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Online Appendix

There are in total five appendices. The first establishes theorem 2, the recoverability theorem,
which is a stand-alone result. The second establishes a series of lemmas on optimal strategies for
PS cost functions and additional lemmas that link strategies and data. These are employed in all
subsequent proofs. The third appendix proves theorem 3 which characterizes PS cost functions.
The fourth establishes theorem 4 which characterizes UPS cost functions. The final appendix,
which is significantly the longest, establishes theorem 1. While it is presented first in the paper,
theorem 1 is proved last since it builds on all earlier results.

Appendix 1: Theorem 2

A1.1: NIAS, NIAC, and Existence

The first step in the proof of theorem 2 uses NIAS (A2) and NIAC (A3) to arrive at a cost function
K(µ,Q) that rationalizes all observed data. The proof joins the methods of Caplin and Martin
[2015] and Caplin and Dean [2015] for finitely many observations with the corresponding methods
for unrestricted data introduced by Rochet [1987] and Rockafellar [1970]. This step involves entirely
different logic than the second step in which we demonstrate that the rationalizing cost function is
unique, and is separated out as a lemma that may itself be of independent interest.

Lemma 1.1: (Existence of Rationalizing Cost Function) Given C ∈ C satisfying A2 and
A3, there exists K ∈ K such that C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D.

Proof. The first step in the proof is to define the maximal utility that can be obtained given an
arbitrary set of available actions A and posterior distribution Q ∈ Q(µ),

Ĝ(A,Q) ≡
∑

γ∈Γ(Q)

Q(γ)û(γ,A), (1)
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where û(γ,A) ≡ maxa∈A ū(γ, a), as defined in equation (1) in the main document. We use a
constructive procedure to find K ∈ K such that, given (µ,A) ∈ D and P ∈ C(µ,A),

Ĝ(A,QP )−K(µ,QP ) ≥ Ĝ(A,Q)−K(µ,Q), (2)

all Q ∈ Q(µ). The second step shows that this function is a rationalizing cost function in the sense
of this Lemma.

It simplifies the construction of the function for which inequality (2) holds to introduce the set
of all pairs of decision problems and associated chosen data,

B = {b = (Ab, Pb)|(µ,Ab) ∈ D and Pb ∈ C(µ,Ab)} .

Since the proof works prior by prior, we simplify from now on by fixing µ ∈ Γ in the background and
treating it implicitly unless confusion would result. For example we define Q(µ) ≡ Q, Ω(µ) = Ω,
C(µ,A) = C(A), etc., and show how to identify the corresponding section of the cost function
K(Q) ≡ K(µ,Q) on Q ∈ Q(µ).

An important construction involves associating a value with switching choice data across deci-
sion problems. Specifically, for b, c ∈ B we define G(b, c) to be the maximum value associated with
action set Ab and QPc the revealed posterior distribution in c,

G(b, c) ≡ Ĝ(Ab,QPc). (3)

so that G : B × B → R due to the finiteness of all action sets. In what follows it is important to
note from (1) that this connects directly to a utility calculation introduced in the definition of the
NIAC axiom in equation (14) in the main document,

G(b, c) =
∑

γ∈Γ(QPc)

QPc(γ)û(γ,Ab) = Û(Ab, Pc). (4)

Rather than directly establish existence of a qualifying cost function, we use the indirect ap-
proach of Rochet [1987] and Rockafellar [1970]. What we identify is a function t : B → R such that
∀ b, b′ ∈ B,

G(b, b)− t(b) ≥ G(b, b′)− t(b′) (5)

If such a function can indeed be identified, it allows us to define a candidate cost function K(Q)
on Q ∈ Q satisfying (2). Concretely,

K(Q) =

{
t(b) for any b ∈ B such that Q = QPb ;
∞ if @ b ∈ B such that Q = QPb .

(6)

Note that existence of t : B → R satisfying (5) ensures that this is well-defined: t(b) = t(c) for any
b, c ∈ B with QPb=QPC . Assume to the contrary that there exists b, c ∈ B with QPb=QPc yet with
t(b) > t(c). This implies that,

G(b, b)− t(b) = Ĝ(Ab,QPb)− t(b) < Ĝ(Ab,QPc)− t(c) = G(b, c)− t(c)

a contradiction of condition (5). Note that K is not necessarily a qualifying cost function, as
inattentive strategies are not guaranteed to be zero cost. However, following Caplin and Dean
[2015] it is always possible to renormalize any cost function to make this hold, so without loss of
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generality we proceed assuming that K has this property.

To establish that K ∈ K as defined in (6) satisfies inequality (2), the key observation relates to
inequality (5). Note first that the infinite cost of posterior distributions that are not the revealed
posteriors (6) for some observed data means that the only possible reversals of inequality (2) derive
from a distinct observed posterior distribution. Now consider two observations b = (Ab, Pb), c =
(Ac, Pc) ∈ B and note that, by direct substitution of the definitions of G and K into (3),

Ĝ(Ab,QPb)−K(QPb) = G(b, b)− t(b) ≥ G(b, c)− t(c) = Ĝ(Ab,QPc)−K(QPc),

establishing (2).

To construct t : B → R satisfying (5), we first define, for any x, y ∈ B the set L(x, y) of all finite
sequences starting at x ∈ B and ending at y, which we refer to as chains from x to y. Generic element
l ∈ L(x, y), comprises an ordered list of finite length N(l) + 1 from B, (bl0, b

l
1, ...b

l
N(l)) ∈ B

N(l)+1

with bl0 = x and blN(l) = y. We define the value of such a chain v : L(x, y)→ R as,

v(l) =

N(l)∑
n=0

[
G(bln+1, b

l
n)−G(bln, b

l
n)
]

; (7)

and define also the corresponding supremal value,

V (x, y) = sup
l∈L(x,y)

v(l).

The function V (x, y) has important qualitative properties. First among these is that, due to
NIAC (A2), the supremal value of all chains that have the same start and end point is zero,

V (x, x) = 0. (8)

all x ∈ B. To prove this, let (Aln, P
l
n) = bln be the corresponding action and choice set. Note first

that the chain that goes directly from x to x gives a value of zero so that V (x, x) ≥ 0. To show the
opposite inequality, consider an arbitrary chain (bl0, b

l
1, ...b

l
N(l)) ∈ L(b̄0) from x to x and substitute

equation (4) into equation (7) to derive,

v(l) =

N(l)∑
n=0

[
G(bln+1, b

l
n))−G(bln, b

l
n)
]

=

N(l)∑
n=0

[
Û((Aln+1, P

l
n)− Û(Aln, P

l
n)
]
.

Note by construction that Al0 = AlN(l) = Ax. Given that P ln ∈ C(Aln), NIAC (A2) directly implies
that,

N(l)∑
n=0

Û((Aln+1, P
l
n) ≤

N(l)∑
n=0

Û(Aln, P
l
n).

Hence indeed
N(l)∑
n=0

[
G(bln+1, b

l
n))−G(bln, b

l
n)
]
≤ 0.
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As the inequality holds for every element in the set it must also hold for the supremum, completing
the proof of (8).

We now show that V (x, y) for general x, y ∈ B is real-valued by providing real upper and lower
bounds. The lower bound derives from the direct chain l̄ = (x, y) ∈ B2 for which,

V (x, y) ≥ v(l̄) = G(y, x)−G(x, x) ∈ R. (9)

We adapt this reasoning to provide an upper bound on V (x, y). Specifically, given an arbitrary
l ∈ L(x, y), we define l′ ∈ L(x, x) as the chain (bl0, b

l
1, ...b

l
N(l), x) ∈ BN(l))+2. Note that since

l′ ∈ L(x, x) we know that it achieves no higher than the supremal value of zero,

v(l′) ≤ V (x, x) = 0. (10)

Note also that the difference between v(l) and v(l′) is defined by function G as:

v(l) +G(x, y)−G(y, y) = v(l′) ≤ 0;

where the final inequality follows direction from (10). Hence,

v(l) ≤ G(y, y)−G(x, y).

Since this applies to arbitrary l ∈ L(x, y), it applies also to the supremal value,

V (x, y) ≤ G(y, y)−G(x, y). (11)

An extension of this reasoning shows that, for any x, y, z ∈ B,

V (x, y)− V (x, z) ≥ G(y, z)−G(z, z). (12)

To see this, note that for, given an arbitrary l̄ ∈ L(x, z), we can define the new chain l̄′ ∈ L(x, y)
as the chain (bl0, b

l
1, ...b

l
N(l), y) ∈ BN(l))+2. Note that the difference between v(l̄) and v(l̄′) is defined

by function G as:
v(l̄′) = v(l̄) +G(z, y)−G(z, z); (13)

Taking the supremum on l̄ ∈ L(x, z) on the RHS we arrive at,

sup
l̄∈L(x,z)

v(l̄) +G(z, y)−G(z, z) = V (x, z) +G(z, y)−G(z, z).

Applying equation (13) to a sequence of strategies l̄(n) ∈ L(x, z) converging to the supremum, we
note that the corresponding sequence l̄′(n) ∈ L(x, y) can achieve no more than the corresponding
supremal value, V (x, y). Hence,

V (x, y) ≥ V (x, z) +G(y, z)−G(z, z),

establishing (12).

Finally, we are in position to define the sought for function t : B → R such that (5) holds.
Specifically we fix a reference element z ∈ B and define,

t(b) ≡ G(b, b)− V (z, b), (14)
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on b ∈ B . To validate (5), we set x = b′ ∈ B and y = b and note by direct substitution of (14) that,

t(b′)− t(b) = G(b′, b′)−G(b, b) + V (z, b)− V (z, b′)

We now apply inequality (12) to replace the value functions on the RHS,

t(b′)− t(b) ≥ G(b′, b′)−G(b, b) +G(b, b′)−G(b′, b′)

= G(b, b′)−G(b, b),

establishing (5).

We have now completed construction of a qualifying cost function K ∈ K satisfying (2). Ex-
panding the inequality out, note that, given (µ,A) ∈ D and P ∈ C(µ,A) and associated QP ,∑

γ∈Γ(QP )

QP (γ)û(γ,A)−K(QP ) ≥
∑

γ∈Γ(Q)

Q(γ)û(γ,A)−K(Q),

all Q ∈ Q.

To complete the proof of Lemma 1.1 we need to show that this cost function represents the data
in the sense of the Lemma: given (µ,A) ∈ D and P ∈ C(µ,A) we can find λ = (Qλ, qλ) ∈ Λ̂(µ,A|K)
such that P = Pλ. The proof is constructive. Our candidate strategy is the revealed attention
strategy λ(P ) = (QP ,qP ). Since (2) holds, it suffi ces first to show that (QP ,qP ) obtains Ĝ(A,QP ),
and then that it generates the data, P = Pλ(P ).

With regard to the first step, note first that (QP ,qP ) ∈ Λ(µ,A), since, given ω ∈ Ω(µ),∑
{γ∈Γ(P )}

QP (γ)γ(ω) =
∑

{γ∈∪a∈A(P )γ̄
a
P }

∑
{a∈A(P )|γ̄aP=γ}

P (a)γ(ω) =
∑

a∈A(P )

P (a)γ̄aP (ω)

=
∑

a∈A(P )}
µ(ω)P (a|ω) = µ(ω)

∑
a∈A(P )}

P (a|ω) = µ(ω).

Note further that for any a ∈ A with qP (a|γ) > 0 for some γ = γ̄aP ∈ Γ(QP ), we know that
a ∈ A(P ). Hence by NIAS (A2) we know that,∑

ω∈Ω(µ)

γ̄aP (ω)u(a, ω) = û(γ,A).

Hence,

∑
γ∈Γ(QP )

QP (γ)
∑
a∈A

qP (a|γ)

(∑
ω∈Ω

γ(ω)u(a, ω)

)
=

∑
γ∈Γ(QP )

QP (γ)û(γ,A)

= Ĝ(A,QP ).

Hence indeed λ = (Qλ, qλ) ∈ Λ̂(µ,A|K).

It remains only to show that P = Pλ(P ), which is established in Lemma 2.13 in Appendix 2.
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A1.2: Completeness and Uniqueness

Theorem 2: Given C ∈ C satisfying A2-A4, the function K ∈ K such that C(µ,A) ⊂ P̂ (µ,A|K)
all (µ,A) ∈ D is unique.

Proof. By Lemma 1.1, we know that with A2 and A3 there exists K ∈ K such that C(µ,A) ⊂
P̂ (µ,A|K) all (µ,A) ∈ D. With the addition of Completeness, A4, we will show that any function
with this property is recoverable directly from the data, hence unique.

We show how to establish the costs associated with some arbitrary Q̄ ∈ QC(µ). The recovery
method involves constructing a parametrized path of distributions over posteriors Q̄t ∈ QC(µ) for
t ∈ [0, 1], all of which are also observed in the data. As a first step in the construction, we index
by n for 1 ≤ n ≤ N = |Γ(Q̄)| the posteriors γ̄n ∈ Γ(Q̄). For each n we define a linear path from
prior to posterior,

γ̄nt = tγ̄n + (1− t)µ, (15)

on t ∈ [0, 1]. By construction γ̄n0 = µ and γ̄n1 = γ̄n. We define Γ̄t = ∪Nn=1γ̄
n
t as the corresponding

set of such posteriors. Finally we define the parametrized path of posterior distribution of interest
Q̄t ∈ Q(µ) by setting,

Q̄t(γ̄
n
t ) = Q̄(γ̄n) ≡ Q̄n (16)

for all t ∈ [0, 1] and 1 ≤ n ≤ N .

We wish to show that Q̄t ∈ QC(µ) all t ∈ [0, 1]. By construction Q̄1 = Q̄ ∈ QC(µ). Also by
construction each posterior distribution satisfies the Bayesian constraint,∑

n

Q̄t(γ̄
n
t )γnt =

∑
n

Q̄n [tγ̄n + (1− t)µ] = µ.

Finally, note that for all t ∈ [0, 1), Γ(Q̄t) ⊂ Γ̄(µ), so that by Completeness (A4), Q̄t ∈ QC(µ), as
required.

Given K ∈ K and our parameterized posterior distributions Qt, we define corresponding cost
functions,

K̄(t) ≡ K(µ, Q̄t).

By definition the posterior distribution at t = 0 is inattentive and that at t = 1 generates Q̄. Hence,
by normalization,

K̄(0) = 0 and K̄(1) = K(µ, Q̄).

Beyond this, key observations are that K̄(t) is continuous and convex in t. In proving this it is
convenient to simplify notation. As in the last proposition, since the proof works prior by prior, it
can be suppressed in all ensuing statements unless this would cause confusion.

Since Q̄t ∈ QC , there is, for each t ∈ [0, 1], an action set that has the given posterior distribution
as its revealed posterior distribution.

Technically, Completeness (A4) implies that given t ∈ [0, 1] there exists (µ, Āt) ∈ D and P̄t ∈ C
(µ, Āt) such thatQP̄t = Q̄t, and we introduce just such a path through action sets. We now compute
expected utility that is derived by setting each action as in set Āt and using it at the posteriors
corresponding to all different values s ∈ [0, 1]. Note first that, while there may be several actions in
principle in each set Ās that have the same revealed posterior, they all must have the same expected
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utility. For any γ̄ns ∈ Γ(Q̄s) and any a, a′ ∈ Ās that are possibly chosen, min{q(a|γ̄ns ), q(a′|γ̄ns )} > 0,
NIAS (A2) implies that the corresponding expected utility is equal,

ū(a, γ̄ns ) =
∑
ω∈Ω

u(a, ω)γ̄ns (ω) =
∑
ω∈Ω

u(a′, ω)γ̄ns (ω) = ū(a′, γ̄ns ). (17)

Hence with regard to the computation of expected utility we can WLOG select one chosen action
and designate it as the unique chosen action ānt ∈ Āt for computing maximized expected utility.

The specific path of expected utility that we compute involves fixing t ∈ [0, 1] and using the
action ānt ∈ Āt at all posteriors γns for s ∈ [0, 1]. We compute the corresponding expected utility
for all pairings of parameterized action sets Āt and posterior distributions Q̄s on the defined path,

H(t, s) =
∑
n

Q̄s(γ̄
n
s )

(∑
ω∈Ω

γ̄ns (ω)u(ānt , ω)

)
≡
∑
n

Q̄nū(ānt , γ̄
n
s ). (18)

A simple observation is that H(t, s) is linear on s ∈ [0, 1]. Given α, s1, s2 ∈ [0, t],

αH(t, s1) + (1− α)H(t, s2) = H(t, αs1 + (1− α)s2). (19)

This follows directly from (18) since,

H(t, αs1 + (1− α)s2) =
∑
n

Q̄nū(ānt , γ̄
n
αs1+(1−α)s2

)

=
∑
n

Q̄n
[
αū(ānt , γ̄

n
s1) + (1− α)ū(ānt , γ̄

n
s2)
]

= αH(t, s1) + (1− α)H(t, s2)

As a linear function, H(t, s) is differentiable in s ∈ [0, 1]. The corresponding partial derivative
is of interest since we will consider a related optimization problem,

H2(t, s) =
∑
n

Q̄n

(∑
ω∈Ω

∂γ̄ns (ω)

∂s
u(ānt , ω)

)

Substituting in for γ̄ns (ω) from definition (15) that

∂γ̄ns (ω)

∂s
= [γ̄n(ω)− µ(ω)] .

Hence,

H2(t, s) =
∑
n

Q̄n

(∑
ω∈Ω

[γ̄n(ω)− µ(ω)]u(ānt , ω)

)
.

Given its importance in what follows it is valuable to simplify the notation for the dot product
between the state specific vector of changes from posterior to prior and the corresponding state
specific vector of utilities.

[γ̄n − µ] · u(ānt ) ≡
∑
ω∈Ω

[γ̄n(ω)− µ(ω)]u(ānt , ω). (20)

7



The optimization problem that we study relies on that observation that, for all t ∈ [0, 1],

H(t, t)− K̄(t) ≥ H(t, s)− K̄(s), (21)

all s ∈ [0, 1]. This follows directly from inequality (19), since we know that (µ, Āt) ∈ D and P̄t ∈
C(µ, Āt), so that the corresponding revealed posterior QPt = Q̄t maximizes expected utility net of
costs of attention costs and

H(t, t)− K̄(t) = Ĝ(Āt, Q̄t)−K(Q̄t) ≥ Ĝ(Āt, Q̄s)−K(Q̄s)

≥ H(t, s)− K̄(s).

In essence the left-hand side expression is the optimized expected utility at t in the observed data
under the CIR, while the RHS represents expected utility for a policy that would be feasible in this
set of using posterior distribution Qs and at each γns picking ā

n
t ∈ Āt, which may or may not in

fact be optimal.

We use the function H to prove continuity and convexity of K̄(t). With regard to convexity,
consider t1 6= t2 ∈ [0, 1] and their average

t̄ =
t1 + t2

2
.

Direct application of inequality (21) establishes that,

H(t̄, t̄)−K(t̄) ≥ 0.5
[
H(t̄, t1)− K̄(t1) +H(t̄, t2)− K̄(t2)

]
(22)

From (19) it is clear that,

0.5 [H(t̄, t1) +H(t̄, t2)] = H(t̄, t̄).

Substitution in (22) yields,
K̄(t̄) ≤ 0.5

[
K̄(t1) + K̄(t2)

]
implying that K̄(t) is convex as claimed.

Given that K̄(t) is convex, it is continuous on its interior, t ∈ (0, 1). Moreover the only possible
discontinuities at the boundary point involve an increase in costs,

K̄(0) > lim
t↓0

K̄(t) or K̄(1) > lim
t↑1

K̄(t). (23)

To see that these cannot hold, apply (21) at the corresponding end-point,

H(0, 0)− K̄(0) ≥ H(0, ε)− K̄(ε);

H(1, 1)− K̄(1) ≥ H(1, 1− ε)− K̄(1− ε)

all ε > 0. (19) implies continuity of H(0, ε) and H(0, ε) in ε, we conclude therefore that K̄(0) ≤
limε↓0 K̄(ε) and K̄(1) ≤ limε↑1 K̄(ε), both of which directly contradict (23).

Given that K̄(t) is convex and continuous, it can have at most a countable number of non-
differentiable points (Rockafellar [1970]) and hence is integrable. By the fundamental theorem of
calculus K̄(t) can be reconstructed from its derivative, K̄ ′(t), which is defined except on a set of
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measure zero. Hence since K̄(0) = 0, and we can recover its final value focusing only on points of
differentiability as,

K(Q̄) = K̄(1) =

∫ 1

0
K̄ ′(t)dt, (24)

We now show how to characterize the derivative K̄ ′(t) from the path of utilities identified above,
noting that H(t, s) satisfies (19) and is hence everywhere differentiable in s. Consider a point
t ∈ (0, 1) of differentiability of K̄ and problem (µ, Āt) for which t therefore maximizes,

max
s∈[0,1]

H(t, s)− K̄(s) =
∑
n

Q̄nū(ānt , γ
n
s )− K̄(s). (25)

Hence the corresponding first order condition for maximizing (25) at s = t is,

K̄ ′(t) = H2(t, t) =
∑
n

Q̄n
∂ū(ānt , γ

n
s )

∂s
. (26)

Substituting the definition in (17),

ū(ānt , γ
n
s ) =

∑
ω∈Ω(µ)

γ̄ns (ω)u(ānt , ω) =
∑

ω∈Ω(µ)

[sγ̄n(ω) + (1− s)µ(ω)]u(ānt , ω).

Hence the chain rule yields,

∂ū(ānt , γ
n
s )

∂s
=
∑
ω∈Ω

[γ̄n(ω)− µ(ω)]u2(ānt , ω) = [γ̄n − µ] · u(ānt ),

where the last equation uses the simpler notation for the dot product introduced in (20).

The corresponding first order condition for maximizing (25) at s = t is,

K̄ ′(t) = H2(t, t) =
∑
n

Q̄n ([γ̄n − µ] · u(ānt )) . (27)

Combining (27) and(24),

K(µ, Q̄) =

∫ 1

0

∑
n

Q̄n {[γ̄n − µ] · u(ānt )} dt

=
∑
n

Q̄n [γ̄n − µ] ·
∫ 1

0
u(ānt )dt,

since the dot product survives under integration. This completes the constructive procedure for
computing the cost function.

We state the form of this computation as a corollary since it is the jumping off point for the
proof of theorem 3.

Corollary 1 Given C ∈ C satisfying A2-A4, the unique function K ∈ K such that C(µ,A) ⊂
P̂ (µ,A|K) all (µ,A) ∈ D can be computed for each (µ, Q̄) ∈ F with Q̄ ∈ QC(µ) by enumerating
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the support Γ(Q̄) = {γ̄n|1 ≤ n ≤ N} and computing,

K(µ, Q̄) ≡
∑
n

Q̄(γ̄n)TCµ (γ̄n, Q̄)− TCµ (µ, Q̄),

where TCµ (µ, Q̄) = 0 and,

TCµ (γ̄n, Q̄) ≡ [γ̄n − µ] ·
∫ 1

0
u(ānt )dt.

Appendix 2: The PS Model and Convex Analysis

For the analysis of the PS model, we fix a specific prior µ̄ ∈ Γ. Costs are then defined by a strictly
convex function Tµ̄ : Γ(µ̄)→ R̄, real valued on Γ̃(µ̄), such that, given Q ∈ Q(µ̄),

K(µ̄, Q) =
∑

γ∈Γ(Q)

Q(γ)Tµ̄(γ)− Tµ̄(µ).

We define a “µ̄-based” net utility function for strategies λ ∈ Λ(µ,A) for µ ∈ ∆(Γ(µ̄)) using the
costs associated with µ̄,

Nµ̄(µ, λ) ≡ U(λ)−
∑

γ∈Γ(Qλ)

Qλ(γ)Tµ̄(γ) = V (µ̄, λ)− Tµ̄(µ̄). (28)

Another key function is the “net utility”of choosing action a ∈ A given posterior γ ∈ Γ(µ̄),

Na
µ̄(γ) ≡

∑
ω∈Γ(µ̄)

u(a, ω)γ(ω)− Tµ̄(γ) = ū(γ, a)− Tµ̄(γ). (29)

We introduce also a mixture operation.

