to find that a similar
lesson applies as with productivity shocks. The volatility of firm-level shocks is amplified
relative to Cobb-Douglas while the volatility of industry-level shocks is attenuated rela-
tive to Cobb-Douglas. This follows from the fact that industries are more complementary
than firms, and hence, in line with the intuition from the horizontal economy, the effect
of the shock are monotonically increasing in the degree of substitutability. The last two
columns of Figure 12 plot the output elasticity with respect to markup shocks to specific
firms or industries relative to their revenue-based Domar weight.
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