Definition 1 Given any finite set of strategies, {λ(l) = (Ql, ql) ∈ Λ(µ(l)}1≤l≤L , and strictly posi-
tive probability weights {α(l)}1≤l≤L, define the corresponding mixture strategy λ(α) = (Qα, qα) ∈
Λ by:

Qα(γ) =
∑
l

α(l)Ql(γ) all γ ∈ Γ(Qα);

qα(a|γ) =

∑
l α(l)ql(a|γ)Ql(γ)

Qα(γ)
all γ ∈ Γ(Qα), a ∈ A(λ(α));

where Γ(Qα) = ∪lΓ(Ql) and A(λ(α)) = ∪lA(λ(l)). Define µ(α) =
∑

l α(l)µ(l) as the corresponding
weighted average of priors.
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A2.1: Linearity and Uniqueness

Lemma 2.1 (Linearity under Mixing): Given K ∈ KPS , (µ̄, A) ∈ D, and, for 1 ≤ l ≤ L,
strategies λ(l) = (Ql, ql) ∈ Λ(µ(l), A) and probability weights α(l),

Nµ̄(µ(α), λ(α)) =
∑
l

α(l)Nµ̄(µ(l), λ(l)).

Proof. Note that,

∑
γ∈Γ(Qα)

γQα(γ) =
∑

γ∈Γ(Qα)

γ

[∑
l

α(l)Ql(γ)

]
=
∑
l

α(l)µ(l) = µ(α),

so that λ(α) ∈ Λ(µ(α), A). With regard to utility,

U(λ(α)) =
∑

γ∈Γ(Qα)

Qα(γ)
∑
a∈A

qα(a|γ)ū(γ, a)

=
∑

γ∈Γ(Qα)

Qα(γ)
∑
a∈A

[∑
l α(l)ql(a|γ)Ql(γ)

Qα(γ)

]
ū(γ, a)

=
∑

γ∈Γ(Qα)

∑
l

α(l)Ql(γ)
∑
a∈A

ql(a|γ)ū(γ, a)

=
∑
l

α(l)
∑

γ∈Γ(λ(l))

Ql(γ)
∑
a∈A

ql(a|γ)ū(γ, a) =
∑
l

α(l)U(λ(l)).

Likewise,

∑
γ∈Γ(α)

Qα(γ)Tµ̄(γ) =
∑

γ∈Γ(Qα)

[∑
l

α(l)Ql(γ)

]
Tµ̄(γ)

=
∑
l

α(l)
∑

γ∈Γ(λ(l))

Ql(γ)Tµ̄(γ).

In combination these imply,

Nµ̄(µ(α), λ(α)) = U(λ(α))−
∑

γ∈Γ(α)

Qα(γ)Tµ̄(γ)

=
∑
l

α(l)

U(λ(l))−
∑

γ∈Γ(λ(l))

Ql(γ)Tµ̄(γ)

 =
∑
l

α(l)Nµ̄(µ(l), λ(l)).

establishing the Lemma.

Lemma 2.2: (Mixing and Optimality) Given K ∈ KPS , (µ̄, A) ∈ D, and strategies λ ∈
Λ(µ̄, A) and λ(l) = (Ql, ql) ∈ Λ(µ̄, A) for 1 ≤ l ≤ L, together with strictly positive prob-
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ability α(l) > 0 such that λ =

L∑
l=1

α(l)λ(l),

λ ∈ Λ̂(µ̄, A|K)⇐⇒ λ(l) ∈ Λ̂(µ̄, A|K) all l.

Proof. If λ ∈ Λ̂(µ̄, A|K) we know that,

Nµ̄(µ̄, λ) = V̂ (µ̄, A|K) + Tµ̄(µ̄).

We can then apply Lemma 2.1, which has particularly simple implications in this case since all
strategies have prior µ̄, to conclude that,

Nµ̄(µ̄, λ) =
∑
l

α(l)Nµ̄(µ̄, λ(l)) = V̂ (µ̄, A|K) + Tµ̄(µ̄).

It directly follows that λ(l) ∈ Λ̂(µ̄, A) all l, since together Nµ̄(µ̄, λ(l)) ≤ V̂ (µ̄, A|K) +Tµ(µ̄) and∑
l α(l) = 1 imply Nµ̄(µ̄, λ(l)) = V̂ (µ̄, A|K) +Tµ̄(µ̄). Conversely, if all strategies λ(l) are optimal,

Nµ̄(µ̄, λ(l)) = V̂ (µ̄, A|K) + Tµ̄(µ̄),

all l. Hence this applies also to Nµ̄(µ̄, λ) which directly implies λ ∈ Λ̂(µ̄, A|K).

Lemma 2.3 (Unique Posterior Lemma): Given K ∈ KPS , (µ̄, A) ∈ D, λ ∈ Λ̂(µ̄, A|K), and
a ∈ A(λ), there exists a unique posterior γ ∈ Γ(Qλ) such that qλ(a|γ) > 0. We denote this
posterior γaλ.

Proof. Suppose to the contrary that λ ∈ Λ̂(µ̄, A|K) involves distinct posteriors γ1 6= γ2 ∈ Γ(µ̄)
with qλ(a|γl) > 0 for l = 1, 2 for some action a ∈ A(λ). Define a new strategy λ̄ that is unchanged
except in that the unconditional probability of each of these posteriors is reduced accordingly by
Qλ(γl)q(a|γl) with the probability of action a reduced to zero and that of all other chosen options
expanded proportionately to fill the gap. In strategy λ̄ the additional probability is assigned to the
mean posterior γ̄,

γ̄(j) ≡

∑
l=1,2

Qλ(γl)q(a|γl)γl(j)∑
l=1,2

Qλ(γl)q(a|γl)

with qλ̄(a|γ̄) = 1. Note that there is no change in gross utility,

U(λ̄)− U(λ) =
∑
l=1,2

Qλ(γl)q(a|γl)ū(γl, a)−
∑
l=1,2

Qλ(γl)q(a|γl)ū(γl, a) = 0,

due to additivity of action-specific expected utility across posteriors: given α1, α2 > 0,

α1ū(γ1, a) + α2ū(γ2, a) = α1

∑
ω

u(a, ω)γ1(ω) + α2

∑
ω

u(a, ω)γ2(ω)

=
∑
ω

u(a, ω)
[
α1γ

1(ω) + α2γ
2(ω)

]
.
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To establish the contradiction and with it complete the proof, it suffi ces that costs would reduced
in the switch from λ to λ̄. This follows directly from the strict convexity of T , which implies that,

K(µ̄, Qλ)−K(µ̄, Qλ̄) =
∑
l=1,2

Qλ(γl)q(a|γl))



∑
l=1,2

Qλ(γl)q(a|γl)T (γl)∑
l=1,2

Qλ(γl)q(a|γl)

− Tµ̄(γ̄)



>
∑
l=1,2

Qλ(γl)q(a|γl)

Tµ̄

∑
l=1,2

Qλ(γl)q(a|γl)γl

Q̄(a)

− Tµ̄(γ̄)

 = Tµ̄(γ̄)− Tµ̄(γ̄) = 0.

Lemma 2.4 (Unique Optimal Strategy): Given K ∈ KPS , (µ̄, A) ∈ D, and λ ∈ Λ̂(µ̄, A|K)
with Γ(Qλ) linearly independent,

|Γ(Qλ)| = |A| =⇒ λ = Λ̂(µ̄, A|K).

Proof. The first observation is that, with Γ(Qλ) linearly independent, no strict subset of the
posteriors is even feasible. To see this, consider λ′ ∈ Λ(µ̄, A) with Γ(Qλ′) ⊂ Γ (Qλ). Note that for
feasibility,

Σγ∈Γ(Qλ)γQλ(γ) = Σγ∈Γ(Qλ′ )
γQλ′(γ) = µ,

Subtraction yields,
Σγ∈Γ(Qλ)γ [Qλ(γ)−Qλ′(γ)] = 0,

whereupon linear independence implies that Qλ(γ) = Qλ′(γ) all γ ∈ Γ(Qλ).

By Lemma 2.3, note that no action is chosen at more than one posterior in an optimal strategy.
Hence with |Γ (λ)| = |A| this means that each action is chosen at only one posterior, at which it is
chosen deterministically. Note that if there were two distinct deterministic strategies using the same
set of posteriors, mixing them would be optimal by Lemma 2.2, yet would involve the same action
at two distinct posteriors, which is inconsistent with Lemma 2.3. Hence changing action choices
in any way at the given posteriors must strictly lower the payoff. Hence there is no alternative
optimal strategy that involves retaining posterior set Γ (Qλ) yet changing action choices.

The final possibility for generating multiplicity is if there exists some λ′ ∈ Λ̂(µ̄, A|K) with some
posterior γ′ ∈ Γ(Qλ′) that is not in Γ (Qλ). Since A(λ) = A, we can identify a′ ∈ A ∩ A(λ′) with
q(a′|γ′) > 0. By Lemma 2.2, the strategy λ

2 + λ′

2 is also optimal. This identifies a supposedly
optimal attention strategy in which a′ is chosen at two distinct posteriors, contradicting Lemma
2.3 and completing the proof.

A2.2: Lagrangian Analysis

Our next series of results relate to the lower epigraph of Nµ̄(µ, λ). To study this, we reduce the
dimension of the state space by defining J = |Ω(µ̄)|, correspondingly labeling states, and letting
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ΓJ−1(µ̄) denote the space of distributions of interest,

ΓJ−1(µ̄) =

µ ∈ RJ−1
+ |

J−1∑
j=1

µ(j) ≤ 1

 ;

with µ(J) = 1−
∑J−1

j=1 µ(j) left as implicit.

It will also be use of to define the net utility of a strategy λ according to the costs associated
with posterior µ̄.

Nµ̄(µ, λ) ≡ U(λ)−
∑

γ∈Γ(Qλ)

Qλ(γ)Tµ̄(γ).

Lemma 2.5 (Convexity): The lower epigraph of Nµ̄(µ, λ),

E(µ̄, A) ≡
{

(y, µ) ∈ R× ΓJ−1(µ̄) |y ≤ Nµ̄(µ, λ) some λ ∈ Λ(µ,A)
}
,

is a convex set.

Proof. Consider µ(l) ∈ ∆ (Ω) for l ∈ {0, 1}, with corresponding strategies λ(l) = (Ql, ql) ∈
Λ (µ(l), A) and supports Γ(λl). By the Linearity Lemma we know that, for any α ∈ (0, 1), strategy
λ(α) satisfies,

Nµ̄(µ(α), λ(α)) = αNµ̄(λ(0)) + (1− α)Nµ̄(λ(1)).

Hence,
(αNµ̄(λ(0)) + (1− α)Nµ̄(λ(1)), µ(α)) ∈ E(µ̄, A),

establishing the Lemma.

Lemma 2.6 (Lagrangean): Given K ∈ KPS and (µ̄, A) ∈ D, λ ∈ Λ̂(µ̄, A|K) if and only if
∃θ ∈ RJ−1 s.t.,

Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ sup
a′∈A,γ′∈Γ(µ̄)

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j),

all γ ∈ Γ(µ̄) and a ∈ A, with equality if γ ∈ Γ(Qλ) and qλ(a|γ) > 0.

Proof. If λ ∈ Λ̂(µ̄, A), we know that (Nµ̄(µ̄, λ), µ̄) is an upper boundary point of the convex set
E(µ̄, A). Hence there exists a supporting hyperplane θ(j) for 0 ≤ j ≤ J − 1 with θ(j) 6= 0 for some
j such that,

θ(0)y −
J−1∑
j=1

θ(j)γ(j) ≤ θ(0)Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j),

all (y, γ) ∈ E(µ̄, A).

We show now that θ(0) > 0. Suppose to the contrary that θ(0) < 0. In this case we can

14



renormalize to θ(0) = −1 to conclude that,

−y −
J−1∑
j=1

θ(j)γ(j) ≤ −Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j), (30)

which is a clear contradiction, since the left hand side is unbounded as we lower y arbitrarily.
Finally we show that θ(0) 6= 0. Note that by definition µ̄(j) > 0 all j,

min

 min
1≤j≤J−1

{µ̄(j)}, 1−
J−1∑
j=1

µ̄(j)

 > 0.

Finally suppose that θ(0) = 0, so that,

J−1∑
j=1

θ(j)µ̄(j) ≤
J−1∑
j=1

θ(j)γ(j).

all γ ∈ Γ(µ̄). To minimize the expression on the RHS, one can set γ(j̄) = 1, where the index j̄ is
chosen so that,

θ(j̄) = min
1≤j≤J−1

{θ(j)}.

Hence the inequality can be valid only if θ(j) = θ(j̄) = θ̄ for all j. Hence what is required is,

θ̄
J−1∑
j=1

µ̄(j) ≤ θ̄
J−1∑
j=1

γ(j),

all γ ∈ Γ(µ̄). Since 0 <

J−1∑
j=1

µ̄(j) < 1 while
J−1∑
j=1

γ(j) has a range that includes 0 and 1, this is

impossible unless θ̄ = 0, a contradiction to the non-zero separating plane.

Given that θ(0) > 0, we renormalize to θ(0) = 1 and conclude that,

y −
J−1∑
j=1

θ(j)γ(j) ≤ Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j).

Given γ′ ∈ Γ and a′ ∈ A, we know that (Na′
µ̄ (γ′), γ′) ∈ E(µ̄, A), so that,

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j). (31)

Now consider any decomposition of the optimal strategy, λ =
L∑
l=1

α(l)λ(l) for a finite set
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{λ(l) = (Ql, ql) ∈ Λ(µ(l), A)}1≤l≤L , and probability weights {α(l)}1≤l≤L. Lemma 2.1 implies,

Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j) =
∑
l

α(l)Nµ̄(µ(l), λ(l))−
J−1∑
j=1

θ(j)µ̄(j)

=
∑
l

α(l)

Nµ̄(µ(l), λ(l))−
J−1∑
j=1

θ(j)µl(j)

 ,
since µ̄(j) =

∑
l α(l)µl(j). By inequality (31) none of the terms in the weighted average on the

RHS can be higher than the LHS since (Nµ̄(µ(l), λ(l)) ∈ E(µ̄, A). Hence they are all equal to it,

Nµ̄(µl, λ(l))−
J−1∑
j=1

θ(j)µl(j) = Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j). (32)

We now provide a simple decomposition of strategy λ using only inattentive strategies. We
index possible posteriors γ ∈ Γ(Qλ) as γl and define the inattentive strategy λ(l) ∈ I(γl) by setting
qλ(l)(a|γl) = qλ(a|γl). Setting the weights as α(l) = Qλ(γl) accomplishes this decomposition. The
special feature of such inattentive strategies is that,

Nµ̄(µl, λ(l)) =
∑
a∈A

qλ(a|γl)
[
ū(a, γl)− Tµ̄(γl)

]
=
∑
a∈A

qλ(a|γl)Na
µ̄(γl).

Hence,

Nµ̄(µl, λ(l))−
J−1∑
j=1

θ(j)µl(j) =
∑
a∈A

qλ(a|γl)Na
µ̄(γl)−

J−1∑
j=1

θ(j)µl(j)

=
∑
a∈A

qλ(a|γl)

Na
µ̄(γl)−

J−1∑
j=1

θ(j)µl(j)


where the first line follows directly, the second follows because

∑
a∈A

qλ(a|γl) = 1. Hence equation

(32) implies,

∑
a∈A

qλ(a|γl)

Na
µ̄(γl)−

J−1∑
j=1

θ(j)µl(j)

 = Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j);

Hence by (31), given γl ∈ Γ(Qλ) and qλ(a|γl) > 0,

Na
µ̄(γl)−

J−1∑
j=1

θ(j)µl(j) = Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j),

and again applying (31) completes the proof of necessity.

With regard to suffi ciency, consider λ ∈ Λ(µ̄, A) for which there exists θ(j) such that, given
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γ ∈ Γ(Qλ) and qλ(a|γ) > 0,

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j),

all γ′ ∈ Γ and a′ ∈ A. Carry out the decomposition called for above into inattentive strategies
indexing γ ∈ Γ(Qλ) as γl, defining λ(l) ∈ I(γl) by setting qλ(l)(a|γl) = qλ(a|γl), and using the
linearity lemma to conclude that,

Nµ̄(µ̄, λ) =
∑
l

Qλ(γl)
∑
a

qλ(l)(a|γl)Na
µ̄(γl).

Hence, since at all possible posteriors γ ∈ Γ(Qλ) and corresponding actions achieve the same value
of Na

µ̄(γ)−
∑J−1

j=1 θ(j)γ(j), this precise value also applies to strategy λ, so that,

Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j) =
∑
l

Qλ(γl)
∑
a

qλ(l)(a|γl)

Na
µ̄(γl)−

J−1∑
j=1

θ(j)γl(j)


= Nµ̄(µ̄, λ)−

J−1∑
j=1

θ(j)

[∑
l

Qλ(γl)γl(j)

]
= Nµ̄(µ̄, λ)−

J−1∑
j=1

θ(j)µ̄(j),

where
∑

lQλ(γl)γl(j) = µ̄(j) by Bayes’rule. Hence,

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≤ Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j)

all γ′ ∈ Γ and a′ ∈ A.

Now consider an arbitrary strategy η ∈ Λ(µ̄, A). Repeat precisely the corresponding decom-
position into inattentive strategies indexing γ ∈ Γ(Qη) as γ̃l, defining η(l) ∈ I(γ̃l) by setting
qη(l)(a|γ̃l) = qη(a|γl) to conclude that,

Nµ̄(µ̄, η) =
∑
l

Qη(γ̃
l)
∑
a

qη(l)(a|γ̃l)Na
µ̄(γ̃l).

Using a similar decomposition to the above we have that

Nµ̄(µ̄, η)−
J−1∑
j=1

θ(j)µ̄(j) =
∑
l

Qη(γ̃
l)
∑
a

qη(l)(a|γ̃l)

Na
µ̄(γ̃l)−

J−1∑
j=1

θ(j)γ̃l(j)

 .
Since in addition,

Na
µ̄(γ̃l)−

J−1∑
j=1

θ(j)γ̃l(j) ≤ Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j),

for all a and γ̃l we conclude that,
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Nµ̄(µ̄, η)−
J−1∑
j=1

θ(j)µ̄(j) ≤ Nµ̄(µ̄, λ)−
J−1∑
j=1

θ(j)µ̄(j).

Hence Nµ̄(µ̄, η) ≤ Nµ̄(µ̄, λ), establishing optimality.

Lemma 2.7 (Feasibility Implies Optimality): Given µ̄ ∈ Γ and K ∈ KPS , Γ̃(µ) ⊂ Γ̂(µ|K),
and there exists a one-to-one function on the optimal posterior set Γ̂(µ|K), fµ̄ : Γ̂(µ|K)→ A,
with range Aµ̄ such that, given a set A ⊂ Aµ̄ with (µ̄, A) ∈ D and given λ = (Qλ, qλ) ∈
Λ(µ̄, A),

qλ(fµ̄(γ)|γ) = 1 for all γ ∈ Γ(Qλ) =⇒ λ ∈ Λ̂(µ̄, A|K).

Proof. Given K ∈ KPS and µ̄ ∈ Γ, we define for each γ̄ ∈ Γ̂(µ|K) a particular action fµ̄(γ̄)
with the defining property that, using a strictly convex function Tµ̄ : Γ(µ̄) → R associated with
K ∈ KPS , the corresponding function Nµ̄ has maximal value of zero at γ̄:

N
fµ̄(γ̄)
µ̄ (φ) = ū(φ, fµ̄(γ̄))− Tµ̄(φ) ≤ Nfµ̄(γ̄)

µ̄ (γ̄) = 0, (33)

all φ ∈ Γ(µ̄). Note that this is suffi cient to establish the result, defining Aµ̄ to be the union of
fµ̄(γ̄). In this case if we consider any set A ⊂ Aµ̄ with (µ̄, A) ∈ D and a strategy λ ∈ Λ(µ̄, A) such
that qλ(fµ̄(γ)|γ) = 1 for all γ ∈ Γ(Qλ), we can conclude that this strategy satisfies the suffi cient
conditions for optimality in Lemma 2.6 when we set all multipliers to zero, θ(j) = 0, establishing
that λ ∈ Λ̂(µ̄, A).

We define the function satisfying equation (33) in two phases. First we consider interior beliefs
γ̄ with γ̄(ω) > 0 all ω ∈ Ω(µ̄). We note first that since −Tµ̄(γ) is a strictly concave function, there
exist multipliers β̄(j) on 0 ≤ j ≤ J − 1, not all zero, such that,

−β̄(0)Tµ̄(φ)−
J−1∑
j=1

β̄(j)φ(j) ≤ −β̄(0)Tµ̄(γ̄)−
J−1∑
j=1

β̄(j)γ̄(j), (34)

all φ ∈ Γ(µ̄). Given that γ̄ satisfies γ̄(ω) > 0 all ω ∈ Ω(µ̄) we can mimic the proof in the second
paragraph of Lemma 2.6 above to establish that β̄(0) 6= 0. It is also not possible that β̄(0) < 0. To
see this suppose this were so. In this case we could renormalize to β̄(0) = −1 in (34),

Tµ̄(φ)−
J−1∑
j=1

β̄(j)φ(j) ≤ Tµ̄(γ̄)−
J−1∑
j=1

β̄(j)γ̄(j), (35)

all φ ∈ Γ(µ̄). Given that γ̄(ω) > 0 all ω ∈ Ω(µ̄), we can find two distinct beliefs φ1, φ2 ∈ Γ(µ̄) such
that γ̄ = φ1+φ2

2 . Averaging inequality (35) applied to each of φ1, φ2 separately, we conclude that,

Tµ̄(φ1)−
J−1∑
j=1

β̄(j)φ1(j) + Tµ̄(φ2)−
J−1∑
j=1

β̄(j)φ2(j)

2
=

Tµ̄(φ1) + Tµ̄(φ2)

2
−
J−1∑
j=1

β̄(j)γ̄(j)

≤ Tµ̄(γ̄)−
J−1∑
j=1

β̄(j)γ̄(j).
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We conclude therefore that,

0.5Tµ̄(φ1) + 0.5Tµ̄(φ2) ≤ Tµ̄(
φ1+φ2

2
), (36)

which contradicts strict convexity of T .

With β̄(0) > 0, we can renormalize to β̄(0) = 1 in (34) and flip signs to conclude that,

Tµ̄(φ) +
J−1∑
j=1

β̄(j)φ(j) ≥ Tµ̄(γ̄) +
J−1∑
j=1

β̄(j)γ̄(j). (37)

Now define action fµ̄(γ̄) so that, for 1 ≤ k ≤ J ,

u(fµ̄(γ̄), k) =



Tµ̄(γ̄) +
J−1∑
j=1

β̄(j)γ̄(j)

− β̄(k) for 1 ≤ k ≤ J − 1;Tµ̄(γ̄) +
J−1∑
j=1

β̄(j)γ̄(j)

 for k = J.

.

By construction, given φ ∈ Γ(µ̄) and so

N
fµ̄(γ̄)
µ̄ (φ) ≡

J∑
k=1

u(fµ̄(γ̄), k)φ(k)− Tµ̄(φ) =

=

Tµ̄(γ̄) +
J−1∑
j=1

β̄(j)γ̄(j)

− [Tµ̄(φ) +
J−1∑
k=1

β̄(k)φ(k)

]
≤ 0.

with Nfµ̄(γ̄)
µ̄ (γ̄) = 0, where the last inequality derives directly from (37).

Given a boundary posterior γ̄ ∈ Γ(Qλ) with γ̄(ω) = 0 some ω ∈ Ω(µ̄) we cannot guarantee
that the multiplier β(0) in (34) is non-zero (Shannon is a counterexample). The remaining cases
therefore involve boundary posteriors that are part of an optimal strategy for some decision problem
- i.e. γ ∈ Γ̂(µ̄|K). By definition there exists an optimal strategy λ = (Qλ, qλ) ∈ Λ̂(µ̄, A) with γ̄ ∈ Γ(
Qλ), and so by Lemma 2.6, there exists θ̄ ∈ RJ−1 such that, for ā with qλ̄(ā|γ̄) > 0, then,

J∑
j=1

u(ā, j)φ(j)− Tµ̄(φ)−
J−1∑
j=1

θ̄(j)φ(j) = N ā
µ̄(φ)−

J−1∑
j=1

θ̄(j)φ(j) =

≤ N ā
µ̄(γ̄)−

J−1∑
j=1

θ̄(j)γ̄(j) =

J∑
j=1

u(ā, j)γ̄(j)− Tµ̄(γ̄)−
J−1∑
j=1

θ̄(j)γ̄(j)

all φ ∈ Γ(µ̄). Rearrangement yields,

J∑
j=1

u(ā, j)φ(j)−
J−1∑
j=1

θ̄(j)φ(j)−

 J∑
j=1

u(ā, j)γ̄(j)−
J−1∑
j=1

θ̄(j)γ̄(j)

 γ̄(j) + Tµ̄(γ̄)− Tµ̄(φ) ≤ 0.
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Now define action fµ̄(γ̄) ∈ A so that, for 1 ≤ k ≤ J ,

u(fµ̄(γ̄), k) =


u(ā, k)− θ̄(k)−

 J∑
j=1

u(ā, j)γ̄(j)−
J−1∑
j=1

θ̄(j)γ̄(j)− Tµ̄(γ̄)

 for 1 ≤ k ≤ J − 1;

u(ā, J)−

 J∑
j=1

u(ā, j)γ̄(j)−
J−1∑
j=1

θ̄(j)γ̄(j)− Tµ̄(γ̄)

 for k = J.

By construction, given φ ∈ Γ(µ̄) and defining φ(J) = 1−
J−1∑
j=1

φ(j) ≥ 0 on φ ∈ Γ(µ̄),

N
fµ̄(γ̄)
µ̄ (φ) =

J∑
k=1

u(ā, k)φ(k)−
J−1∑
k=1

θ̄(k) φ(k)−

 J∑
j=1

u(ā, j)γ̄(j)−
J−1∑
j=1

θ̄(j)γ̄(j)− Tµ̄(γ̄)

−Tµ̄(φ) ≤ 0,

with Nfµ̄(γ̄)
µ̄ (γ̄) = 0.

To complete the proof, note that the 1-1 nature of fµ̄(γ̄) follows since otherwise there exists an
optimal strategy that selects the same action at two different posteriors, which would contradict
Lemma 2.3.

A2.3: Preservation of Optimality

We have already seen that mixing preserves optimality. There are other important operations that
ensure preservation of optimality.

Lemma 2.8: (Perturbed Payoffs and Optimality) Consider (µ̄, A) ∈ D and λ ∈ Λ̂(µ̄, A|K).
Given any unchosen action b ∈ A\A(λ), consider h(b) ∈ A with u(h(b), ω) < u(b, ω) all
ω ∈ Ω(µ̄) and define A′ = A(λ) ∪b∈A/A(λ) h(b). Then

λ′ ∈ Λ̂(µ̄, A′|K) =⇒ A(λ′) ⊂ A(λ)

Proof. This follows by a direct contradiction. Note that the strategy λ remains feasible, so that
the value must be no lower in the new decision problem,

V̂ (µ̄, A′|K) ≥ V̂ (µ̄, A|K).

Now suppose that there was a strategy λ′ = (Q′, q′) ∈ Λ̂(µ̄, A′|K) with h(b) ∈ A(λ′) some b ∈
A\A(λ). Then this would have to achieve V̂ (µ̄, A′|K) so that,

V (µ̄, λ′|K) ≥ V̂ (µ̄, A|K). (38)

Now define strategy λ′′ = (Q′′, q′′) ∈ Λ(µ̄, A) with Q′′ = Q′ and any chosen actions h(b) for
b ∈ A\A(λ) replaced by a corresponding b that maps to it (easiest to make h 1− 1)

q′′(a|γ) =

{
q′(a|γ) if a ∈ A(λ);

q′(b|γ) if a = h(b) some b ∈ A\A(λ);
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Note that this action achieves strictly higher utility than λ′ but cannot achieve more than optimal
strategy λ,

V̂ (µ̄, A|K) ≥ V (µ̄, λ′′|K) > V (µ̄, λ′|K),

contradicting (38) and establishing the Lemma.

Lemma 2.9: (Intersecting Posteriors and Intersecting Actions) Given (µ̄, A1) ∈ D, λ1 =
(Q1, q1) ∈ Λ̂(µ̄, A1|K), and Q2 ∈ Q̂(µ̄) with Γ(Q1) ∩ Γ(Q2) 6= ∅, there exists (µ̄, A2) ∈ D and
λ̄(2) = (Q̄2, q̄2) ∈ Λ̂(µ̄, A2) with Q̄2(γ) = Q2(γ) and,

q̄2(a|γ) = q1(a|γ),

all γ ∈ Γ(Q1) ∩ Γ(Q2).

Proof. Consider (µ̄, A1) ∈ D, and λ(1) = (Q1, q1) ∈ Λ̂(µ̄, A1|K). By the Lagrangian Lemma there
exists θ ∈ RJ−1 s.t.,

Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ sup
a′∈A1,γ′∈Γ(µ̄)

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) ≡ N̄ , (39)

all γ ∈ Γ(µ̄) and a ∈ A1, with equality if γ ∈ Γ(Q1) and qλ(1)(a|γ) > 0. To simplify notation in
this step we define subsets A1(γ) ⊂ A1 on γ ∈ Γ(Q1) by the condition,

a ∈ A1(γ)⇐⇒ qλ(1)(a|γ) > 0,

By (39), we know that, given γ, γ′ ∈ Γ(Q1),

N
a1(γ)
µ̄ (γ)−

J−1∑
j=1

θ(j)γ(j) = N
a1(γ′)
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) = N̄ .

for any a1(γ) ∈ A1(γ) and a1(γ′) ∈ A1 (γ′) .

We now associate with each remaining possible posterior γ ∈ Γ(Q2)/Γ(Q1) an action a2(γ). In
defining these payoffs, we make essential use of the function fµ̄(γ) ∈ A from Lemma 2.7 which is
well defined on Γ(Q2) since Q2 ∈ Q̂(µ̄). We make use also of the Lagrangians θ(j) and the net
utility functions and value N̄ in (39). Specifically, we define a2(γ) on γ ∈ Γ(Q2)/Γ(Q1) to have
state dependent payoffs,

u(a2(γ), j) =

{
N̄ + u(fµ̄(γ), j) + θ(j) for 1 ≤ j ≤ J − 1

N̄ + u(fµ̄(γ), J)

We define the set of such actions, as well as their union with actions selected in the first step:

B2 = {a2(γ)|γ ∈ Γ(Q2)/Γ(Q1)};
A2 = B2 ∪ {A1(γ)|γ ∈ Γ(Q1) ∩ Γ(Q2)}.

We now construct the strategy of interest λ̄(2) = (Q̄2, q̄2) according to the prescription in the
statement of the Lemma. We first specify Q̄2(γ) = Q2(γ), so that Γ(Q̄2) = Γ(Q2). With regard to
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q̄2(γ), it is specified differently according to whether or not γ ∈ Γ(Q1) ∩ Γ(Q2):

q̄2(a|γ) =


q1(a|γ) for γ ∈ Γ(Q1) ∩ Γ(Q2);

1 if γ ∈ Γ(Q2)/Γ(Q1) and a = a2(γ);
0 if γ ∈ Γ(Q2)/Γ(Q1) and a 6= a2(γ).

Note by construction that A(λ̄(2)) = A2, and also that, since Q2 ∈ Q̂(µ̄),

∑
γ∈Γ(Q̄2)

γQ̄2(γ) =
∑

γ∈Γ(Q2)

γQ2(γ) = µ̄,

so that λ̄(2) ∈ Λ(µ̄, A2).

It remains to show that λ̄(2) ∈ Λ̂(µ̄, A2). To establish this we use the suffi ciency aspect of the
Lagrangian Lemma. Specifically, we use the original Lagrangians θ(j) in (39) and show that,

Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ sup
a′∈A2,γ′∈Γ(µ̄)

Na′
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) = N̄ (40)

all γ ∈ Γ(µ̄) and a ∈ A2, with equality if γ ∈ Γ(Q̄2) and q̄2(a|γ) > 0.

The relevant equality for a ∈ A1(γ) for γ ∈ Γ(Q1) ∩ Γ(Q2) is directly implied by (39). We now
consider γ ∈ Γ(Q2)/Γ(Q1) and the corresponding chosen action a2(γ). By construction,

N
a2(γ)
µ̄ (γ) = N̄ +N

fµ̄(γ)
µ̄ (γ) +

J−1∑
j=1

θ(j)γ(j).

Hence,

N
a2(γ)
µ̄ (γ)−

J−1∑
j=1

θ(j)γ(j) = N̄ +N
fµ̄(γ)
µ̄ (γ) +

J−1∑
j=1

θ(j)γ(j)−
J−1∑
j=1

θ(j)γ(j)

= N̄ +N
fµ̄(γ)
µ̄ (γ) = N̄ ,

since Nfµ̄(γ)
µ̄ (γ) = 0, confirming the requisite equality.

It remains to show that the inequality aspect of (40) holds,

Na
µ̄(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ N̄ ,

all a ∈ A2 and γ ∈ Γ(µ̄). That this holds for a ∈ A1(γ) for γ ∈ Γ(Q1) ∩ Γ(Q2) is directly implied
by (39). It remains to confirm this for a = a2(γ) ∈ B2 for γ ∈ Γ(Q2)/Γ(Q1) and γ′ ∈ Γ(µ̄). In this

case, the result follows from the defining properties of Nfµ̄(γ)
µ̄ . Given γ′ ∈ Γ(µ̄),

N
a2(γ)
µ̄ (γ′)−

J−1∑
j=1

θ(j)γ′(j) = N̄ +N
fµ̄(γ)
µ̄ (γ′) ≤ N̄ ,
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since Nfµ̄(γ)
µ̄ (γ′) ≤ 0 all γ′ ∈ Γ (µ̄). This completes the proof.

Lemma 2.10 (Decomposition and Uniqueness): Given λ ∈ Λ̂(µ̄, A) there exist strategies λ∗(l) =
(Q∗l , q

∗
l ) ∈ Λ̂(µ̄, A) for 1 ≤ l ≤ L and corresponding probability weights α(l) > 0 such that,

λ ≡
L∑
l=1

α(l)λ∗(l),

with each strategy λ∗(l) uniquely optimal with regard to the chosen actions A [λ∗(l)].

Λ̂(µ̄,A [λ∗(l)]) = λ∗(l).

Proof. We first show that there exists a decomposition λ(l) = (Qλ(l), qλ(l)) ∈ Λ̂(µ̄, A) for 1 ≤ l ≤ L
and corresponding probability weights α(l) such that,

λ ≡
L∑
l=1

α(l)λ(l),

with each set Γ(Qλ(l)) linearly independent. The proof is constructive. If Γ(Qλ) is linearly indepen-
dent, we are done. If not, then we know from Caratheodory’s theorem that since Γ(Qλ) contains µ̄
in its convex hull, there exists a linearly independent set Γ(1) ⊂ Γ(Qλ) with |Γ(1)| < |Γ(Qλ)| that
also has µ̄ in its convex hull. Hence there exist strictly positive probability weights QLI1 (γ) > 0
on γ ∈ Γ(1) (extended to Γ(Qλ) by setting probabilities of excluded posteriors to zero) such that
µ̄ =

∑
γ∈Γ(1)

γQLI1 (γ). We define strategy λ(1) ∈ Λ(µ̄, A) to satisfy Γ(Qλ(1)) = Γ(1) with precisely

this distribution of posteriors,
Qλ(1)(γ) = QLI1 (γ),

and with the same mixed strategy action choice as in strategy λ,

qλ(1)(a|γ) = qλ(a|γ).

We now identify the smallest scalar π(1) ∈ (0, 1) such that,

π(1)QLI1 (γ) = Qλ(γ),

some γ ∈ Γ(Qλ(1)). That such a scalar exists follows from the fact that,∑
γ∈Γ(Qλ(1)))

QLI1 (γ) =
∑

γ∈Γ(Qλ)

Qλ(γ) = 1,

with all components in both sums strictly positive and with
∣∣Γ(Qλ(1))

∣∣ < |Γ(Qλ)|.

Define Γ̂(1) = Γ(Qλ) and Q1 = Qλ to start the iteration. We now define function Q2(γ) on
γ ∈ Γ(Qλ) by,

Q2(γ) =
Q1(γ)− π(1)Qλ(1)(γ)

1− π(1)
≥ 0,
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Note that these define a probability distribution on Γ(Qλ),

∑
γ∈Γ(Qλ)

Q2(γ) =

∑
γ∈Γ(Qλ)Q1(γ)− π(1)

∑
γ∈Γ(Qλ)Q

LI
1 (γ)

1− π(1)
= 1.

Correspondingly, we define,
Γ̃(2) = {γ ∈ Γ|Q2(γ) > 0},

noting that
∣∣∣Γ̃(2)

∣∣∣ < ∣∣∣Γ̂(1)
∣∣∣, since by construction there exists γ ∈ Γ(Qλ) with π(1)Qλ(1)(γ) = Qλ(γ)

so that Q2(γ) = 0. Note that the mean is preserved,

∑
γ∈Γ̃(2)

γQ2(γ) =
∑

γ∈Γ(Qλ)

γQ2(γ) =
∑

γ∈Γ(Qλ)

γ

[
Q1(γ)− π(1)QLI1 (γ)

1− π(1)

]

=
1

1− π(1)

 ∑
γ∈Γ(Qλ)

γQ1(γ)− π(1)
∑

γ∈Γ(Qλ)

γQLI1 (γ)


=

µ

1− π(1)
[1− π(1)] = µ̄.

We define strategy λ̃(2) ∈ Λ(µ̄, A) to involve precisely these posteriors, Qλ̃(2)(γ) = Q2(γ) on
γ ∈ Γ(2) = Γ(Q

λ̃(2)
), with the same mixed action strategies as in λ,

qλ̃(2)(a|γ) = qλ(a|γ).

If set Γ̃(2) is linearly independent we define λ(2) = λ̃(2) ∈ Λ(µ̄, A) and stop the iteration. If not, we
reapply Caratheodory’s theorem and identify a linearly independent set Γ(2) ⊂ Γ̃(2) that retains
µ̄ in its convex hull, hence for which there exist strictly positive probability weights QLI2 (γ) >

0 on γ ∈ Γ(2) such that µ̄ =
∑
γ∈Γ(2)

QLI2 (γ)γ. In this case, we define strategy λ(2) ∈ Λ(µ̄, A)

to involve precisely these posteriors, Γ(λ(2)) = Γ(2) with the corresponding probability weights,
Qλ(2)(γ) = QLI2 (γ), and again with the same mixed action choice as in strategy λ, qλ(2)(a|γ) =
qλ(a|γ). Rounding out the iterative process, we then define π(2) ∈ (0, 1) as the smallest number
such that,

π(2)Qλ(2)(γ) = Q2(γ),

some γ ∈ Γ(Qλ(2)). Finally, we define Q3(γ) on γ ∈ Γ(Qλ) by,

Q3(γ) =
Q2(γ)− π(2)Qλ(2)(γ)

1− π(2)
≥ 0,

and Γ̃(3) = {γ ∈ Γ|Q3(γ) > 0}. We continue in iterative fashion defining non-empty sets of posterior
Γ̃(l), linearly independent subsets Γ(l) ⊂ Γ̃(l) and corresponding strategies λ(l) ∈ Λ(µ̄, A). This

iteration is completed in a finite number of steps, L ∈ N, since
∣∣∣Γ̃(l + 1)

∣∣∣ < ∣∣∣Γ̃(l)
∣∣∣.

The above construction provides us with a set of strategies {λ(l)}1≤l≤L that are feasible, λ(l) ∈
Λ(µ̄, A), and that have linearly independent posteriors. By construction, the distribution of the
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posteriors for Lth strategy are given by

Qλ(L)(γ) =
Qλ(γ)

ΠL−1
l=1 (1− π(l))

−
L−1∑
l=1

π(l)Qλ(l)(γ)

ΠL−1
k=l (1− π(l))

We now show that we can reverse engineer the construction to identify probability weights α(l)
such that

λ(α) =
L∑
l=1

α(l)λ(l) = λ.

Specifically, we define
α(l) = Πl−1

k=1 [1− π(k)]π(l)

for 1 ≤ l ≤ L− 1 (using the convention that α(1) = Π0
k=1 [1− π(k)]π(1) = π(1)), and

α(L) = ΠL−1
k=1 [1− π(k)]

First note that these weights sum to 1, as

α(1) + α(2) + ...+ α(L− 1) + α(L)

= π(1) + π(2)(1− π(1)) + ...+ π(L− 1)ΠL−2
k=1 [1− π(k)] + (1− π(L− 1))ΠL−2

k=1 [1− π(k)]

The final two terms collapse to ΠL−2
k=1 [1− π(k)], which can then be combined with the term from

α(L− 2) in order to give ΠL−3
k=1 [1− π(k)]. Iterating on this process leaves eventually

π(1) + (1− π(1)) = 1

To confirm that indeed

λ(α) =
L∑
l=1

α(l)λ(l) = λ,

we need to show only that the unconditional posterior probabilities are the same,

Qλ(α)(γ) =
∑
l

α(l)Qλ(l)(γ) = Qλ(γ);

since the construction ensures that all conditional action strategies are identical,

qλ(l)(a|γ) = qλ(a|γ),

all l. Note that,

L∑
l=1

α(l)Qλ(l)(γ)

=

L−1∑
l=1

Πl−1
k=1 [1− π(k)]π(l)Qλ(l)(γ) + ΠL−1

k=1 (1− π(k))

[
Qλ(γ)

ΠL−1
l=1 (1− π(l))

−
L−1∑
l=1

π(l)Qλ(l)(γ)

ΠL−1
k=l (1− π(l))

]
= Qλ(γ).
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Given that λ ≡
L∑
l=1

α(l)λ(l) and λ ∈ Λ̂(µ̄, A), we apply Lemma 2.2 to conclude that λ(l) ∈

Λ̂(µ̄, A) all l. We now take each strategy λ(l) in turn. We move to a pure strategy versions
λ∗(l,m) = (Q∗l,m, q

∗
l,m). For each such strategy we set Q∗l,m(γ) = Qλ(l)(γ) and then take each

possible posterior γ ∈ Γ(l), selecting one action a ∈ A that is chosen with positive probability at
that posterior, qλ(l)(a|γ) > 0, and setting its probability to 1,

q∗l,m(a|γ) = 1.

Note that Nµ̄(µ̄, λ(l)) = Nµ̄(µ̄, λ∗(l,m)) since optimality implies that all options chosen at any
given posterior produce the same value, so that λ∗(l,m) ∈ Λ̂(µ̄, A) all l and m. We repeat this
exercise for all possible combinations of actions chosen according to λ(l) at posteriors γ ∈ Γ(Ql),
using M to denote the number of such combinations, then appropriately weight these strategies
together with weights such that

∑M
m=1 α

∗(l,m) = α(l) and

M∑
m=1

α∗(l,m)

α(l)
λ∗(l,m) = λ(λ).

To complete the proof we consider the cardinality of the set of chosen actions, A [λ∗(l)] ⊂ A.
Note by the Lemma 2.3 that since λ∗(l) ∈ Λ̂(µ̄, A), each chosen action is associated with a unique
posterior, so that,

|Γ (Q∗l )| = |A [λ∗(l)]| .

Together these put us in position to apply Lemma 2.4 to complete the proof: since λ∗(l) ∈ Λ̂(µ̄, A),
Γ(Qλ∗(l)) = Γ(Qλ(l)) ⊂ Γ is linearly independent, and

∣∣Γ (Qλ∗(l))∣∣ = A [λ∗(l)], the optimal strategy
is unique,

λ∗(l) = Λ̂(µ̄,A [λ∗(l)]).

A2.4: Generalized PS Models

From this point forward through the remainder of this appendix, there is no need to consider
changes in the prior within a given proof, so that we remove the over-bar, using µ in place of µ̄,
and correspondingly defining the generic decision problem to be (µ,A) rather than (µ̄, A).

At a key point in the proof of theorem 2 we need to consider variants of the PS cost function
in which the T function is not strictly convex. To simplify the proof, it is convenient to consider T
functions that take infinite value on unchosen posteriors.

Definition 2 We define K ∈ K to be generalized PS, K ∈ KGPS, if, given µ ∈ Γ and Q ∈ Q(µ),

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)Tµ(γ)− Tµ(µ),

if Γ̂(µ|K) is a convex set and Tµ : Γ(µ) → R̄ is real-valued Γ̂(µ|K) and infinite-valued on γ /∈
Γ̂(µ|K). We define the corresponding convexified cost function KCONV ∈ K by defining TCONVµ to
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be the convex hull of Tµ. This is defined as the greatest convex function majorized by Tµ, and is
shown by Rockafellar [1970] (page 36) to be equal to,

TCONVµ (γ) = inf{
M∑
m=1

α(m)T (γ(m))|
M∑
m=1

α(m)γ(m) = γ},

over weights α(m) > 0 satisfying
∑

α(m) = 1. We then define the cost function

KCONV (µ,Q) =
∑

γ∈Γ(Q)

Q(γ)TCONVµ (γ)− TCONVµ (µ).

Lemma 2.11: Convexification and Optimal Strategies Given C ∈ C with a CIR representa-
tion K ∈ KGPS ,

P̂ (µ,A|K) = P̂ (µ,A|KCONV )

all (µ,A) ∈ D.

Proof. To show that P̂ (µ,A|K) ⊂ P̂ (µ,A|KCONV ), it suffi ces to show that any strategy λ ∈
Λ̂(µ,A|K) is also optimal with the convexified cost function, λ ∈ Λ̂(µ,A|KCONV ), since then the
corresponding data Pλ is in both sets. The first step is to show that the value function is no higher
for the convexified function,

V̂ (µ,A|KCONV ) ≤ V̂ (µ,A|K). (41)

Consider an arbitrary strategy η ∈ Λ(µ,A) and index the finite set of possible posteriors η̄(n) ∈ Γ(η)
for 1 ≤ n ≤ N . By construction of the lower semi-continuous hull of Tµ (Rockafellar page 36),

TCONVµ (γ) = inf{
M∑
m=1

α(m)T (γ(m))|
M∑
m=1

α(m)γ(m) = γ}.

Hence we know that for each posterior η̄(n) and p ∈ N there exists a finite set of posteriors η(n,m, p)

for 1 ≤ m ≤M(p) and corresponding weights α(n,m, p) > 0 with
Mn∑
m=1

α(n,m, p) = 1 such that.

M(n,p)∑
m=1

N∑
n=1

α(n,m, p)η(n,m, p) = η̄(n);

and such that the corresponding weighted average value of T [η(n,m, p)] is no more than 1
p above

TCONVµ [η̄(n)], so that, for 1 ≤ n ≤ N ,

TCONVµ [η̄(n)] ≥
Mn∑
m=1

α(n,m, p)T [η(n,m, p)]− 1

p
.

For each p ∈ N we introduce a corresponding strategy F (η, p) = (QF (η,p),qF (η,p)) with possible
posteriors,

Γ(QF (η,p)) = {η(n,m, p)|1 ≤ n ≤ N and 1 ≤ m ≤M(n, p)}.
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Specifically, the strategy is defined by:

QF (η,p) [η(n,m, p)] = α(n,m, p)Qη(η̄(n));

qF (η,p) [a|η(n,m, p)] = qη [a|η̄(n)] .

The first key observation is that this strategy is feasible, F (η, p) ∈ Λ(µ,A). It is immediate that
A(F (η, p)) = A(η) ⊂ A. That F (η, p) ∈ Λ(µ,A) requires first that it is a strategy, which means
that the probabilities over possible posteriors add to 1. This follows directly from the definition,

∑
η∈Γ(QF (η,p))

QF (η,p) [η(n,m, p)] =

N∑
n=1

Mn∑
m=1

α(n,m, p)Qη(η̄(n))

=

N∑
n=1

Qη(η̄(n))

Mn∑
m=1

α(n,m, p) =

N∑
n=1

Qη(η̄(n)) = 1

To complete this part of the proof requires confirmation of Bayes’rule. This again is definitional,

∑
η∈Γ(QF (η,p))

η(n,m, p)QF (η,p) [η(n,m, p)] =
N∑
n=1

Mn∑
m=1

α(n,m, p)η(n,m, p)Qη(η̄(n))

=
N∑
n=1

Qη(η̄(n))

Mn∑
m=1

α(n,m, p)η(n,m, p)

=
N∑
n=1

η̄(n)Qη(η̄(n)) = µ.

The second key observation is that F (η, p) using K achieves utility net of attention costs within
1
p of that η achieves using K

CONV . To see this, consider first the expected prize utility as defined
by the probability distribution over rewards,

U(F (η, p)) =
∑

γ∈Γ(QF (η,p))

∑
a∈A

QF (η,p)(γ)qF (η,p)(a|γ)ū(γ, a).

Defining the relevant set of indices,

I ≡ {(n,m, p)|1 ≤ n ≤ N and 1 ≤ m ≤M(n, p)
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Note by direct substitution that,∑
γ∈Γ(QF (η,p))

∑
a∈A

QF (η,p)(γ)qF (η,p)(a|γ)ū(γ, a) =
∑
I

∑
a∈A

α(n,m, p)Qη(η̄(n))qF (η,p) [a|η(n,m, p)] ū(η̄(n), a)

=
∑
I

∑
a∈A

α(n,m, p)Qη(η̄(n))qη [a|η̄(n)] ū(η̄(n), a)

=
∑

1≤n≤N

∑
a∈A

∑
1≤m≤M(n,p)}

α(n,m, p)Qη(η̄(n))qη [a|η̄(n)] ū(η̄(n), a)

=
∑

1≤n≤N

∑
a∈A

Qη(η̄(n))qη [a|η̄(n)] ū(η̄(n), a) = U(η).

With regard to the costs, note by construction that,

TCONV [η̄(n)] ≥
M(n,p)∑
m=1

α(n,m, p)T [η(n,m, p)]− 1

p
.

Hence,

KCONV (Qη) + TCONV [µ] =
N∑
n=1

Qη(η̄(n))TCONV [η̄(n)]

≥
N∑
n=1

Mn∑
m=1

Qη(η̄(n))α(n,m, p)T [η(n,m, p)]− 1

p

=

N∑
n=1

Mn∑
m=1

QF (η) [η(n,m, p)]T [η(n,m, p)]− 1

p
= K(QF (η,p))−

1

p
.

Hence,

V (µ, η|KCONV ) = U(η)−KCONV (Qη) ≤ U(F (η, p))−K(QF (η,p)) +
1

p
= V (µ, F (η, p)|K) +

1

p
.

By increasing p without bound, we establish that,

V (µ, η|KCONV ) ≤ sup
λ∈Λ(µ,A)

V (µ, λ|K) = V̂ (µ,A|K).

Since η ∈ Λ(µ,A) is arbitrary, this ensures that the supremum of all values is correspondingly
bounded above,

V̂ (µ,A|KCONV ) ≡ sup
η∈Λ(µ,A)

V (µ, η|KCONV ) ≤ V̂ (µ,A|K),

completing the proof of (41).

To show that P̂ (µ,A|K) ⊂ P̂ (µ,A|KCONV ), note that since C has a CIR, we know that
Λ̂(µ,A|K) 6= ∅ for any (µ,A) ∈ D. Now consider any optimal strategy λ ∈ Λ̂(µ,A|K) which
therefore achieves the value

V̂ (µ,A|K) = V (µ, λ|K) = U(λ)−K(µ,Qλ)
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By definition of the convexification operation, note that TCONVµ (γ) ≤ Tµ (γ) all γ ∈ ΓC(µ), so
that,

KCONV (µ,Qλ) ≤ K(µ,Qλ).

Hence,

V̂ (µ,A|K) = U(λ)−K(µ,Qλ) ≤ U(λ)−KCONV (µ,Qλ) ≤ V (µ,A|KCONV )

≤ V̂ (µ,A|KCONV ) ≤ V̂ (µ,A|K),

making all equalities, so that indeed λ ∈ Λ̂(µ,A|KCONV ), completing the proof that P̂ (µ,A|K) ⊂
P̂ (µ,A|KCONV ).

To complete the proof, we establish the converse set inclusion. The first key observation is that
Γ̂(µ|KCONV ) ⊂ Γ̂(µ|K). To see this, first note that by definition, γ′ /∈ Γ̂(µ|K) implies T (γ′) =∞.
Moreover, because Γ̂(µ|K) is convex by the definition of a generalized CIR, any weighted average of

posteriors for which
M∑
m=1

α(m)γ(m) = γ′ must involve at least one posterior γ(m) ∈ Γ(µ)/Γ̂(µ|K)

for which T (γ(m)) =∞. Hence
M∑
m=1

α(m)T (γ(m)) =∞. Thus,

TCONVµ (γ′) = inf{
M∑
m=1

α(m)T (γ(m))|
M∑
m=1

α(m)γ(m) = γ′} =∞,

where the weights α(m) are positive and sum to 1.

Finally, this implies that for any Q ∈ Q(µ) with γ′ ∈ Γ(Q), the cost KCONV (µ,Q) = ∞,
and so cannot be optimal (as the inattentive strategy will always provide a higher payoff). Hence
γ′ /∈ Γ̂(µ|KCONV ).

Next, we show that, given any γ′ ∈ Γ̂(µ|K), it must be the case that TCONV [γ′] = T [γ′]. Assume
not, then by definition of Γ̂(µ|K) and K there exists (µ,A) ∈ D and λ = (qλ, Qλ) ∈ Λ̂(µ,A|K) such
that γ′ ∈ Γ(Q). Note that, by construction TCONV [γ′] ≤ T [γ′], so assume by way of contradiction
that TCONV [γ′] < T [γ′]. By definition of TCONV [γ′] as the infimum of

∑
ξ∈Γ(Q̄) T (ξ)Q̄(ξ) on

the set of posterior distributions that generate γ′, this implies that there exists some alternative
distribution of posteriors Q̄(ξ) that satisfies two conditions:∑

ξ∈Γ(Q̄)

ξQ̄(ξ) = γ′;

∑
ξ∈Γ(Q̄)

T (ξ)Q̄(ξ) < T [γ′].

If such a distribution existed, one could amend strategy λ = (qλ, Qλ) ∈ Λ̂(µ,A|K) and construct an
alternative strategy λ∗ = (q∗, Q∗) ∈ Λ(µ,A) that produced strictly higher net utility, contradicting
the assumed optimality. One would simply reduce the probability of γ′ ∈ Γ(Qλ) by Qλ(γ′) and
increase the probability of each γ ∈ Γ(Q̄) by γ ∈ Qλ(γ′)Q̄(γ), adjusting action choice probabilities
appropriately to generate the same revealed posteriors as in λ. Effectively the new strategy uses∑

ξ∈Γ(Q̄) ξQ̄(ξ) rather than γ′, but is otherwise identical. It is straightforward to show that λ∗ ∈
Λ(µ,A), U(λ) = U(λ∗) but K(µ,Q∗) < K(µ,Qλ).
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To complete the proof of the lemma, we need to show that P̂ (µ,A|KCONV ) ⊂ P̂ (µ,A|K).
By construction, for any P ∈ P̂ (µ,A|KCONV ), there exists an optimal strategy λ = (qλ, Qλ) ∈
Λ̂(µ,A|KCONV ) such that,

P = Pλ.

First, note that, by the first claim above, for any γ ∈ Γ(Qλ), it must be the case that γ ∈ Γ̂(µ|K),
and so, by the second claim, TCONV [γ′] = T [γ′]. This directly implies that

KCONV (µ,Qλ) =
∑

γ∈Γ(Qλ)

Qλ(γ)TCONV (γ)− TCONV (µ)

=
∑

γ∈Γ(Qλ)

Qλ(γ)T (γ)− T (µ)

= K(µ, Q̄),

and so V (µ, λ|KCONV ) = V (µ, λ|K), and as V̂ (µ,A|K) ≤ V̂ (µ,A|KCONV ) = V (µ, λ|KCONV ), we
have λ ∈ Λ̄(µ,A|K) and so Pλ ∈ P̂ (µ,A|K), completing the proof.

A2.5: Linking Strategies with Data

Lemma 2.12 (Strategies and Revealed Posteriors): Given λ ∈ Λ̂(µ,A|K) for K ∈ KPS and
some (µ,A) ∈ D:

1. A(Pλ) = A(λ);

2. Given for γ ∈ Γ(Qλ) and a such that qλ(a|γ) > 0

γ̄aPλ = γ.

Proof. Given λ = (Qλ, qλ) ∈ Λ(µ,A) it is definitional that, for all a ∈ A(λ) and ω ∈ Ω(µ),

Pλ(a|ω) =

∑
γ∈Γ(Qλ)

Qλ(γ)qλ(a|γ)γ(ω)

µ(ω)
,

so that indeed A(Pλ) = A(λ). Note also, that, by Lemma 2.3 and the fact that λ ∈ Λ̂(µ,A), for
any, γ ∈ Γ(Qλ) and a such that qλ(a|γ) > 0, qλ(a|γ′) = 0 for all other γ′ ∈ Γ(Qλ). Thus, for any
such a, and using the definition of the revealed posterior

γ̄aPλ(ω) =
µ(ω)Pλ(a|ω)

Pλ(a)

=
µ(ω)Qλ(γ)qλ(a|γ)γ(ω)

µ(ω)∑
γ∈Γ(Qλ)

Qλ(γ)qλ(a|γ)

= γ(ω).
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Lemma 2.13 (Inverse Operation on Data): Given P ∈ P(µ,A) for some (µ,A) ∈ D, A(QP ) =
A(P ), and:

1. Pλ(P ) = P.

2. γaλ(P ) = γ̄aP .

Proof. Given P ∈ P, it is definitional that A(QP ) = A(P ) and that, given a ∈ A(P ) and ω ∈ Ω(µ),

Pλ(P )(a|ω) =

∑
γ∈Γ(QP )

QP (γ)qP (a|γ)γ(ω)

µ(ω)
.

It is also definitional that λ(P ) = (QP ,qP ) has support comprising the revealed posteriors Γ(P ) =
∪a∈A(P )γ̄

a
P (ω),

γ̄aP (ω) ≡ µ(ω)P (a|ω)∑
ν∈Ω(µ)

µ(ν)P (a|ν)
≡ µ(ω)P (a|ω)

P (a)
;

and that,

QP (γ) =
∑

{a∈A(P )|γ̄aP=γ}
P (a);

qP (a|γ) =

{
P (a)
QP (γ) if γ̄aP = γ;

0 if γ̄aP 6= γ.

Substitution yields,

Pλ(P )(a|ω) =

∑
a∈A(P )

QP (γ̄aP )qP (a|γ̄aP )γ̄aP (ω)

µ(ω)

=

∑
γ̄aP∈A(P )

P (a)γ̄aP (ω)

µ(ω)
=

∑
γ̄aP∈A(P )

P (a)
[
µ(ω)P (a|ω)

P (a)

]
µ(ω)

= P (a|ω),

completing the proof of (1).

For part (2), we apply part (2) in the Lemma 2.12 to conclude that γaλ(P ) = γ̄aPλ(P )
, whereupon

the fact that Pλ(P ) = P establishes that,

γaλ(P ) = γ̄aP ,

completing the proof.

Lemma 2.14 (Optimal Strategies and Data): Given λ ∈ Λ̂(µ,A|K) for K ∈ KPS and some
(µ,A) ∈ D:

1. Γ(QPλ) = Γ(Qλ).

2. QPλ(γ) = Qλ(γ) all γ ∈ Γ(QPλ).
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3. qPλ(a|γ) = qλ(a|γ) all a ∈ A(Pλ), γ ∈ Γ(QPλ).

4. λ(Pλ) = λ.

Proof. To prove (1), note directly that the possible posteriors satisfy,

Γ(QPλ) = ∪a∈A(Pλ)γ̄
a
Pλ

= ∪a∈A(λ)γ
a
λ = Γ(Qλ),

where we use Lemma 2.12 in equating the posteriors between strategy and data. By Lemma 2.12
we know that for an action a ∈ A(λ) is chosen if and only if γ = γaλ for some γ ∈ Γ(Qλ), allowing us
to compute choice probabilities in the data from the only strictly positive term of the summation,

Pλ(a|ω) =
Qλ(γaλ)qλ(a|γaλ)γaλ(ω)

µ(ω)
;

Pλ(a) = Qλ(γaλ)qλ(a|γaλ).

Substitution in the definitions for QPλ implies that, given γ ∈ Γ(Qλ) with Qλ(γ) > 0 there
exists a ∈ A(λ) such that γ = γaλ and that,

QPλ(γ) =
∑

{a∈A(λ)|γaλ=γ}
Pλ(a) = Qλ(γ)

∑
{a∈A(λ)|γaλ=γ}

qλ(a|γ) = Qλ(γ),

confirming (2). With regard to part (3), note that given any posterior γ = γaλ ∈ Γ(Qλ) for a ∈ A(λ),
and any action b ∈ A,

qPλ(b|γ) = qλ(b|γ).

By Lemma 2.3, both are zero when γbλ 6= γaλ = γ. Applying the definitions and the just-established
equality of QPλ(γ) and Qλ(γ), we conclude that, with γbλ = γaλ = γ ∈ Γ(Qλ),

qPλ(b|γ) =
Pλ(b)

QPλ(γ)
=
qλ(b|γaλ)Qλ(γaλ)

Qλ(γaλ)

= qλ(b|γaλ) = qλ(b|γ).

rounding out the proof. Note that (2) and (3) together directly establish (4):

λ(Pλ) ≡ (QPλ ,qPλ) = (Qλ, qλ) = λ.

Lemma 2.15 (Data and Optimal Strategies): Given C ∈ C with a PS representation K ∈
KPS and P ∈ C(µ,A) some (µ,A) ∈ D,

λ(P ) ∈ Λ̂(µ,A|K).

Proof. By definition P ∈ C(µ,A) when C has a PS representation K ∈ KPS implies that there
exists λ ∈ Λ̂(µ,A|K) such that,

P = Pλ.

By part (2) of Lemma 2.14 we know that, since λ ∈ Λ̂(µ,A|K), λ(Pλ) ∈ Λ̂(µ,A|K), so that the
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just established fact that λ = λ(Pλ) when λ ∈ Λ̂(µ,A|K) implies that,

λ(P ) = λ(Pλ) = λ ∈ Λ̂(µ,A|K),

completing the proof.

Lemma 2.16 (Identical Posteriors): Given C ∈ C with a PS representation K ∈ KPS ,

Γ̂(µ|K) = ΓC(µ)

all µ ∈ Γ.

Proof. First pick γ ∈ ΓC(µ). By definition, this means that there exists (µ,A) ∈ D and P ∈
C(µ,A) with γ ∈ Γ(P ). Now consider strategy λ(P ) and note by Lemma 2.15 that λ(P ) ∈
Λ̂(µ,A|K) and by Lemma 2.13 that Γ(λ(P )) = Γ(P ), so γ ∈ Γ(λ(P )), so that definitionally
γ ∈ Γ̂(µ|K).

To go in the converse direction, pick γ ∈ Γ̂(µ|K) and note therefore that there exists (µ,A) ∈ D
and λ ∈ Λ̂(µ,A|K) with Qλ(γ) > 0. Now consider data Pλ and note by definition of a PS
representation thatPλ ∈ C(µ,A). By Lemma 2.14 note thatQPλ(γ) = Qλ(γ), so that definitionally
γ ∈ ΓC(µ).

Lemma 2.17 (Identical Posterior Distributions): Given C ∈ C with a PS representationK ∈
KPS ,

∆(Γ̂(µ|K)) = QC(µ),

all µ ∈ Γ.

Proof. First pick Q ∈ QC(µ) and note definitionally that there exists (µ,A) ∈ D and P ∈ C(µ,A)
s.t. QP = Q. Note by Lemma 2.14 that λ(P ) ∈ Λ̂(µ,A|K). Hence definitionally the corresponding
posterior distribution satisfies QP ∈ ∆(Γ̂(µ|K).

To go in the converse direction, pick Q ∈ ∆(Γ̂(µ|K) and apply FIO to find λ = (Qλ, qλ) ∈
Λ̂(µ,A|K) such that Qλ(γ) = Q(γ) all γ ∈ Γ(Q). Define Pλ ∈ P(µ,A) and note by definition of
CIR that Pλ ∈ C(µ,A). By Lemma 21.4 note that, since λ = (Qλ, qλ) ∈ Λ̂(µ,A|K),

QPλ(γ) = Qλ(γ) = Q(γ),

all γ ∈ Γ(QPλ) = Γ(Qλ) = Γ(Q). Hence definitionally, QPλ ∈ QC(µ), completing the proof.

Lemma 2.18: (Mixtures and Data) Given µ̄ ∈ Γ, if strategies λ, {λ(l)}1≤l≤L ∈ Λ(µ̄, A) are

such that λ =

L∑
l=1

α(l)λ(l) for probability weights {α(l)}1≤l≤L, then,

Pλ =

L∑
l=1

α(l)Pλ(l).

34



Proof. Given a ∈ A(λ) and ω ∈ Ω(µ̄),

Pλ(a|ω) =

∑
γ∈Γ(Qλ)

Qλ(γ)qλ(a|γ)γ(ω)

µ̄(ω)
.

By definition of the mixture strategy,

Qλ(γ) =
∑
l

α(l)Ql(γ) all γ ∈ Γ(Qλ) = ∪{l|α(l)>0}Γ(Ql);

qλ(a|γ) =

∑
l α(l)ql(a|γ)Ql(γ)

Qλ(γ)
all γ ∈ Γ(Qλ), a ∈ A(λ) = ∪{l|α(l)>0}A(λ(l)).

Directly substitution establishes the result,

Pλ(a|ω) =

∑
γ∈Γ(Qλ)

L∑
l=1

α(l)ql(a|γ)Ql(γ)γ(ω)

µ̄(ω)

=

L∑
l=1

α(l)


∑

γ∈Γ(Qλ(l))

ql(a|γ)Ql(γ)γ(ω)

µ̄(ω)

 =

L∑
l=1

α(l)Pλ(l)(a|ω).

Lemma 2.19: (Irrelevance of Impossible Payoffs) Given C ∈ C with CIR K ∈ K, consider
a ∈ A(P ) and a′ 6= a ∈ A with identical payoffs in possible states Ω(µ) according to some µ
and define A′ to be A with a′ replacing a:

u(a′, ω) = u(a, ω) all ω ∈ Ω(µ);

A′ = a′ ∪A/a.

Then,

C(µ,A′) =
{
P ′ ∈ P(µ,A′)|∃P ∈ C(µ,A) s.t P ′(a′|ω) = P (a|ω) and P ′(b|ω) = P (b|ω) all b ∈ A/a.

}
Proof. Given a CIR, P ∈ C(µ,A) implies λP ∈ Λ̂(µ,A|K). Given that there is no change in
feasible payoffs in possible states from replacing a by a′, we know that the corresponding strategy
induced by P ′ is optimal for decision problem (µ,A′),

λP ′ ∈ Λ̂(µ,A′|K).

Since this is a CIR, we know that the corresponding data is observed,

P(λP ′) ∈ C(µ,A′).

Note by Lemma 2.12 that P(λP ′) = P ′, so that P ′ ∈ C(µ,A′). The argument applies in both
directions, establishing Lemma 2.19.
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Appendix 3: Theorem 3

In this Appendix we prove theorem 3. We start by proving necessity of the axioms, then suffi ciency.

Theorem 3: Data set C ∈ C has a PS representation if and only if it satisfies A2 through A8.

Proof. Necessity of A2 through A8 for a PS representation:

Necessity of NIAS (A2) and NIAC (A3) is immediate following Caplin and Martin (2015) and
Caplin and Dean (2015) respectively. Necessity of Completeness (A4) follows from combining
Lemma 2.7 (FIO) with Lemma 2.16 (Identical Posteriors) and 2.17 (Identical Posterior Distribu-
tion). First, FIO implies that Γ̃(µ) ⊂ Γ̂(µ|K). Given the Identical Posteriors Lemma, it is therefore
immediate that Γ̃(µ) ⊂ ΓC(µ), establishing necessity of the first clause in the Completeness axiom.
The Identical Posterior Lemma further establishes that Γ̂(µ|K) = ΓC(µ), whereupon the assumed
convexity of Γ̂(µ|K) in a PS representation establishes the convexity clause of the Completeness
axiom. Finally, the Identical Posterior Distribution Lemma establishes the third clause

∆(ΓC(µ)) = ∆(Γ̂(µ|K)) = QC(µ),

completing the proof that A4 is necessary,

We now establish necessity of Separability (A5). Consider (µ,A(1)) ∈ D, and P (1) ∈ C(µ,A(1)).
Note by Lemma 2.15 that λ(P (1)) = (QP (1),qP (1)) ∈ Λ̂(µ,A1|K) and by Lemma 2.13 that
Pλ(P (1)) = P (1).

Now consider Q2 ∈ QC(µ) with Γ(QP (1))∩Γ(Q2) 6= ∅. By Lemma 2.17, Q2 ∈ Q̂(µ). Now apply
Lemma 2.9 to conclude that there exists (µ,A2) ∈ D and λ(2) = (Q2, q2) ∈ Λ̂(µ,A2) with,

q2(a|γ) = qP (1)(a|γ),

for γ ∈ Γ(QP (1)) ∩ Γ(Q2). Now apply the P operator to λ(2) conclude that, noting that since this
is a PS representation and λ(2) = (Q2, q2) ∈ Λ̂(µ,A2),

Pλ(2) ≡ P (2) ∈ C(µ,A2).

We can apply Lemma 2.14 to conclude that, since λ(2) = (Q2, q2) ∈ Λ̂(µ,A2) that,

qP (2)(a|γ) = q2(a|γ).

Stringing these together we conclude that indeed,

qP (1)(a|γ) = qP (2)(a|γ),

all γ ∈ Γ(QP (1)) ∩ Γ(Q2), establishing necessity of separability, and with it the proof of necessity
of A5.

To prove necessity of Non-linearity (A6), we consider (µ,A) ∈ D, P ∈ C(µ,A), and pick a1, a2,
a3 ∈ A such that γ̄a1

P 6= γ̄a3
P and such that,

γ̄a2
P = αγ̄a1

P + (1− α)γ̄a3
P ,
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for some α ∈ (0, 1). By Lemma 2.15, we know that λ(P ) ∈ Λ̂(µ,A|K). We know also that the
corresponding revealed posteriors are identical to the posteriors used in the strategy,

γaiλ(P ) = γ̄aiP for 1 ≤ i ≤ 3.

Thus, by the Lagrangian Lemma there exists θ ∈ RJ−1 such that:

J−1∑
j=1

θ(j)γ̄a2
P (j) + ū(γ̄a2

P , a2)− Tµ(γ̄a2
P ) =

J−1∑
j=1

θ(j)γ̄a1
P (j) + ū(γ̄a1

P , a1)− Tµ(γ̄a1
P )

=
J−1∑
j=1

θ(j)γ̄a3
P (j) + ū(γ̄a3

P , a3)− Tµ(γ̄a3
P ).

Hence,

J−1∑
j=1

θ(j)γ̄a2
P (j) + ū(γ̄a2

P , a2)− Tµ(γ̄a2
P )

= α

J−1∑
j=1

θ(j)γ̄a1
P (j) + ū(γ̄a1

P , a1)− Tµ(γ̄a1
P )

+ (1− α)

J−1∑
j=1

θ(j)γ̄a3
P (j) + ū(γ̄a3

P , a3)− Tµ(γ̄a3
P )

 .

Rearrangement yields,

J−1∑
j=1

θ(j)
[
γ̄a2
P (j)− αγ̄a1

P (j) + (1− α)γ̄a3
P (j)

]
+ ū(γ̄a2

P , a2)−
(
αū(γ̄a1

P , a1) + (1− α)ū(γ̄a3
P , a3)

)
= Tµ(γ̄a2

P )−
(
αTµ(γ̄a1

P ) + (1− α)Tµ(γ̄a3
P )
)
.

Since γ̄a2
P = αγ̄a1

P + (1− α)γ̄a3
P the first term is equal to zero, and if ū(γ̄a2

P , a2) = αū(γ̄a1
P , a1) + (1−

α)ū(γ̄a3
P , a3), the second term would also be zero. Hence,

Tµ(γ̄a2
P ) = αTµ(γ̄a1

P ) + (1− α)Tµ(γ̄a3
P ),

in contradiction of strict convexity of Tµ. This establishes necessity of A6.

To establish necessity of Convexity (A7), consider (µ,A) ∈ D, Pl ∈ C(µ,A) for 1 ≤ l ≤ L, and
probability weights α(l) > 0. Define the mixture data Pα ∈ P (µ,A) by,

Pα(a|ω) ≡
L∑
l=1

α(l)Pl(a|ω).

Convexity requires that Pα ∈ C (µ,A). Note that since the C is a CIR, there exists λ(l) = (Ql, ql) ∈
Λ̂ (µ,A|K) for which,

Pλ(l) = Pl all l .

Define the strategy λ(α) to be the corresponding mixture strategy, as defined in Appendix 2. By
the Mixing and Optimality Lemma (2.2), λ(α) ∈ Λ̂ (µ,A|K), and since this is a CIR,

Pλ(α) ∈ C (µ,A) .

37



To complete the proof, we apply the Mixtures and Data Lemma (2.18) to confirm that λ(α)
correspondingly mixes the SDSC data: given a ∈ A and ω ∈ Ω(µ),

Pλ(α)(a|ω) =
L∑
l=1

α(l)Pλ(l) =
L∑
l=1

α(l)Pla|ω) = Pα(a|ω) ∈ C (µ,A)

We conclude the necessity proof by establishing necessity of Continuity (A8). To this end, we
consider µ ∈ Γ and K ∈ KPS together with I ≥ 1 sequences of actions ai(m) with limm→∞ ai(m) =
āi for 1 ≤ i ≤ I, with A(m) = ∪Ii=1a

i(m) and Ā = ∪Ii=1 āi. Suppose that there exists P ∈
∩∞m=1C(µ,A(m)) with A(P ) ⊂ Ā. Then by Lemma 2.8, the revealed attention strategy satisfies
λ(P ) ∈ ∩∞m=1Λ̂(µ,A(m)|K) and since A(P ) ⊂ Ā, it is also feasible in the limit problem, λ(P ) ∈
Λ(µ, Ā). What we need to prove is that it is optimal.

Since λ(P ) = (QP ,qP ) ∈ Λ̂(µ̄, A(m)|K), we know that it achieves optimal value, which we
denote V̂ ,

V (λP ) = U(λP )−Kµ̄(µ̄,QP ) = V̂ (µ̄, A(m)) ≡ V̂ .

Since λP ∈ Λ(µ̄, Ā), we know that V̂ (µ̄, Ā|K) ≥ V̂ . Strictness of this inequality is not possible. To
see this, consider a purported strategy λ̄′ = (Q̄′, q̄′) ∈ Λ

(
µ̄, Ā

)
that achieves higher value in the

limit problem,
V (λ̄

′
, µ̄, Ā|K) > V̂ .

We now construct the corresponding strategy λ′m = (Q′m, q
′
m) ∈ Λ (µ̄, A(m)) that uses precisely the

same posterior distribution and the correspondingly indexed action choices,

Q′m(γ) = Q̄′(γ) and q′m(ai(m)|γi) = q̄′(āi|γi).

Since limm→∞ ai(m) = āi, we know that

lim
m→∞

U(λ′m) = U(λ̄
′
),

hence, as costs depend only on the unchanging distribution over posteriors, the corresponding holds
for the valuation,

lim
m→∞

V (λ′m, µ,A(m)|K) = V (λ̄
′
, µ, Ā|K) > V̂ ,

contradicting λP ∈ Λ̂(µ̄, A(m)|K). We conclude that λP is optimal in the limit problem, λP ∈
Λ̂(µ̄, Ā|K). Hence, given that this is a CIR, PλP ∈ C(µ̄, Ā). That PλP = P follows from Lemma
2.13, completing the proof that P ∈ C(µ̄, Ā).

Proof. Suffi ciency of A2 through A8 for a PS representation:

There are three key steps in the suffi ciency proof. In the first, we invoke corollary 1 to theorem 2
as established in Appendix 1 which gives a cost function of the PS form, yet in which the distribution
of posteriors impacts the computed cost of each posterior. The first point that we establish is that
A5, Separability allows us to remove the dependence of the function TCµ (·, Q̄) on the particular
distribution of posteriors. With this we will know that, given µ ∈ Γ, A2 through A5 imply that
there exists Generalized PS cost function K̄ ∈ KGPS (as defined prior to the proof of Lemma 2.11
in Appendix 2) such that C(µ,A) ⊂ P̂ (µ,A|K̄) all (µ,A) ∈ D and such that, given (µ,Q) ∈ F with
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Q ∈ QC(µ),
K̄(µ,Q) =

∑
γ∈Γ(Q)

Q (γ) T̄µ(γ)− T̄µ(µ). (42)

for some T̄µ : Γ(µ)→ R̄ (with T̄µ real-valued on ΓC(µ)). The second step in the proof applies Lemma
2.11 to show that T̄µ can be assumed weakly convex without any loss of generality, and that with A6
(Non-linearity), it must be strictly rather than weakly convex. The final step shows that addition
of Axiom A7 (Convexity) and A8 (Continuity) allow us to generate all data, C(µ,A) = P̂ (µ,A|K̄).
In this final step, a key role is played by Lemmas that are established in Appendix 2, which is
to be expected given that the cost function at this stage is of precisely the PS form and the only
remaining question relates to ensuring that all optima are observed in the data.

As noted, in the first step of the proof, we invoke corollary 1 to theorem 2 which we state as
follows for current purposes. Given C ∈ C satisfying A2-A4, there exists a unique function K ∈ K
such that, given µ ∈ Γ, C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D where K ∈ K can be computed for
(µ, Q̄) ∈ F with Q̄ ∈ QC(µ) by enumerating the support Γ(Q̄) = {γ̄n|1 ≤ n ≤ N} and using the
definitions of TCµ (γ̄n, Q̄) and TCµ (µ, Q̄) in the proof of theorem 2

TCµ (γ̄n, Q̄) ≡ [γ̄n − µ] ·
∫ 1

0
u(ānt )dt.

and computing,
K(µ, Q̄) ≡

∑
n

Q̄(γ̄n)TCµ (γ̄n, Q̄)− TCµ (µ, Q̄). (43)

In this stage of the proof we show that A5 enables us to remove the dependence on Q̄ and find T̄Cµ
in the data such that we can set,

TCµ (γ,Q) = T̄Cµ (γ),

all Q ∈ QC(µ).

We set up our candidate function T̄Cµ in two steps. In the first step, we select Q̄ ∈ QC(µ)

with Γ(Q̄) = ∪1≤n≤N γ̄
n with N = |Γ(Q̄)| with the {γ̄n}Nn=1 being affi ne independent vectors in

RN thereby forming a basis for Γ(µ): that this is possible follows from Completeness, whereby the
full-dimensional interior posteriors is observed, Γ̃ ⊂ ΓC(µ). We then apply corollary 1 to establish
existence of TCµ (γ̄n, Q̄) such that,

K(µ, Q̄) =
N∑
n=1

Q̄(γn)TCµ (γn, Q̄),

where,

TCµ (γn, Q̄) = [γn − µ] ·
∫ 1

0
u(ānt )dt (44)

and the {ānt }Nn=1 for t ∈ [0, 1] are the actions that support this construction.

We cost all other posteriors by embedding them in decision problems that include this fixed
basis Γ(Q̄). Picking any other observed posterior η ∈ ΓC(µ)\Γ(Q̄), we identify a corresponding
distribution Q̄η with full support

Γ(Q̄η) = Γ(Q̄) ∪ η,
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that satisfies the Bayesian constraint, ∑
γ∈Γ(Q̄η)

γQ̄η (γ) = µ.

That this is possible follows from the fact that Γ(Q̄) forms a basis for Γ(µ) so that an arbitrarily
small probability added to η can be precisely off-set by corresponding reductions in the weights on
the basis vectors γ̄n ∈ Γ(Q̄) while retaining strict positivity (see Lemma 4.5 for details).

Let Āt = {ānt }Nn=1 and let (µ, Āt) ∈ D and P̄t ∈ C (µ, Āt) such that QP̄t = Q̄t as in the proof to
theorem 2. Let,

ηt = tη + (1− t)µ

on t ∈ [0, 1] and let Q̄t(γ̄nt ) = Q̄(γ̄n) ≡ Q̄n. By construction Q̄ηt ∈ QC(µ) all t ∈ [0, 1].

We can now apply the Separability axiom, A5. Since (µ, Āt) ∈ D, P̄t ∈ C(µ, Āt) with QP̄t = Q̄t,
and Q̄ηt ∈ QC(µ) satisfies Γ(Q̄ηt ) ∩ Γ(Q̄t) = Γ(Q̄t), the axiom asserts existence for each t ∈ [0, 1] of
At(η) ⊂ A and Pt(η) ∈ C(µ,At(η)) with QPt(η) = Q̄ηt such that for each γ̄

n
t ∈ Γ(Q̄t) there exists

an action a ∈ Āt ∩ At(η) with γ̄aPt(η) = γ̄aPt = γ̄nt . We identify just such a choice set and data
combination, with Pt(η) ∈ C(µ,At(η)), and define at(η) ∈ At(η) as the action associated with the
new revealed posterior,

ηt = γ̄
at(η)
Pt(η)

According to the prescription in theorem 2 we can now compute the cost function from this
data using the posterior-by-posterior approach as,

K(µ, Q̄η) =
N∑

γ∈Γ(Q̄)∪η

Q̄η(γ)TCµ (γ, Q̄η),

where

TCµ (γ, Q̄η) = [γ − µ] ·
∫ 1

0
u(ānt )dt. (45)

for each γ ∈ Γ(Q̄), and

TCµ (γ, Q̄η) = [γ − µ] ·
∫ 1

0
u(at(γ))dt. (46)

for γ = η. Note that since the ānt are the same in (45) and (44), T
C
µ (γ, Q̄η) = TCµ (γ, Q̄) for all

γ ∈ Γ(Q̄).

We now define our candidate cost function T̄Cµ (γ). Specifically, we repeat the above for all
η ∈ Γ(Q)\Γ(Q̄) and set

T̄µ(γ) =

{
TCµ (γ, Q̄) for γ ∈ Γ(Q̄);

TCµ (γ, Q̄γ) for γ ∈ ΓC(µ)\Γ(Q̄).
(47)

The claim is that, for any Q ∈ QC(µ),

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T̄µ(γ) (48)
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We establish (48) first for all Q ∈ QC(µ) such that Γ(Q̄) ⊂ Γ(Q). The proof is inductive on
cardinality. We first establish that the result holds for any Q ∈ QC(µ) with cardinality N + 1 and
Γ(Q̄) ⊂ Γ(Q). In this case, there is a unique η ∈ Γ(Q)\Γ(Q̄) and Γ(Qη) = Γ(Q̄η) where Q̄η is the
distribution used the construction of (47). Since Γ(Qη) = Γ(Q̄η), the Separability axiom says that
we can use the same acts to calculate TCµ (γ,Qη) as we used to calculate TCµ (γ, Q̄η), and since the
construction of TCµ (γ, Q̄η) in (45) and (46) depends on Q̄η only through the actions, it follows that

TCµ (γ,Qη) = T̄µ(γ)

for all γ ∈ Γ(Qη) and

K(µ,Q) =
N∑
n=1

Q(γn)T̄µ(γn) +Q(η)T̄µ(η) (49)

as required.

We now suppose that (48) holds for all Q ∈ QC(µ) with Γ(Q̄) ⊂ Γ(Q) and cardinality N + m
and for m ≥ 1 and show that this extends to N +m+ 1. Consider Q̂ ∈ QC such that Γ(Q̄) ⊂ Γ(Q̂)
and |Γ(Q̂)| = N + m + 1. Since |Γ(Q̂)| > |Γ(Q̄)| + 1, we can find η1,η2 ∈ Γ(Q̂)\Γ(Q̄). Note that
by assumption (48) holds for all Q1 ∈ QC(µ) such that Γ(Q1) = Γ(Q̂)\η1 and some path of actions
AΓ(Q̂)\η1

(t) for t ∈ [0, 1]. By Separability (A5) we can find, for any t ∈ [0, 1] a corresponding set of

action paths Â1(t) = {AΓ(Q̂)\η1
(t), âη1

(t)} such that,

K(Q̂) =
∑

γ∈Γ(Q̂)

Q̂(γ)TCµ (γ, Q̂)

=
∑

γ∈Γ(Q̂)\η1

Q̂(γ)T̄µ(γ) + Q̂(η1)TCµ (η1, Q̂)

where,

TC(η1, Q̂) = [η1 − µ] ·
∫ 1

0
âη1

(t)dt.

Similarly, we can findQ2 ∈ QC(µ) such that Γ(Q2) = Γ(Q̂)\η2 and path Â2(t) = {AΓ(Q̂)\η2
(t), âη2

(t)}
defined by the action paths associated with T̄ (γ) for γ 6= η2 such that,

K(Q̂) =
∑

γ∈Γ(Q̂)\η2

Q̂(γ)T̄µ(γ) + Q̂(η2)TCµ (η2, Q̂)

with

TC(η2, Q̂) = [η2 − µ] ·
∫ 1

0
âη2

(t)dt.

Comparing the two different expressions for precisely the same cost, we conclude that,

Q̂(η1)T̄µ(η1) + Q̂(η2)TCµ (η2, Q̂) = Q̂(η1)TCµ (η1, Q̂) + Q̂(η2)T̄µ(η2),

or,

Q̂(η1)
[
T̄µ(η1)− TCµ (η1, Q̂)

]
= Q̂(η2)

[
T̄µ(η2)− TCµ (η2, Q̂)

]
. (50)
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Since |Γ(Q̂)| > |Ω(µ)|, and contains a basis, so Γ(Q̄) ⊂ Γ(Q̂), we can find a distinct distri-
bution of posteriors Q̂′ ∈ QC with Γ(Q̂′) = Γ(Q̂), Q̂′(η1) 6= Q̂(η1) yet Q̂′(η2) = Q̂(η2) and run
corresponding logic to conclude that,

Q̂′(η1)
[
T̄µ(η1)− TCµ (η1, Q̂

′)
]

= Q̂′(η2)
[
T̄µ(η2)− TCµ (η2, Q̂

′)
]
. (51)

Since Γ(Q̂′) = Γ(Q̂), direct application of Separability to the case in which Γ(QP (1))∩Γ(Q2) means
that we may use the same action set Â1(t) = {AΓ(Q̂)\η1

(t), âη1
(t)} to calculate both TCµ (η1, Q̂

′) and

TCµ (η1, Q̂). Similarly for η2. Hence T
C
µ (η1, Q̂

′) = TCµ (η1, Q̂) and TCµ (η2, Q̂
′) = TCµ (η2, Q̂). Since

Q̂′(η2) = Q̂(η2) by assumption, subtracting (50) from (51) yields,[
Q̂′(η1)− Q̂(η1)

] [
T̄µ(η1)− TCµ (η1, Q̂)

]
= 0.

Since Q̂′(η1) 6= Q̂(η1), it follows that

TCµ (η1, Q̂) = T̄µ(η1),

Since η1 is arbitrary, this establishes the induction step.

We now consider arbitrary Q ∈ QC(µ). In particular, we consider Q such that Γ(Q̄) 6⊂ Γ(Q).
The preceding establishes that (48) holds for Q′ = Q ∪ Q̄. Separability (A5) ensures that can use
the same actions for Q to finally produce the representation of the desired form,

K(Q) =
∑

γ∈Γ(Q)

Q(γ)T̄µ(γ)

for all Q ∈ QC , completing the proof that there exists K ∈ K such that C(µ,A) ⊂ P̂ (µ,A|K) all
(µ,A) ∈ D and such that,

K(µ,Q) =
∑
Γ(Q)

Q (γ) T̄Cµ (γ).

This completes the first step of the proof.

At this stage we set T̄Cµ (γ) to infinity outside the convex set ΓC(µ). Note that the construction
of K as forming a CIR of the data assumes that subjects use the revealed attention strategy in
each decision problem, meaning both that increasing the cost of posteriors outside ΓC(µ) maintains
the CIR and that ΓC(µ) ⊂ Γ̂(µ|K). Setting K(µ, γ) = ∞ for γ /∈ ΓC(µ) therefore makes ΓC(µ) =
Γ̂(µ|K) and so both are convex, by Completeness (A4). This means that K ∈ KGPS . Direct
application of Lemma 2.11 shows that we can replace Tµ with its convexification, TCONVµ , then
define KCONV correspondingly, with assurance that the data is unchanged,

P̂ (µ,A|K) = P̂ (µ,A|KCONV ).

This then implies that,

C(µ,A) ⊂ P̂ (µ,A|K) =⇒ C(µ,A) ⊂ P̂ (µ,A|KCONV ).
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To complete the second step we show that, since C ∈ C satisfies A3 and A6, and there exists a
convex function Tµ : Γ(µ)→ R̄ such that C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D, where,

K(µ,Q) =
∑
Γ(Q)

Q (γ)Tµ(γ),

then Tµ is strictly convex.

Assume by way of contradiction that Tµ is convex but not strictly so. Then there exists γ1,
γ3 ∈ dom Tµ such that γ2 = αγ1+(1−α)γ3 and Tµ(γ2) = αTµ(γ1)+(1−α)Tµ(γ3). By construction
above, Tµ(γ) is real valued only on ΓC(µ) and so by Axiom A4 (Completeness) we can conclude both
that γ2 ∈ ΓC(µ) and that there exists a decision problem (µ,A) such that, for some a1, a2, a3 ∈ A,
we have γ̄a1

P = γ1, γ̄
a2
P = γ2 and γ̄

a3
P = γ3. By the Lagrangian Lemma, this implies that there is a

strategy λ ∈ Λ̄(µ,A) and corresponding multipliers θ ∈ RJ−1 such that, since γ1, γ2, γ3 ∈ Γ(λ),

J−1∑
j=1

θ(j)γ1(j) + ū(γ1, a1)− Tµ(γ1) =

J−1∑
j=1

θ(j)γ2(j) + ū(γ2, a2)− Tµ(γ2);

J−1∑
j=1

θ(j)γ3(j) + ū(γ3, a3)− Tµ(γ3) =
J−1∑
j=1

θ(j)γ2(j) + ū(γ2, a2)− Tµ(γ2).

Hence,

J−1∑
j=1

θ(j)γ2(j) + ū(γ2, a2)− Tµ(γ2)

= α

J−1∑
j=1

θ(j)γ1(j) + ū(γ1, a1)− Tµ(γ1)

+ (1− α)

J−1∑
j=1

θ(j)γ3(j) + ū(γ3, a3)− Tµ(γ3)

 .

Equivalently,

J−1∑
j=1

θ(j) (γ2(j)− (αγ1(j) + (1− α)γ3(j))) + ū(γ2, a2)− (αū(γ1, a1) + (1− α)ū(γ3, a3))

= Tµ(γ2)− (αTµ(γ1) + (1− α)Tµ(γ3)).

Since γ2 = αγ1 + (1 − α)γ3 the first term is equal to zero, and by assumption Tµ(γ2) =
αTµ(γ1) + (1− α)Tµ(γ3), and so the RHS equals zero,

ū(γ̄a2
P , a2) = αū(γ̄a1

P , a1) + (1− α)ū(γ̄a3
P , a3).

which directly contradicts A6 (Nonlinearity). This contradiction establishes strict convexity of
TCONV , completing the second part of the proof.
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The final step is to show that, since we have found the strictly convex function for which
C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D, A7 and A8 imply that all optima are seen,

C(µ,A) = P̂ (µ,A|K).

Suppose that we have indeed found for C ∈ C a strictly convex function function Tµ : Γ(µ) → R̄
(real valued on Γ̃(µ)) and corresponding PS cost function on (µ,Q) with Q ∈ QC(µ),

K(µ,Q) =
∑
Γ(Q)

Q (γ)Tµ(γ)− Tµ (µ) ,

such that C(µ,A) ⊂ P̂ (µ,A|K) all (µ,A) ∈ D. What we show now is that, if C satisfies A7 and A8,
then, given arbitrary (µ,A) ∈ D and corresponding optimal strategy λ ∈ Λ̂(µ,A|K), Pλ ∈ C(µ,A).
To prove this we first invoke Lemma 2.10 (Decomposition and Uniqueness), which implies that there
exist strategies λ∗(l) = (Q∗l , q

∗
l ) ∈ Λ̂(µ,A) for 1 ≤ l ≤ L and corresponding probability weights α(l)

such that,

λ ≡
L∑
l=1

α(l)λ∗(l),

with each strategy λ∗(l) uniquely optimal with regard to the chosen actions A [λ∗(l)] ⊂ A,

Λ̂(µ,A [λ∗(l)]) = {λ∗(l)}.

For each l and a ∈ A we now construct sequences of actions a(l,m) for 1 ≤ m ≤ ∞ as follows:

u(a(l,m), j) =

{
u(a, j) if a ∈ A [λ∗(l)] ;

u(a, j)− 1
m if a ∈ A/A [λ∗(l)] .

We now define action sets A(l,m) as the corresponding unions,

A(l,m) = ∪a∈Aa(l,m).

Note that this addition of new actions with lowered payoffs does not expand the set of optimal
strategies beyond those in A [λ∗(l)] by Lemma 2.8. Hence,

Λ̂(µ,A(l,m)) = λ∗(l).

Existence of a CIR and uniqueness of the optimal strategy in the perturbed problems implies that
the corresponding data is observed all the way to the limit.

Pλ∗(l) ∈ ∩∞m=1C(µ,A(l,m)).

We are now in position to apply the Axiom A8 (Continuity). By construction, limm→∞ a(l,m) =
a, A(m) = ∪a∈Aa(l,m), and A(Pλ∗(l)) ⊂ A, so that this axiom implies that the data is also observed
in the limit problem,

Pλ∗(l) ∈ C(µ,A).
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Since this is true for all l, we can apply the Axiom A7 (Convexity) to conclude that the convex
combination of data corresponding to the given strategy λ is also observed,

L∑
l=1

α(l)Pλ∗(l) ∈ C(µ,A).

To complete the proof, we note from Lemma 2.18 that, since λ ≡
L∑
l=1

α(l)λ∗(l),

Pλ =

L∑
l=1

α(l)Pλ∗(l) ∈ C(µ,A),

as required. This completes the proof that C(µ,A) = P̂ (µ,A|K) and with it the overall suffi ciency
proof.

A3.1: Recoverability

A second recoverability results follow from the above logic. It establishes a simple method of
recovering this cost function.

Corollary 2: If C ∈ C has a PS representation K ∈ KPS , then, given µ ∈ Γ and non-degenerate
Q̄ ∈ QC(µ), there exists Ā for which there is both an inattentive optimal strategy, η ∈
ΛI(µ, Ā) ∩ Λ̂(µ, Ā), and an attentive optimal strategy λ = (Qλ, qλ) ∈ Λ̂(µ, Ā) with Qλ (γ) =
Q̄ (γ) all γ ∈ Γ(Q̄), so that,

K(µ,Qλ) = U(λ)− U(η).

Proof. If C ∈ C has a PS representation K ∈ KPS , consider µ ∈ Γ and non-degenerate Q̄ ∈
QC(µ), and note that

∑
γ∈Γ(Q)

γQ̄(γ) = µ. By Lemma 2.17, the PS representation ensures QC(µ) =

∆(Γ̂(µ|K)). The construction of Ā is based entirely on fµ(γ), the function identified in the FIO
Lemma:

Ā = {∪γ∈Γ(Q̄)fµ(γ)} ∪ {fµ(µ)} .

The two strategies are defined precisely by deterministic selection of fµ(γ) at posterior γ, qλ(fµ(γ)|γ) =
1. By construction both strategies above satisfy λ, η ∈ Λ(µ, Ā). Hence we can apply FIO directly
to conclude that λ, η ∈ Λ̂(µ, Ā|K). Hence they have equal expected utility net of attention costs.
Hence the cost difference must be the same as the difference in expected utility,

K(µ, Q̄)−K(µ, η) = U(λ)− U(η).

By construction, the inattentive strategy is free, K(µ, η) = 0, completing the proof.
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Appendix 4: Theorem 4

In this section of the appendix we take A2 through A8 and Theorem 3 as our starting point and
show that addition of Locally Invariant Posteriors (A9) validates Theorem 4. We first establish
some useful Lemmas. We then provide the necessity proof, which follows directly, and finally the
suffi ciency proof. Before doing this, we restate key definitions to ease reading of the Appendix. A
PS cost function K ∈ KPS is UPS K ∈ KUPS , if there exists a strictly convex function T : Γ→ R
such that,

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T (γ)− T (µ),

all (µ,Q) ∈ F such that Q ∈ Q̂(µ|K) ≡ Q(µ) ∩∆(Γ̂(µ|K)), where Γ̂(µ|K) is the optimal posterior
set,

Γ̂(µ|K) = {γ ∈ Γ|∃ (µ,A) ∈ D and λ ∈ Λ̂(µ,A|K) with γ ∈ Γ(Qλ)}.

Some additional notation simplifies proofs. We introduce special notation for the subset of F(µ)
consistent with optimality,

F̂(µ|K) =
{

(µ,Q) ∈ F(µ)|Q ∈ Q(µ) ∩∆(Γ̂(µ|K))
}
.

Given a UPS function, we define also net utility using the common cost function,

Na(γ) ≡ ū(γ, a)− T (γ). (52)

Finally, recall the notation γaλ defined in Lemma 2.3: this is the unique posterior at which any
chosen action a ∈ A(λ) may be chosen, qλ(a| γaλ) > 0, in an optimal strategy for a given PS cost
function λ = (Qλ, qλ) ∈ Λ̂ (µ,A|K).

A4.1: Lemmas

Lemma 4.1: (UPS Lagrangean Lemma) Given λ = (Qλ, qλ) ∈ Λ (µ,A) for K ∈ KUPS , λ ∈
Λ̂ (µ,A|K) if and only if ∃θ ∈ RJ−1 s.t.,

Na(γ)−
J−1∑
j=1

θ(j)γ(j) ≤ sup
a′∈A,γ′∈Γ(µ)

Na′(γ′)−
J−1∑
j=1

θ(j)γ′(j), (53)

all γ ∈ Γ(µ), b ∈ A, and a ∈ A(λ).with equality if γ ∈ Γ(Qλ) and qλ(a|γ) > 0.

Proof. By the standard Lagrangian Lemma 2.6 above, since K ∈ KUPS implies that K ∈ KPS ,
we know that, given (µ,A) ∈ D, λ ∈ Λ̂(µ,A|K) if and only if ∃θ ∈ RJ−1 s.t.,

Na
µ(γ)−

J−1∑
j=1

θ(j)γ(j) ≤ sup
a′∈A,γ′∈Γ(µ)

Na′
µ (γ′)−

J−1∑
j=1

θ(j)γ′(j),

all γ ∈ Γ(µ) and a ∈ A, with equality if γ ∈ Γ(Qλ) and qλ(a|γ) > 0. But with K ∈ KUPS , we know
that, for all µ, this holds also for the fixed function Na(γ) defined in (52), confirming (53).
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Lemma 4.2: LIP in Optimal Strategies Given K ∈ KUPS , consider (µ,A) ∈ D and λ =

(Qλ, qλ) ∈ Λ̂ (µ,A|K). Now consider ρ(a) > 0 on A′ ⊂ A(λ) with
∑
a∈A′

ρ(a) = 1 and de-

fine µ′ =
∑
a∈A′

ρ(a)γaλ and λ
′ = (Q′, q′) ∈ Λ(µ′, A′) with Γ(Q′) ⊂ Γ̂(µ′|K) by:

Q′(γ) =


∑

{a∈A′|γaλ=γ}
ρ(a) if γ ∈ Γ(Q′);

0 else.

q′(a|γ) =

{
ρ(a)
Q′(γ) if γ = γaλ;

0 else.

Then λ′ ∈ Λ̂(µ′, A′|K).

Proof. Consider (µ,A) ∈ D and λ = (Qλ, qλ) ∈ Λ̂ (µ,A|K) for K ∈ KUPS . Given K ∈ KUPS and
that λ ∈ Λ̂ (µ,A|K), we know that Γ(Qλ) ⊂ Γ̂(µ|K) so that Qλ ∈ ∆(Γ̂(µ|K)). Hence we can use
the common strictly convex function T : Γ→ R in computing the corresponding costs,

K(µ,Qλ) =
∑

γ∈Γ(Qλ)

Qλ(γ)T (γ)− T (µ).

We define Na to be the corresponding net utility using the common cost function as in (52). Given
that λ ∈ Λ̂ (µ,A|K) for K ∈ KPS , we can apply Lemma 4.1, the UPS Lagrangian Lemma, to
identify multipliers θ(j) such that,

N b(γ)−
J−1∑
j=1

θ(j)γ(j) ≤ Na(γaλ)−
J−1∑
j=1

θ(j)γaλ(j),

all γ ∈ Γ(µ), b ∈ A, and a ∈ A(λ). We rewrite the above as an equation and a set of inequalities.
Given a ∈ A(λ),

N c(γ̄c)−
J−1∑
j=1

θ(j)γcλ = Na(γaλ)−
J−1∑
j=1

θ(j)γaλ(j) for c ∈ A(λ);

N b(γ)−
J−1∑
j=1

θ(j)γ(j) ≤ Na(γaλ)−
J−1∑
j=1

θ(j)γaλ(j) for b ∈ A and γ ∈ Γ(µ).

We now consider ρ(a) > 0 on A′ ⊂ A(λ) with
∑
a∈B

ρ(a) = 1 and define µ′ =
∑
a∈A′

ρ(a)γaλ and

λ′ = (Q′, q′) ∈ Λ(µ′, A′) as in the statement of this Lemma. Given that Γ(Q′) ⊂ Γ̂(µ′|K) and
K ∈ KUPS , we know that we can again use the common T function in expressing all net utilities,
so that,

K(µ′, Q′) =
∑

γ∈Γ(Q′)

Q′(γ)T (γ)− T (µ′).

We now apply the UPS Lagrangian Lemma using the same multipliers. Note that all equalities
and inequalities defining of optimality remain valid. The subtlety is that there may be different
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state spaces, Ω(µ′) 6= Ω(µ), hence the summation and relevant multipliers θ(j) are only those in
the smaller space, j ∈ Ω(µ′). The key observation that makes this irrelevant and validates the
corresponding inequalities restricted to that subspace is that, for all γ ∈ Γ(Q′), the posteriors γ(j)
on all states j /∈ Ω(µ′) are zero. Hence the corresponding terms add nothing to any of the terms
on either the left-hand side or right-hand side, leaving the inequalities valid on the smaller state
space to conclude that λ′ ∈ Λ̂(µ′, A′|K), completing the proof.

Lemma 4.3: Invariance Under Affi ne Transforms Consider K ∈ KPS , µ ∈ Γ, and Tµ :
Γ(µ)→ R̄, such that, given Q ∈ Q̂(µ|K),

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)Tµ(γ)− Tµ(µ).

Then if T̃µ(γ) = Tµ(γ) + α+ β.γ some α ∈ R and β ∈ R|Ω(µ)|, then

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T̃µ(γ)− T̃µ(µ).

Proof. Pick α ∈ R and β ∈ R|Ω(µ)| and define the corresponding affi ne transforms,

T̃µ(γ) = Tµ(γ) + α+ β.γ; and

K̃(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T̃µ(γ)− T̃µ(µ).

To see that the cost function is unchanged by this, note that,

K̃(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T̃µ(γ)− T̃µ(µ) =
∑

γ∈Γ(Q)

Q(γ) [Tµ(γ) + α+ β.γ]− [Tµ(µ) + α+ β.µ]

=
∑

γ∈Γ(Q)

Q(γ)Tµ(γ)− Tµ(µ)− β.

 ∑
γ∈Γ(Q)

γQ(γ)− µ

 = K(µ,Q),

since
∑

γ∈Γ(Q)

γQ(γ) = µ.

Lemma 4.4: UPS Regularity If C ∈ C has a PS representation K ∈ KPS , and A9 is satisfied,
then C is regular, C ∈ CR.

Proof. Since C ∈ C has a PS representation K ∈ KPS we know by Theorem 3 that it satisfies
A2 through A8. To establish that satisfaction in addition of A9 yields regularity, we need to show
that, in this case, given µ1 ∈ Γ and Q ∈ ∆(Γ(µ1)) with Γ (Q) ⊂ ΓC(µ1),∑

γ∈Γ(µ2)

γQ(γ) = µ2 =⇒ Γ (Q) ⊂ ΓC(µ2).

Given such µ1 ∈ Γ and Q ∈ ∆(Γ(µ1)) with Γ (Q) ⊂ ΓC(µ1), we know from Completeness (A4) that
there exists a corresponding (µ1, A1) ∈ D, P ∈ C(µ1, A1), and λP = (QP ,qP ) such that Γ (Q) is a
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subset of the support,
Γ (Q) ⊂ Γ (QP ) .

By construction the probability that action a ∈ A(P ) ⊂ A1 is chosen at revealed posterior γ̄aP ∈
Γ (QP ) in strategy λP = (QP ,qP ) is greater than 0,

qP (a|γ̄aP ) > 0.

Now suppose that
∑

γ∈Γ(µ1)

γQ(γ) = µ2 and define A2 ⊂ A(P ) to comprise the actions chosen at

the posteriors in set Γ (Q),
A2 = {a ∈ A1|γ̄aP ∈ Γ (Q)}.

With LIP (A9) we know that, since P ∈ C(µ1, A1), A2 ⊂ A(P ), and we have found probabilities

Q(γ̄aP ) > 0 all a ∈ A2 with
∑
a∈A2

Q(γ̄aP ) = 1, that the data set P2 ∈ P

∑
a∈A2

γ̄aPQ(γ̄aP ), A′

 that

satisfies A(P2) = A2, QP2(a) = Q(γ̄aP ), and γ̄aP2
= γ̄aP is observed at the corresponding prior

µ2 =
∑
a∈A2

γ̄aPQ(γ̄aP ),

P2 ∈ C
(
µ2, A

′) .
Hence Γ (Q) ⊂ ΓC(µ2), establishing regularity.

Lemma 4.5: Given C ∈ CR with a UPS representation K ∈ KUPS ,

Ω(µ1) = Ω(µ2) =⇒ ΓC(µ1) = ΓC(µ2).

Proof. Given C ∈ C with a UPS representation it also has a PS representation, hence by the-
orem 3 satisfies A2 through A8. For the purposes of this proof we set Ω(µ1) = Ω(µ2) = Ω, and
know by Completeness (A4) that both contain the common set of interior vectors, from which we
correspondingly remove the subscript:

Γ̃ = Γ̃(µ1) = Γ̃(µ2) ⊂ ΓC(µ1) ∩ ΓC(µ2)

We now consider an arbitrary posterior η ∈ ΓC(µ1) with η(j) = 0 for some j ∈ Λ(µ1) and show
that, if C ∈ CR, then η ∈ ΓC(µ2).

For 1 ≤ k ≤ J = |Ω| we create corresponding set of interior “basis”vectors constructed in such
a manner that they allow us to construct distributions Q̄1 and Q̄1 over them that generate both µ1

and µ2. To do this, weight together the unit posteriors ek ∈ Γ1 = Γ2 = Γ12 with 1 in position k and

zeroes elsewhere and their average ē =

J∑
k=1

ek/J , to arrive at a set of interior posteriors γ̄k ∈ Γ12

that span (in the linear algebra sense) the set Γ12 and that contain µ1 and µ2 in the interior of their
convex hull, which is possible since we know that µ1 and µ2 are both interior to Γ12. Technically,
we find δ ∈ (0, 1) such that, when we define the corresponding posteriors γ̄δk for 1 ≤ k ≤ J ,

γ̄δk(j) =

{
δ
J + (1− δ) if k = j;

δ
J if k 6= j .
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the unique probability weights Q̄i(k) for i = 1, 2 and 1 ≤ k ≤ J with
J∑
k=1

Q̄i(k) = 1 that re-weight

the posteriors to regenerate each prior,

J∑
k=1

γ̄δkQ̄i(γ̄
δ
k) = µi;

are all strictly positive probability, Q̄i(γ̄δk) > 0 for i = 1, 2 and 1 ≤ k ≤ J . Going forward we
suppress the δ parameter and set γ̄δk = γ̄k.

In the next step we adjust the weights Q̄2(γ̄k) and define a distribution of posteriors Q2 ∈
∆
(
ΓC(µ1)

)
with,

Γ(Q2) = η ∪ {γ̄k|1 ≤ k ≤ J} and
∑

γ∈Γ(Q2)

γQ2(γ) = µ2.

To accomplish this, we pick ε > 0 small enough so that,

max
k=1..J

εη(k)

1− δ < min
k=1..J

{Q̄2(k)},

define Q2(η) = ε and then subtract the corresponding amount from the probability of γ̄k,

Q2(γ̄k) = Q̄2(γ̄k)−
ε

1− δ

[
η(k)− δ

J

]
,

so that,

Q2(η) +
J∑
k=1

Q2(γ̄k) = ε+ 1− ε

1− δ

[
J∑
k=1

η(k)− δ
]

= ε+ 1− ε = ε,

so that this is a probability distribution over posteriors. Note also that,

∑
γ∈Γ(Q2)

γ(j)Q2(γ) =
J∑
k=1

γ̄k(j)

(
Q̄2(γ̄k)−

[
ε

1− δ

(
η(k)− δ

J

)])
+ η(j)ε.

Note that
∑J

k=1 γ̄k(j)Q̄2(γ̄k) = µ2(j) so that
∑

γ∈Γ(Q2) γ(j)Q2(γ) = µ2(j) if and only if,

J∑
k=1

γ̄k(j)

([
1

1− δ

(
η(k)− δ

J

)])
= η(j). (54)
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Directly,

J∑
k=1

γ̄k(j)

([
1

1− δ

(
η(k)− δ

J

)])
=

J∑
k=1

δ

J

[
1

1− δ

(
η(k)− δ

J

)]
+ (1− δ)

[
1

1− δ

(
η(j)− δ

J

)]

=
δ

J(1− δ)

J∑
k=1

(
η(k)− δ

J

)
+ (1− δ)

[
1

1− δ

(
η(j)− δ

J

)]
=

δ

J(1− δ) [1− δ] + η(j)− δ

J
= η(j),

confirming (54).

Note by construction that Γ (Q2) ⊂ ΓC(µ1). Given that C ∈ CR the fact that
∑

γ∈Γ(Q2) γQ2(γ) =

µ2 implies that Γ (Q2) ⊂ ΓC(µ1), hence that η ∈ ΓC(µ2), so that ΓC(µ1) ⊂ ΓC(µ2). Note that
the converse argument is identical since the state spaces are identical, so that ΓC(µ1) = ΓC(µ2),
completing the proof.

A4.2: Theorem 4

Theorem 4: Necessity If data set C ∈ CR has a UPS representation it satisfies A2 through A9.

Proof. Given that C ∈ CR has a UPS representation, it has a PS representation K ∈ KPS ,
and A2-A8 are satisfied. To establish A9, we pick (µ,A) ∈ D, P ∈ C(µ,A), and probabilities
ρ(a) > 0 on A′ ⊂ A(P ) with

∑
a∈A′

ρ(a) = 1. Since this is a PS representation and P ∈ C(µ,A), the

corresponding revealed strategy is optimal by Lemma 2.15,

λ(P ) = (QP ,qP ) ∈ Λ̂(µ,A|K).

By definition, λ(P ) = (QP ,qP ) is defined by Γ(QP ) = ∪a∈A(P )γ̄
a
P and:

QP (γ) =
∑

{a∈A(P )|γ̄aP=γ}
P (a)

qP (a|γ) =

{
P (a)
QP (γ) if γ̄aP = γ;

0 if γ̄aP 6= γ;

on γ ∈ Γ(QP ) and a ∈ A. Since λ(P ) ∈ Λ̂(µ,A|K), it is definitional that Γ(QP ) ⊂ ΓC(µ).

We now define P ′ ∈ P as in the LIP definition byA(P ′) = A′, QP ′(γ) =
∑

{a∈A′|γ̄aP=γ}
ρ(a);

qP ′(a|γ) =

{
ρ(a)
QP (γ) if γ̄

a
P = γ′;

qP ′(a|γ) = 0 else.

To show that P ′ ∈ C (µ′, A′), where,

µ′ =
∑
a∈A′

ρ(a)γ̄aP ,
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we consider the revealed attention strategy associated with P ′ ∈ C (µ′, A′), λ(P ′) = (QP ′ ,qP ′) ∈
Λ(µ,A):

QP ′(γ) =


∑

{a∈A′|γ̄aP=γ}
ρ(a) if γ ∈ Γ(QP );

0 else.

qP ′(a|γ) =

{
ρ(a)
Qη(γ) if γ = γ̄aP ;

0 else.

Note that this strategy is derived from λ(P ) ∈ Λ̂(µ,A|K) precisely as prescribed in Lemma
4.2, since γ̄aP = γaλ(P ) ∈ Γ(µ) is indeed the unique posterior with qP ′(a|γ) > 0 by Lemma 2.12.

Hence, provided Γ(QP ′) ⊂ Γ̂(µ′,K) we can conclude from Lemma 4.2 that λ(P ′) ∈ Λ̂(µ′, A′|K).
To establish this, note that QP ′ ∈ ∆(Γ(µ)) satisfies Γ (QP ′) ⊂ Γ(QP ) ⊂ ΓC(µ), and,∑

γ∈Γ(QP ′ )

γQP ′(γ) =
∑
a∈A′

ρ(a)γ̄aP = µ′.

Since C ∈ CR, we conclude that indeed Γ (QP ′) ⊂ ΓC(µ′), so that Lemma 4.2 does apply to ensure
that λ(P ′) ∈ Λ̂(µ′, A′|K). Since this is a PS representation, we know further that,

Pλ(P ′) ∈ C(µ′, A′).

Note finally that by Lemma 2.13,
Pλ(P ′) = P ′,

completing the necessity proof.

Theorem 4: Suffi ciency If data set C ∈ C satisfies A2 through A9, it has a UPS representation.

Proof. A2-A8 guarantee existence of a PS representation. To establish existence of a UPS rep-
resentation, we know that we can identify corresponding functions Kµ ∈ KPS any µ ∈ Γ and a
corresponding strictly convex functions Tµ : Γ(µ) → R̄ that is real valued on Γ̃(µ). We use these
functions to define our candidate real-valued function T (γ) ∈ R on γ ∈ Γ. Specifically, we define the
corresponding uniform prior µ̄(γ) that assigns probability 1

|Ω(γ)| to each state in Ω(γ) and specify
this as T (γ) :

T (γ) ≡ Tµ̄(γ)(γ), (55)

As noted, this is real-valued by definition of a PS representation since γ ∈ Γ̃(µ̄(γ)). Note by Lemma
4.3 that T (γ) is not unique: but the affi ne transforms are irrelevant as we will see. We establish
now that this definition ensures that the defining property of the UPS representation holds: given
µ ∈ Γ,

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T (γ)− T (µ), (56)

all (µ,Q) ∈ F̂(µ|K).

We establish this result in two stages according to the support. We prove first that (56) would
follow provided it held true for the special class of priors that are uniform over a finite set of states.
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We then establish that indeed (56) does hold for uniform priors.

With regard to the first step, we let µ1 be a uniform prior over an arbitrary state space, and
pick any distinct non-uniform prior with the same state space, so that Ω(µ1) = Ω(µ2). Given that
a PS representation exists, we know that we can identify corresponding functions Ki ≡ Kµi ∈ KPS
for i = 1, 2. We fix corresponding strictly convex functions Ti : Γ(µi) → R which have the PS
property: for feasible strategies λ = (Qλ, qλ) ∈ Λ(µi), using for T1 the version used in constructing
T (γ). Correspondingly for a ∈ A we define,

Na
i (γ) =

J∑
j=1

u(a, j)γ(j)− Ti(γ),

on γ ∈ Γ(µi).

With Lemma 4.5 we know that,

ΓC(µ1) = ΓC(µ2) ≡ ΓC .

In light of Lemma 4.3, our goal in this part of the proof is to show that T2 : Γ(µ2)→ R̄ is an affi ne
transform of T1 : Γ(µ2)→ R̄, since then the two functions can be reduced to equality.

We first focus on prior µ1. By FIO, there is a 1-1 function f1 : ΓC → A such that,

N
f1(γ)
1 (φ) =

J∑
j=1

u(f1(γ), j)φ(j)− T1(φ) ≤
J∑
j=1

u(f1(γ), j)γ(j)− T1(γ) = N
f1(γ)
1 (γ) ≡ 0, (57)

all φ, γ ∈ Γ. We find the particular actions associated with the spanning vectors introduced in
Lemma 4.5,

āk = f1(γ̄k) ∈ A,

for 1 ≤ k ≤ J , where

γ̄k(j) =

{ δ
J + (1− δ̄) if k = j;

δ̄
J if k 6= j ;

(58)

with δ̄ ∈ (0, 1) fixed to ensure strict positivity of all weights Q̄i(k) > 0 for i = 1, 2 and 1 ≤ k ≤ J

with
J∑
k=1

Q̄i(k) = 1 that re-weight the posteriors to regenerate each prior,

J∑
k=1

γ̄kQ̄i(γ̄k) = µi.

We define the corresponding action set Ā = ∪Jk=1āk.

By FIO, we can identify an optimal strategy λ(1) = (Q1, q1) ∈ Λ̂(µ1, Ā|K1) having posteriors
Γ(Q1) = ∪Jk=1γ̄k, placing probability weights on them according to Q̄1, and involving deterministic
choice at each possible posterior of the corresponding action,

Q1(γ̄k) = Q̄1(k);

q1(āk|γ̄k) = 1.
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We also define strategy λ(2) = (Q2, q2) as having the same possible posteriors, the same deter-
ministic choice at each possible posterior, yet placing probability weights on them according to
Q2,

Q2(γ̄k) = Q̄2(k).

The key observation is that with A9, λ(2) ∈ Λ̂(µ2, Ā|K2). To see this, note first that since this
is a CIR λ(1) = (Q1, q1) ∈ Λ̂(µ1, Ā|K1), the corresponding SDSC data satisfies Pλ1 ∈ C(µ1, Ā).
We now define data set P2 by,

P2(āk|j) =
γ̄k(j)Q̄2(k)

µ2(j)
,

By construction note that this has unconditional action probabilities,

P2(āk) =
J∑
j=1

µ2(j)γ̄k(j)Q̄2(k)

µ2(j)
=

J∑
j=1

γ̄k(j)Q̄2(k) = Q̄2(k),

and revealed posteriors,

γ̄k2(j) ≡ γ̄ākP2
(j) =

µ2(j)P2(āk|j)
P2(āk)

=
µ2(j)P2(āk|ωj)

Q̄2(k)
= γ̄k(j).

Hence P2 ∈ P (µ2, Ā).

At this point we can apply LIP (A9) to conclude that P2 ∈ C(µ2, Ā) and, by Lemma 2.15, that
the related revealed attention strategy λP2 = λ2 is optimal, λ2 ∈ Λ̂(µ2, Ā|K2). The Lagrangian
Lemma then ensures there are multipliers θ ∈ RJ−1 s.t., for 1 ≤ k, l ≤ J such that,

N āk
2 (γ̄k)−

J−1∑
j=1

θ(j)γ̄k(j) = N āl
2 (γ̄l)−

J−1∑
j=1

θ(j)γ̄l(j);

or,

J∑
j=1

u(āk, j)γ̄k(j)− T2(γ̄k)−
J−1∑
j=1

θ(j)γ̄k(j) =

J∑
j=1

u(āl, j)γ̄l(j)− T2(γ̄l)−
J−1∑
j=1

θ(j)γ̄l(j). (59)

By equation (57), we know also that,

T1(γ̄k) =
J∑
j=1

u(āk, j)γ̄k(j); and,

T1(γ̄l) =
J∑
j=1

u(āl, j)γ̄l(j).

Substitution in (59) yields,

T1(γ̄k)− T2(γ̄k)−
J−1∑
j=1

θ(j)γ̄k(j) = T1(γ̄l)− T2(γ̄l)−
J−1∑
j=1

θ(j)γ̄l(j).
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Hence, for all 1 ≤ k, l ≤ J,

J−1∑
j=1

θ(j) [γ̄k(j)− γ̄l(j)] = T1(γ̄k)− T2(γ̄k)− T1(γ̄l) + T2(γ̄l). (60)

The next key claim is that, with FIO, the equation above applies not only to the spanning
posteriors but to all pairs of posteriors, γ, γ′ ∈ Γ. To see this, set γ = γ̄J+1 and γ′ = γ̄J+2

and repeat the above argument to a larger set of posteriors ∪J+2
k=1 γ̄k and the corresponding actions

defined by f1 : ΓC → A as defined by FIO and defined above:

B̄ = Ā ∪ f1(γ) ∪ f1(γ′).

We also find strictly positive probability weights Q′i(k) for i = 1, 2 on 1 ≤ k ≤ J + 2 that re-weight
the posteriors to regenerate each prior,

J+2∑
k=1

γ̄kQ
′
i(k) = µi.

This is possible because the vectors γ̄k span Γ12, so that there are weights α(k) and α′(k) on them
that average back to each of γ,γ′:

J∑
k=1

α(k)γ̄k = γ;

J∑
k=1

α′(k)γ̄k = γ′

Note also these weights must sum to 1, as

1 =
∑
ω∈Ω

γ(ω) =
∑
ω∈Ω

J∑
k=1

α(k)γ̄k(ω) =
J∑
k=1

α(k)
∑
ω∈Ω

γ̄k(ω) =
J∑
k=1

α(k).

Moreover, for all ε > 0 and for i = 1, 2,

ε
(
γ + γ′

)
+

J∑
k=1

γk
[
Q̄i(k)− ε

[
α(k) + α′(k)

]]
= µi.

Given that Q̄i(k) > 0 all k, we can select ε small enough to keep all terms

Q̄i(k)− ε
[
α(k) + α′(k)

]
,

strictly positive, as required. Thus, we define new weights by setting Q′i(k) equal to the above
expression for 1 ≤ k ≤ J , and equal to ε for J + 1 and J + 2. Repeating the entire remainder of
the argument, we apply the Lagrangian Lemma to ensure the existence of multipliers defined by
η ∈ RJ−1 that produce the corresponding equality for all revealed posteriors, hence in particular
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for γ and γ′:

T1(γ)− T2(γ)−
J−1∑
j=1

η(j)γ(j) = T1(γ′)− T2(γ′)−
J−1∑
j=1

η(j)γ′(j).

A key observation is that the multipliers on the larger set are identical to those on the smaller
set, η = θ. To see this, note that the equality conditions defining θ(j) also characterize η(j) and
have a unique solutions. Specifically, setting k = j and l = J , note that posteriors γ̄j and γ̄J differ
by δ > 0 in coordinates j and J and are otherwise the same. Hence,

J−1∑
k=1

θ(k)
[
γ̄j(k)− γ̄J(k)

]
= δθ(j).

This allows us to precisely pin down θ(j) in terms of the given functions T1(γ̄) and T2(γ̄) and δ̄ as
defined in (58),

θ(j) =
T1(γ̄j)− T2(γ̄j)− T1(γ̄J) + T2(γ̄J)

δ̄
,

with the corresponding being true for η. This implies that indeed,

T2(γ) = T1(γ)−

T1(γ′)− T2(γ′)−
J−1∑
j=1

θ(j)γ′(j)

− J−1∑
j=1

θ(j)γ(j)

= T1(γ) +H12(γ′)− θ.γ,

where H12(γ′) = −
[
T1(γ′)− T2(γ′)−

∑J−1
j=1 θ(j)γ

′(j)
]
∈ R is independent of γ. This establishes

T2 : Γ(µ2)→ R̄ is an affi ne transform of T1 : Γ(µ2)→ R̄ so that by Lemma 4.3 we can define,

T ′2(γ) = T2(γ) +H12(γ′)− θ.γ = T1(γ);

without changing the cost of any attention strategies.

What we have now established is that provided the cost function obeys,

K(µ̄, Q) =
∑

γ∈Γ(Q)

Q(γ)T (γ)− T (µ̄),

for all µ̄ ∈ Γ and (µ̄, Q) ∈ F̂(µ̄|K) that are uniform over some state space, then it holds for all µ ∈ Γ
and (µ,Q) ∈ F̂(µ̄|K). The subtlety here is that the definition of T (γ) adjusts with the cardinality
of the support of γ. Hence the question is whether or not one can use the function associated with
the lower dimensional prior in characterizing the corresponding cost of γ ∈ Γ̂(µ̄|K) with |Ω(γ)| <
|Ω(µ̄)|. This is what we now establish.

Our method of proof ignores the particulars of the state space and involves priors µ1, µ2 ∈ Ω
such that Ω2 = Ω(µ2) ⊂ Ω(µ1) with Ω(µ2) 6= Ω(µ1). We define Γ1 = Ω(µ1) and show that we can
replace T1 : Γ1 → R̄ (real-valued on ΓC1 ) by function T̄1 : Γ1 → R̄ that not only retains the PS
property,

K1(Qλ) =
∑

γ∈Γ(Qλ)

Qλ(γ)T̄1(γ)− T̄1(µ1), (61)
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but is also equal to T2 on posteriors also on γ ∈ ΓC1 ∩Γ̃(µ2). We will use ΓC12 to refer to the set of
such posteriors,

ΓC12 = ΓC1 ∩ Γ̃(µ2).

Note first that ΓC12 ⊂ ΓC2 , so that,
ΓC12 ⊂ ΓC1 ∩ ΓC2 .

This comes directly from the fact that all γ ∈ ΓC12 are interior to Ω2 by construction, and so, by
Completeness (A4) are used in some problem.

It will be convenient to index the states by first assigning indices 1, ..., J2− 1 to states from Ω2.
We next assign indices J2...J1 − 1 to states from Ω(µ1)/Ω(µ2). Finally, we assign to index J1 the
remaining state from Ω2. This ensures that the “excluded state”from the Lagrangian statements
belongs to Ω2.

In establishing the existence of T̄1 such that (61) holds, we start as in the equal state space case
with the function f1 : ΓC1 → A such that,

J∑
j=1

u(f1(γ), j)γ(j) ≡ T1(γ),

all γ ∈ Γ1, with
J∑
j=1

u(f1(γ), j)φ(j) ≤ T1(φ) all φ ∈ Γ1. We also retain the spanning posteriors γ̄k

and strictly positive probabilities Q̄1(k) > 0 for 1 ≤ k ≤ J1 that regenerate the prior,

J1∑
k=1

γ̄kQ̄1(k) = µ1;

and the particular actions āk = f1(γ̄k) ∈ A associated with the spanning vectors.

The key change in the proof is the selection of additional posteriors that sit in ΓC12 and a
corresponding set of new strictly positive probability weights. Specifically, we pick a basis for the
set ΓC12 and label the finite set of such posteriors as ΓB ⊂ ΓC12. We also associate with these the
corresponding average prior, µ̄B,

µ̄B(j) =

∑
γ∈ΓB γ(j)

|ΓB| ,

for 1 ≤ j ≤ J12. Since Ω2 = Ω(µ̄B) we know from the first part of the proof that we can
assume that the cost function K(µ̄B, .), associated Tµ̄B and ΓC(µ̄B) are identical to K(µ2, .), T2

and ΓC(µ2). Below, we will therefore substitute the latter for the former. We identify also the
actions ā(γ) = f1(γ) on γ ∈ ΓB and define the larger set of actions,

Ā′ = ∪J1
k=1āk ∪ {ā(γ)|γ ∈ ΓB}.

By construction, note that Ω(µ̄B) = Ω2 since a positive posterior probability of a state cannot
be generated if all of the basis priors assign it zero probability. The new strictly positive probability
weights that we work with place weight Q′1(k) > 0 on all posteriors γ̄k as well as a constant strictly
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positive weight Q̄′1(γ) = ε > 0 on all γ ∈ µ̄B, while still averaging out to µ1:

J1∑
k=1

γ̄kQ̄
′
1(k) +

∑
γ∈ΓB

εγ = µ1.

The easiest way to do this is to assign a small probability δ > 0 to the mean prior µ̄B, compensating
through appropriate reductions in Q̄1(k) > 0 for 1 ≤ k ≤ J1, as in the construction in Lemma 4.4,
while retaining all strictly positive, and thereupon defining ε = δ

|ΓB | .

We now note as before that existence of a PS representation and application of FIO enables
us to characterize an optimal strategy λ′1 = (Q′1, q

′
1) ∈ Λ̂(µ1, Ā

′|K1) having posteriors Γ(Q′1) =
∪Jk=1γ̄k ∪ ΓB, placing probability weights on them according to Q̄′1, and involving deterministic
choice at each possible posterior of the corresponding action,

Q′1(γ̄k) = Q̄′1(k);

q′1(ā(γ)|γ) = 1.

We also define strategy λ′2 = (Q′2, q
′
2) as restricting the posterior set to ΓB, with equal probability

weights, Q′2(γ) = 1
|ΓB | , with the same deterministic choice at each possible posterior. By construc-

tion, λ′2 ∈ Λ(µ̄B, Ā′). In fact, with exactly the same logic as before, LIP (A9) implies that it is
optimal, λ′2 ∈ Λ̂(µ̄B, Ā′|K2). Hence we can repeat the application of the UPS Lagrangian Lemma
to identify θ ∈ RJ2−1 s.t., for γ̄, γ̄′ ∈ ΓB,

T1(γ̄)− T2(γ̄)−
J2−1∑
j=1

θ(j)γ̄(j) = T1(γ̄′)− T2(γ̄′)−
J2−1∑
j=1

θ(j)γ̄′(j)

The next key claim is that the equation above applies not only to the spanning posteriors
γ̄, γ̄′ ∈ ΓB but to all pairs of posteriors γ, γ′ ∈ ΓC12. To see this, we repeat the above argument on
a larger set of actions,

B̄′ = Ā′ ∪ f1(γ) ∪ f1(γ′),

using precisely the same procedure as before. Repeating the entire remainder of the argument,
we apply the Lagrangian Lemma to ensure the existence of multipliers defined by η ∈ RJ−1 that
produce the corresponding equality for all revealed posteriors, hence in particular for γ and γ′:

T1(γ)− T2(γ)−
J2−1∑
j=1

η(j)γ(j) = T1(γ′)− T2(γ′)−
J2−1∑
j=1

η(j)γ′(j).

For later purposes it is convenient to rewrite this as,

T1(γ)− T2(γ)−
[
T1(γ′)− T2(γ′)

]
=

J2−1∑
j=1

η(j)
[
γ(j)− γ′(j)

]
.
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A key observation is that we can set η = θ, so that,

T1(γ)− T2(γ)−
[
T1(γ′)− T2(γ′)

]
=

J2−1∑
j=1

θ(j)
[
γ(j)− γ′(j)

]
. (62)

This follows from the fact that both η and θ work for the set of basis posteriors. For γ̄, γ̄′ ∈ ΓB,

T1(γ̄)− T2(γ̄)−
J2−1∑
j=1

θ(j)γ̄(j) = T1(γ̄′)− T2(γ̄′)−
J2−1∑
j=1

θ(j)γ̄′(j);

T1(γ̄)− T2(γ̄)−
J2−1∑
j=1

η(j)γ̄(j) = T1(γ̄′)− T2(γ̄′)−
J2−1∑
j=1

η(j)γ̄′(j).

Subtraction yields,
J2−1∑
j=1

[η(j)− θ(j)]
[
γ̄(j)− γ̄′(j)

]
= 0. (63)

Since the set ΓB spans ΓC12, we know that, given γ, γ
′ ∈ ΓC12 there exists weights ρ(γ̄) and ρ′(γ̄) ∈ R

on γ̄ ∈ ΓB with
∑

γ̄∈ΓB ρ(γ̄) =
∑

γ̄∈ΓB ρ
′(γ̄) = 1 and,

γ =
∑
γ̄∈ΓB

ρ(γ̄)γ̄ and γ′ =
∑
γ̄∈ΓB

ρ′(γ̄)γ̄.

Hence,

J2−1∑
j=1

[η(j)− θ(j)]
[
γ(j)− γ′(j)

]
=

J2−1∑
j=1

[η(j)− θ(j)]

∑
γ̄∈ΓB

(
ρ(γ̄) − ρ′(γ̄)

)
γ̄


=

∑
γ̄∈ΓB

(
ρ(γ̄) − ρ′(γ̄)

) J2−1∑
j=1

[η(j)− θ(j)] γ̄ = 0.

The final line above follows because all terms
∑J2−1

j=1 [η(j)− θ(j)] γ̄ on the RHS are equal across
γ̄ ∈ ΓB (by equation 63) and ∑

γ̄∈ΓB

(
ρ(γ̄) − ρ′(γ̄)

)
= 0.

Hence,
J2−1∑
j=1

η(j)
[
γ(j)− γ′(j)

]
=

J2−1∑
j=1

θ(j)
[
γ(j)− γ′(j)

]
.

Substitution yields,

T1(γ)− T2(γ) = T1(γ′)− T2(γ′) +

J2−1∑
j=1

θ(j)
[
γ(j)− γ′(j)

]
,
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hence,

T1(γ)− T2(γ)−
J2−1∑
j=1

θ(j)γ(j) = T1(γ′)− T2(γ′)−
J2−1∑
j=1

θ(j)γ′(j),

verifying equation (62).

As before, we can define T̄1 : ΓC(µ1)→ R as

T̄1(γ) = T1(γ) +H12(γ′) + θ.γ

where we define H12(γ′) as the number T2(γ′)− T1(γ′) +
∑J2−1

j=1 θ(j)γ′(j), and

θ.γ =

J1−1∑
j=1

θ(j)γ′(j)

with θ(j) = 0 for j > J2 − 1. Note that, for γ ∈ ΓC12 we have T2(γ) = T̄1(γ), as required. Finally,
note that for i 6= i′

K ′(µ1, Q) =
∑

γ∈Γ(Q)

Q(γ)T̄1(γ)− T ′1(µ1) =
∑

γ∈Γ(Q)

Q(γ)
[
T1(γ) +H12(γ′)− θ.γ

]
−
[
T1(µ1) +H12(γ′)− θ.µ1

]

=
∑

γ∈Γ(Q)

Q(γ)T1(γ)− T1(µ1)− θ.

 ∑
γ∈Γ(Q)

γQ(γ)− µ1

 = K(µ1, Q),

as required. This completes the proof that

K(µ̄, Q) =
∑

γ∈Γ(Q)

Q(γ)T (γ)− T (µ̄),

for all µ̄ ∈ Γ and (µ̄, Q) ∈ F̂(µ̄|K) that are uniform over some state space, and with it the suffi ciency
proof.

0.1 UPS and Non-Regular Data

We illustrate a non-regular data set that suggests a path forward to generalizing the necessity
aspect of the UPS theorem to cover all data sets, even those that are not regular. Consider the
cost function K(µ,Q) defined as follows. It is the Tsallis cost function (defined below) with σ = 2
in all cases except when the prior specifies only two states are possible, and the strategy involves
a posterior that rules out one of these states. In such cases the cost is infinite.

K(µ,Q) =

{
∞ if |Ω(µ)| = 2 and ∃γ ∈ Γ(Q) with |Ω(γ)| = 1

KTS
2

(µ,Q) otherwise

Note first that the simpler cost functionKTS
2

(µ,Q) allows the use of all posteriors from any prior,
ΓC(µ) = Γ(µ), and is UPS. The amended cost function is therefore also UPS, as the only change
is that now, for priors such that |Ω(µ)| = 2, the DM will never choose to become fully informed,
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thus for such priors, strategies that involve degenerate posteriors do not appear in FC(µ).

However, with the amendment to infinite cost, LIP (Axiom A9) is no longer satisfied: the
corresponding behavioral data associated with optimal choices violates the axiom. For priors such
that |Ω(µ)| > 2, one can find an action set such that it is optimal to be fully informed, so that all
posteriors are the unit vectors, for a prior that makes (say) three states equally likely. LIP (Axiom
A9) requires that one see chosen the corresponding certain posteriors in the associated problem
with the prior adjusted so that only two states ex ante possible. However this is not consistent
with the infinite cost specified for fully informed posteriors when used from such priors.

Thus, this is an example of a UPS model which does not satisfy LIP (Axiom A9). Note, however,
that the data produced by this model also violates regularity. As described above, degenerate
posteriors which are used when there are three states in the prior and feasible when there are only
two states are not used. Regularity rules out exactly this type of problem, and as a result means
that LIP (Axiom A9) is implied by the UPS model.

One might at first think that this cost function produces a non-regular data set that satisfies
UPS but not LIP, hence ruling out the possibility that the UPS theorem can be generalized.
However this is false. In fact, the data set does not permit of a costly information representation
at all. There are decision problems for which optimal choices do not exist. Specifically this is the
case when the marginal utility of identifying the true state in a two state problem makes it ever
more profitable to arrive at certainty, while the discontinuity in cost makes the limit strategy of
discretely lower value, giving rise only to ε-optimal strategies.

We conjecture that this is a general phenomenon: that any effort to construct a regular data
set based on a UPS model that does not satisfy LIP gives rise instead to a model in which there
are action sets such that optimal strategies do not exist. We conjecture also that closedness of the
convex function (in the sense of Rockafellar) is necessary and suffi cient for this.

Appendix 5: Theorem 1

Theorem 1: Data set C ∈ C with a UPS representation has a Shannon representation if and only
if it satisfies IUC.

In this appendix we go beyond the UPS case and characterize the Shannon function. We
take Theorem 4 as established and show that addition of IUC (A1) is equivalent to the UPS
representation being of Shannon form. We first show that if C has a Shannon representation, it
satisfies IUC: this is a straight forward implication of existing characterizations of optimal strategies.
The suffi ciency proof is far more involved. Given their centrality we re-state the defining features
of basic forms of a decision problem.

Definition 3 Given (µ,A) ∈ D, a decision problem is basic, (µ,A) ∈ B, if, given ω 6= ω′ ∈ Ω(µ),
there exists a ∈ A such that u(a, ω) 6= u(a, ω′). We associate (µ,A) ∈ D with a set of basic forms
(µ̄, A) ∈ B(µ,A) ⊂ B by:

1. Partitioning Ω(µ) into L basic sets
{

Ωl(µ)
}

1≤l≤L comprising payoff equivalent states, so
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that, given ω ∈ Ωl(µ) and ω′ ∈ Ωm(µ),

l = m iff u(a, ω) = u(a, ω′) all a ∈ A.

2. Labeling all possible states both by equivalence class and in order within each equivalence class:

Ω(µ) = {ωli||1 ≤ i ≤ I(l) = |Ωl(µ)| and 1 ≤ l ≤ L}.

3. Selecting ı̄(l) ∈ {1, .., I(l)} all l and defining Ω̄(µ) = ∪Ll=1ω
l
ı̄(l).

4. Defining µ̄ ∈ Γ(µ) by setting:

µ̄(ωli) =


I(l)∑
j=1

µ(ωlj) if i = ı̄(l);

0 if i 6= ı̄(l).

.

A5.1: Necessity

Note that the necessity aspect of theorem 1 can be simplified to the statement that a data set with
a Shannon representation must satisfy IUC: one need not condition on a UPS representation, since
a Shannon representation is a special form of UPS representation.

Theorem 1: Necessity If data set C ∈ C has a Shannon representation, it satisfies IUC (A1).

Proof. Consider data set C ∈ C that has a Shannon representationKS
κ , where κ > 0 is the Shannon

multiplicative parameter. Now consider (µ,A) ∈ D and (µ̄, A) ∈ B(µ,A) for ı̄(l), 1 ≤ l ≤ L,

C(µ,A) = {P ∈ P(µ,A)|∃P̄ ∈ C(µ̄, A) s.t. P (a|ωli) = P̄
[
a|ωlı̄(l)

]
all 1 ≤ i ≤ I(l), 1 ≤ l ≤ L}.

(64)
To establish that IUC holds, we show that the LHS and RHS sets in (64) are mutual subsets.
Note the defining feature, which is that utilities to all actions within a given equivalence class are
identical in each equivalence class: for each l and for any 1 ≤ i, j ≤ I(l),

u(a, ωli) = u(a, ωlj) ≡ u(a, l).

To establish (64) we apply known necessary and suffi cient conditions for optimality. Matejka and
McKay [2015] (their Corollary 1) show that transformed utilities play a key role,

z(a, l) = z(a, ωli) = exp
u(a,ωli_ )

κ .

The key observation of Matejka and McKay [2015] is that a feasible policy λ ∈ Λ(µ,A) satisfies
λ ∈ Λ̂(µ,A|KS

κ ) if and only if Pλ = P is a maximizer on P ∈ P(µ,A) of,

L∑
l=1

I(l)∑
i=1

µ(ωli)

(∑
a∈A

P (a|ωli)u(a, ωli)

)
−κ

 L∑
l=1

I(l)∑
i=1

µ(ωli)

(∑
a∈A

P (a|ωli) lnP (a|ωli)
)
−
∑
a∈A

P (a) lnP (a)

 ,
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and,

P (a) =

L∑
l=1

I(l)∑
i=1

µ(ωli)P (a|ωli).

The necessary (Matejka and McKay [2015]) and suffi cient (Caplin et al. [2016]) conditions for this
are:

L∑
l=1

I(l)∑
i=1

z(a, ωli)µ(ωli)∑
b∈A P (b)z(b, l)

≤ 1, all a ∈ A;

with equality for a ∈ A such that P (a) > 0, and,

P (a|ωli) =
P (a)z(a, l)∑
b∈A P (b)z(b, l)

.

By definition of a Shannon representation,

C(µ,A) = {P ∈ P(µ,A)|∃λ ∈ Λ̂(µ,A|KS
κ ) with P = Pλ}.

To show the set inclusion,

C(µ,A) ⊂ {P ∈ P(µ,A)|∃P̄ ∈ C(µ̄, A) s.t. P (a|ωli) = P̄ (a|ωlı̄(l)) all 1 ≤ i ≤ I(l), 1 ≤ l ≤ L},

we consider P ∈ C(µ,A). Since the data has a Shannon representation, there exists an optimal
policy λ ∈ Λ̂(µ,A|KS

κ ) with Pλ = P satisfying the optimality conditions. We now define P̄ ∈
P(µ̄, A) as above to satisfy the stated condition

P̄ (a|ωlı̄(l)) = P (a|ωli).

all 1 ≤ i ≤ I(l), 1 ≤ l ≤ L.

Given a ∈ A, we know that

P̄ (a) =
L∑
l=1

µ̄(ωlı̄(l))P̄ (a|ωlı̄(l)) =
L∑
l=1

I(l)∑
i=1

µ(ωli)P (a|ωlı̄(l))

=
L∑
l=1

I(l)∑
i=1

µ(ωli)P (a|ωli) = P (a).

Moreover,

L∑
l=1

z(a, l)µ̄(ωlı̄(l))∑
b∈A P̄ (b)z(b, l)

=

L∑
l=1

z(a, l)
∑I(l)

i=1 µ(ωli)∑
b∈A P (b)z(b, l)

=

L∑
l=1

I(l)∑
i=1

z(a, l)µ(ωli)∑
b∈A P (b)z(b, l)

.
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This implies that both of the conditions defining this as data of the form Pλ̄ = P̄ for an optimal
strategy λ̄ ∈ Λ̂(µ̄, A|KS

κ ) are met:

L∑
l=1

z(a, l)µ̄(ωlı̄(l))∑
b∈A P (b)z(b, l)

=
L∑
l=1

I(l)∑
i=1

z(a, l)µ(ωli)∑
b∈A P (b)z(b, l)

= 1;

with the corresponding weak inequality applying to all actions. In fact we can identify an optimal
strategy that produces this data as λ(P̄ ) ∈ Λ̂(µ̄, A|KS

κ ). By Lemma 2.13,

Pλ(P̄ ) = P̄ .

Since the data has a Shannon representation, this implies that P̄ ∈ C(µ̄, A).

Analogous reasoning works in the converse direction. We consider P̄ ∈ C(µ̄, A) and define
P ∈ P(µ,A). Since the data has a Shannon representation, there exists an optimal policy λ̄ ∈
Λ̂(µ,A|KS

κ ) with Pλ̄ = P̄ satisfying the optimality conditions. We now define P ∈ P(µ̄, A) as above
to satisfy the stated condition,

P (a|ωli) = P̄ (a|ωlı̄(l)).

all 1 ≤ i ≤ I(l), 1 ≤ l ≤ L. Given a ∈ A, we run the above equations in reverse to confirm that
unconditional probabilities are not affected,

P (a) = P̄ (a).

By precisely the reverse string of equations we find,

L∑
l=1

I(l)∑
i=1

z(a, l)µ(ωli)∑
b∈A P (b)z(b, l)

=

L∑
l=1

z(a, l)µ̄(ωlı̄(l))∑
b∈A P̄ (b)z(b, l)

,

all a ∈ A. Again this implies that both the equality and the inequality conditions defining this as
data of the form Pλ = P for an optimal strategy λ ∈ Λ̂(µ,A|KS

κ ) an optimal strategy are met.
Again we can identify the optimal strategy that produces this data as that it induces in the data,
λ(P ) ∈ Λ̂(µ,A|KS

κ ), so that P ∈ C(µ̄, A) as required. This completes the proof of (64), and with
it establishes that any data set C ∈ C that has a Shannon representation satisfies IUC (A1).

A5.2: Lemmas for Suffi ciency

We now develop the machinery required to prove suffi ciency: if a data set C ∈ C with a UPS
representation satisfies IUC, it has a Shannon representation. There are many distinct aspects to
this proof. In what follows, we will let K ∈ KUPS be the UPS representation that is known to
exist, and let T : Γ→ R be a strictly convex function such that,

K(µ,Q) =
∑

γ∈Γ(Q)

Q(γ)T (γ)− T (µ)..

all (µ,Q) ∈ F such that Q ∈ Q̂(µ|K).

In the first set of lemmas we establish implied symmetry properties. In the second we analyze
differentiability and additive separability. We then establish a PDE that characterizes the represen-
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tation interior to state spaces of dimension 4 or higher. This sets up the proof itself, which analyzes
this PDE and considers links between problems of different dimensions. The results display the
many different aspects and great power of IUC.

A5.2.1: Symmetry: Definitions and Results

In this subsection we introduce and demonstrate the powerful symmetry implications of IUC (A1).
We begin by defining symmetry.

Definition 4 Beliefs γ1, γ2 ∈ Γ are symmetric,

γ1 ∼Γ γ2,

if there exists a bijection σ : Ω(γ1)→ Ω(γ2) such that, for all ω ∈ Ω(γ1),

γ1(ω) = γ2(σ(ω)).

Two decision problems are symmetric,

(µ1, A1) ∼D (µ2, A2),

if µ1 ∼Γ µ2 based on bijection σ : Ω(γ1) → Ω(γ2) and there exists a bijection φ : A1 → A2 such
that,

u(a, ω) = u(φ(a), σ(ω)),

all ω ∈ Ω(γ1). Two decision problems with the same prior µ ∈ Γ are equivalent, (µ,A1) ≡D
(µ,A2), if there exists a bijection φ : A1 → A2 such that,

u(a, ω) = u(φ(a), ω),

all ω ∈ Ω(µ).

All three binary relations are symmetric and transitive.

Lemma 5.1: ∼Γ, ∼D, and ≡D are symmetric and transitive binary relations.

Proof. If γ1 ∼Γ γ2, then |Ω(γ1)| = |Ω(γ2)| = J and there exists a bijection σ : Ω(γ1) → Ω(γ2)
such that γ1(ω) = γ2(σ(ω)) all ω ∈ Ω(γ1). Given the bijective nature of σ, its inverse σ−1 is also
bijective, so that,

γ1(σ−1(ω′)) = γ2(ω′)

all ω′ ∈ Ω(γ2), This establishes γ2 ∼Γ γ1, hence symmetry of ∼Γ. With regard to transitivity,
note first that γ1 ∼Γ γ2 and γ2 ∼Γ γ3 imply that |Ω(γ1)| = |Ω(γ3)| = J and produce bijections
σ : Ω(γ1) → Ω(γ2) and σ′ : Ω(γ2) → Ω(γ3). Their bijective nature implies that the composite
mapping,

σ′′(ω) = σ′ [σ(ω)] ,

defined on ω ∈ Ω(γ1), is also bijective, establishing γ1 ∼Γ γ3 and with it transitivity of ∼Γ.
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To establish symmetry of ∼D, note that (µ1, A1) ∼D (µ2, A2) implies existence of bijections
σ : Ω(γ1)→ Ω(γ2) and φ : A1 → A2 such that, for all ω ∈ Ω(γ1) and a ∈ A1:

γ1(ω) = γ2(σ(ω));

u(a, ω) = u(φ(a), σ(ω)).

Since both σ and φ are bijective, they have bijective inverses σ−1 and φ−1. These immediately
satisfy the requirements for (µ2, A2) ∼D (µ1, A1),

γ1(σ−1(ω′)) = γ2(ω′)

u(φ−1(a′), σ−1(ω′)) = u(a′, ω′),

all ω′ ∈ Ω(γ2) and a′ ∈ A2. Hence (µ2, A2) ∼D (µ1, A1) establishing symmetry of ∼D.

To establish transitivity of ∼D, note that (µ1, A1) ∼D (µ2, A2) and (µ2, A2) ∼D (µ3, A3) implies
existence of bijections σ : Ω(γ1)→ Ω(γ2), σ′ : Ω(γ2)→ Ω(γ3) and φ : A1 → A2, φ′ : A2 → A3, such
that,

γ1(ω) = γ2(σ(ω)) and γ2(ω) = γ3(σ′(ω));

u(a, ω) = u(φ(a), σ(ω)) and u(a, ω) = u(φ′(a), σ′(ω)).

Again their bijective nature implies that the composite mappings,

σ′′(ω) = σ′ [σ(ω)] on ω ∈ Ω(γ1) :

φ′′(a) = φ′ [φ(a)] on a ∈ A1;

are also bijective. Hence (µ1, A1) ∼D (µ3, A3) establishing transitivity of ∼D.

Note finally that symmetry of ≡D follows directly from the bijective nature of the mapping φ
while transitivity follows likewise from that of φ′′, completing the proof.

Note that, since payoffs are the same in all possible states, equivalent decision problems differ
only in that the actions may have distinct payoffs in impossible states (recall that in our formulation
an action specifies payoffs in all states, not just the states possible according to the prior). It is
a direct implication of existence of a CIR that equivalent choice data is observed for equivalent
decision problems.

Lemma 5.2: If C has a CIR with K ∈ K and (µ,A1) ≡D (µ,A2) based on bijection φ : A1 → A2

and P1(a|ω) = P2(φ(a), ω) all a ∈ A1 and ω ∈ Ω(µ), then,

P1 ∈ C(µ,A1)⇐⇒ P2 ∈ C(µ,A2), (65)

Proof. Since (µ,A1) ≡D (µ,A2) based on bijection φ : A1 → A2, there is a one-one and onto
mapping H : Λ(µ,A1)→ Λ(µ,A2) defined by mapping λ = (Q̄, q1) ∈ Λ(µ,A1) to H(λ) = (Q̄, q2) ∈
Λ(µ,A2) with,

q2(φ(a)|γ) = q1(a|γ).

Given that the distribution of posteriors is identical, so are costs according to K ∈ K at K(µ, Q̄).
Moreover we know also that u(a, ω) = u(φ(a), ω), so that this mapping preserves expected utility
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and hence also value,
U(λ) = U(H(λ)).

Hence,
V (µ, λ|K) = U(λ)−K(µ, Q̄) = U(H(λ))−K(µ, Q̄) = V (µ,H(λ)|K)

The value functions are also therefore the same

V̂ (µ,A1|K) = V̂ (µ,A2|K).

Finally, this implies that optimal strategies are equivalent,

λ ∈ Λ̂(µ,A1|K)⇐⇒ H(λ) ∈ Λ̂(µ,A2|K). (66)

To confirm (65), we need to show that, P1 ∈ C(µ,A1) if and only if P2 ∈ C(µ,A2), where
P2(φ(a), ω) = P1(a|ω) all a ∈ A1 and ω ∈ Ω(µ). Note first that, since C has a CIR K ∈ K, we
know P1 ∈ C(µ,A1) if and only if there exists λ = (Q̄, q1) ∈ Λ̂(µ,A1|K) such that P1 = Pλ.By
construction, note that,

P1(a|ω) = Pλ(a|ω) =

∑
γ∈Γ(Q̄)

Q̄(γ)q1(a|γ)γ(ω)

µ(ω)

=

∑
γ∈Γ(Q̄)

Q̄(γ)q2(φ(a)|γ)γ(ω)

µ(ω)
= PH(λ)(φ(a), ω) = P2(φ(a)|ω).

To complete the proof, note by (66) that H(λ) = (Q̄, q2) ∈ Λ̂(µ,A2|K), whereupon since this is a
CIR we know that PH(λ) ∈ C(µ,A2). That this is if and only if follows from the bijective nature
of φ, which allows the argument to be repeated reversing the labels 1 and 2 on action sets and
decision problems.

While the equivalence of the data from equivalent decision problems is entirely general, the same
is not true for symmetric decision problems. The distinction is that these generally involve learning
about distinct states, and there is nothing in Axioms A2 through A9 that imposes symmetry. The
fact that Compression does imply symmetry requires more insight. First, we note that symmetry
of beliefs survives under taking of particular convex combinations.

Lemma 5.3: Consider γ1, γ2 ∈ Γ satisfying γ1 ∼Γ γ2 and γ̄1, γ̄2 ∈ Γ with Ω(γ̄i) = Ω(γi) and
γ̄1 ∼Γ γ̄2 both based on σ : Ω(γ1)→ Ω(γ2) . Given α ∈ (0, 1), define,

µi = αγi + (1− α)γ̄i,

for i = 1, 2. Then µ1 ∼Γ µ2.

Proof. By definition γ1 ∼Γ γ2 based on σ : Ω(γ1)→ Ω(γ2) implies |Ω(γ1)| = |Ω(γ2)| = J and,

γ1(ω) = γ2(σ(ω)),
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all ω ∈ Ω(γ1). Since Ω(γ̄i) = Ω(γi) and γ̄1 ∼Γ γ̄2 based on σ, the equivalent holds:

γ̄1(ω) = γ̄2(σ(ω)),

all ω ∈ Ω(γ̄1) = Ω(γ1). Hence,

µ1(ω) = αγ1(ω) + (1− α)γ̄1(ω)

= αγ2(σ(ω)) + (1− α)γ̄2(σ(ω)) = µ2(σ(ω)),

establishing that indeed µ1 ∼Γ µ2 based on σ.

Another important observation is that, if two decision problems are symmetric, (µ1, A1) ∼D
(µ2, A2), their basic versions are symmetric. It is helpful first to show that symmetric problems
can have their actions and states aligned in a natural and useful manner.

Lemma 5.4: Consider (µ1, A1) ∈ D with |A1| = M and |Ω(µ1)| = J . Then (µ1, A1) ∼D (µ2, A2)
if and only if, for i = 1, 2, one can index all states ωi(j) ∈ Ω(µi) and all actions ai(m) ∈ Ai
so that,

µ1(ω1(j)) = µ2(ω2(j)) ≡ µ(j); and (67)

u(a1(m), ω1(j)) = u(a2(m), ω2(j)) ≡ u(m, j). (68)

Proof. If such an indexing exists, then (µ1, A1) ∼D (µ2, A2) follows directly from the 1-1 mappings
defined by the indices. To establish that (µ1, A1) ∼D (µ2, A2) implies existence of such an indexing
follows directly by arbitrarily indexing the M actions in A1 and J states in Ω(µ1) and defining
µ(j) = µ1(ω1(j)) and u(m, j) = u(a1(m), ω1(j)). One then uses the bijections φ and σ to identify
the corresponding elements of A2 and Ω(µ2):

ω2(j) = σ [ω1(j)] ∈ Ω(µ2) for 1 ≤ j ≤ J ;
a2(m) = φ [a1(m)] ∈ A2 for 1 ≤ m ≤M .

It follows directly from the definition of the binary relations that probabilities and utilities are
equalized:

µ2(ω2(j)) = µ2(σ [ω1(j)]) = µ1(ω1(j)) = µ(j);

u(a2(m), ω2(j)) = u(φ [a1(m)] , σ [ω1(j))]) = u(a1(m), ω1(j)) = u(m, j);

establishing the Lemma.

Lemma 5.5: If (µ1, A1) ∼D (µ2, A2), (µ̄1, A1) ∈ B(µ1, A1). and (µ̄2, A2) ∈ B(µ2, A2), then,

(µ̄1, A1) ∼D (µ̄2, A2).

Proof. The first step is to apply Lemma 5.4 to index states in Ω(µ1) by j and actions in A1 by m
and to correspondingly index A2 and Ω(µ2) so that (67) and (68) hold. We then partition Ω(µ1)
into its L basic sets

{
Ωl(µ1)

}
1≤l≤L comprising payoff equivalent states, and map initial state labels

1 ≤ j ≤ J to their specific basic set 1 ≤ l(j) ≤ L and then in order within each basic set as
1 ≤ i(j) ≤ I(l) = |Ωl(µ1)|. We refer to the state using both labels as ω1(l(j), i(j)). Given that we
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have aligned payoffs and utilities according to the index j, note that the corresponding partitioning
and labelling applies also to Ω(µ2) and that the equality of probabilities is preserved,

µ1(ω1(l(j), i(j))) = µ2(ω2(l(j), i(j))) ≡ µ(j). (69)

With regard to utility, not only is equality preserved,

u(a1(m), ω1(l(j), i(j))) = u(a2(m), ω2(l(j), i(j)))

but by definition of the equivalence class, this utility is common across 1 ≤ i ≤ I(l), so that,

u(a1(m), ω1(l(j), i(j))) = u(a2(m), ω2(l(j), i(j))) ≡ u(m, l(j)). (70)

Now define an arbitrary basic version (µ̄1, A1) of (µ1, A1) by selecting ı̄1(l) for 1 ≤ l ≤ L, and
an arbitrary basic version (µ̄2, A2) of (µ2, A2) by selecting ı̄2(l) for 1 ≤ l ≤ L. Given 1 ≤ l ≤ L we
now compute the corresponding prior probability for each state:

ω̄1(l) ≡ ω1(l, ı̄1(l)) ∈ Ω(µ̄1),

as
µ̄1(ω̄1(l)) =

∑
{j|l(j)=l}

µ1(ω1(l, i(j)).

Correspondingly for ω̄2(l) ≡ ω2(l, ı̄2(l)) ∈ Ω(µ̄2),

µ̄2(ω̄2(l)) =
∑

{j|l(j)=l}
µ2(ω2(l, i(j)).

These are equal by (69),

µ̄1(ω̄1(l)) =
∑

{j|l(j)=l}
µ1(ω1(l, i(j)) =

∑
{j|l(j)=l}

µ(j) =
∑

{j|l(j)=l}
µ2(ω2(l, i(j)) = µ̄2(ω̄2(l)).

Hence the identity mapping on labels l is the bijection that establishes µ̄1 ∼Γ µ̄2.

To complete the proof that (µ̄1, A1) ∼D (µ̄2, A2) note that, when we align states by label l and
the actions by m equivalence of utilities follows directly from (70),

u(a1(m), ω̄1(l)) = u(m, l) = u(a2(m), ω̄2(l))

all 1 ≤ l ≤ L, proving the Lemma.

A key result is that IUC, Axiom A1, implies that all states are equally diffi cult to learn about,
which translates into equivalence of the observed data. This is established in the next lemma.

Lemma 5.6: (Symmetric Data) If C ∈ C has a CIR and satisfies IUC, (µ1, A1) ∼D (µ2, A2) for
bijections σ : Ω1 → Ω2 and φ : A1 → A2, P1 ∈ C(µ1, A1), and P2(φ(a)|σ(ω)) = P1(a, ω) for
all a ∈ A and ω ∈ Ω(µ1), then P2 ∈ C(µ2, A2).

Proof. Given (µ1, A1) ∼D (µ2, A2), we start by repeating the full procedure in Lemma 5.5. We
index states in Ω(µ1) by j ∈ {1, . . . J} and actions in A1 by m ∈ {1, . . .M} and correspondingly
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index A2 and Ω(µ2) so that (67) and (68) hold. We then partition Ω(µ1) into its L basic sets{
Ωl(µ1)

}
1≤l≤L and map initial state labels 1 ≤ j ≤ J to their specific basic set 1 ≤ l(j) ≤ L and

then in order within each basic set as 1 ≤ i(j) ≤ I(l) = |Ωl(µ1)| so that:

µ1(ω1(l(j), i(j))) = µ2(ω2(l(j), i(j))) ≡ µ(j);

u(a1(m), ω1(l(j), i(j))) = u(a2(m), ω2(l(j), i(j))) = u(m, l(j)).

For k = 1, 2 we then define basic versions (µ̄k, Ak) ∈ B(µk, Ak) by selecting ı̄(l) with 1 ≤ ı̄(l) ≤ I(l),
defining ω̄k(l) ≡ ωk(l, ı̄(l)) ∈ Ω(µ̄k), and,

µ̄k(ω̄k(l)) =
∑

{j|l(j)=l}
µk(ωk(l, i(j)),

all 1 ≤ l ≤ L.

One refinement is that we ensure that the labels have particular structure for notational simplic-
ity in what follows. Specifically we let L̄ ≤ L be the cardinality Ω(µ̄1)/Ω(µ̄2), which by symmetry
is equal to that Ω(µ̄2)/Ω(µ̄1). In Ω(µ̄1) we use the first L̄ of the L state labels for states in
Ω(µ̄1)/Ω(µ̄2), so that their matched states in Ω(µ̄2)/Ω(µ̄1) are also the first L̄ in Ω(µ̄2). From
Lemma 5.5 we know also that, for all l and m:

µ̄1(ω̄1(l)) = µ̄2(ω̄2(l));

u(a1(m), ω̄1(l)) = u(m, l) = u(a2(m), ω̄2(l));

and hence that (µ̄1, A1) ∼D (µ̄2, A1).

We now introduce a new problem (µ3, B) with Ω(µ3) = Ω(µ̄1)∪Ω(µ̄2) by setting µ3 = 1
2 (µ̄1 + µ̄2)

so that, given ω ∈ Ω(µ3):

µ3(ω) =


µ̄1(ω̄1(l))

2 for ω = ω̄1(l) for 1 ≤ l ≤ L̄
µ̄2(ω̄2(l))

2 for ω = ω̄2(l) for 1 ≤ l ≤ L̄;
µ̄1(ω̄1(l)) = µ̄2(ω̄2(l)) for L+ 1 ≤ l ≤ L.

Now define actions b(m) for 1 ≤ m ≤M by setting their payoffs in states ω ∈ Ω(µ3) as:

u(b(m), ω) =


u(a1(m), ω) for ω ∈ Ω(µ̄1)/Ω(µ̄2);
u(a2(m), ω) for ω ∈ Ω(µ̄2)/Ω(µ̄1);

u(a1(m), ω) = u(a2(m), ω) for ω ∈ Ω(µ̄2) ∩ Ω(µ̄1).

WLOG, set payoffs at zero, u(b(m), ω) = 0, in all other states ω /∈ Ω(µ3). Finally define the choice
set of interest.

B = ∪Mm=1b(m).

The idea behind the construction is that (µ̄1, B) and (µ̄2, B) are both basic versions of (µ3, B).
To see this, we conveniently index the states in Ω(µ3) by s for 1 ≤ s ≤ L+ L̄ . Specifically,

ω3(s) =

{
ω̄1(s) for 1 ≤ s ≤ L;

ω̄2(s− L) for L+ 1 ≤ s ≤ L+ L̄.
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This allows us to partition Ω(µ3) into L basic sets of two forms. There are L̄ such sets with 2
elements:

{ω3(s), ω3(L+ s)} = {ω̄1(s), ω̄2(s)} for 1 ≤ s ≤ L̄.

The remaining sets are singletons containing each of the shared elements

ω3(s) = ω̄1(s) = ω̄2(s) for L̄+ 1 ≤ s ≤ L.

We can now construct a basic version of (µ3, B) by selecting ω̄1(s) whenever there are two elements.
This selection which we denote i∗1(l) reproduces (µ̄1, B) since

µ̄1(ω̄1(s))

2
+
µ̄2(ω̄2(s))

2
= µ̄1(ω̄1(s)).

Similarly we could select the second element (which we denote i∗1(l)) reproducing (µ̄2, B). Therefore
both (µ̄1, B) and (µ̄2, B) belong to B(µ3, B). For future reference, note that (µ̄1, B) has the same
payoffs in all possible states as (µ̄1, A1), and likewise (µ̄2, B) and (µ̄1, A2), which will allow us to
link the associated data using Lemma 2.19.

To use the above to establish the lemma, we need to show that, if P1 ∈ C(µ1, A1) and
P2(φ(a)|σ(ω)) = P1(a|ω) all a ∈ A1 and ω ∈ Ω1, then P2 ∈ C(µ2, A2). The proof is conceptu-
ally simple, but involves a large number of steps as we use symmetry to move from (µ1, A1) to
(µ̄1, A1) to (µ̄1, B) and then to (µ3, B) and then back from (µ3, B) to (µ̄2, B) to (µ̄2, A1) and finally
to (µ2, A1). To keep the notation straight, we use the notation from above: for k = 1, 2, the ωk(l, i)
index the states in the original problems Ω(µk), the ω̄k(l) index the states in the basic problems
Ω(µ̄k), and finally ω3(s) indexes the states in Ω(µ3).

1. IUC links the data in P1 ∈ C(µ1, A1) to P̄1 ∈ C(µ̄1, A1). Specifically, define P̄1 ∈ P(µ̄1, A1)
by

P̄1(a1(m)|ω̄1(l)) = P1(a1(m)|ω1(l, ı̄(l))

for all 1 ≤ l ≤ L, and 1 ≤ m ≤M . IUC implies P̄1 ∈ C(µ̄1, A1).

2. We use the fact noted at the end of the last paragraph, that (µ̄1, A1) and (µ̄1, B) are con-
structed to be essentially equivalent in that all actions b(m) ∈ B have the same payoffs in all
possible states ω ∈ Ω(µ̄1) as a1(m) ∈ A1. Hence Lemma 2.19 applies to ensure that, since
P̄1 ∈ C(µ̄1, A1) and C has a CIR, the corresponding data is observed as P̄B1 ∈ C(µ̄1, B),

P̄B1 (b(m)|ω̄1(l)) = P̄1(a1(m)|ω̄1(l)),

all 1 ≤ l ≤ L and 1 ≤ m ≤M .

3. Since (µ1, B) is a basic version of (µ3, B) based on i∗1(l), we can apply IUC to identify the
corresponding data in P̄B3 ∈ C(µ̄3, B) satisfying,

P̄B3 (b(m)|ω3(s)) =
P̄B1 (b(m)|ω̄1(s)) for 1 ≤ s ≤ L;

P̄B1 (b(m)|ω̄1(s− L) for L+ 1 ≤ s ≤ L+ L̄.

for all 1 ≤ m ≤M .

4. Since (µ2, B) is also a basic version of (µ3, B). We can then use i∗2 to define

P̄B2 (b(m)|ω̄2(l)) = P̄B3 (b(m)|ω3(s)),
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for all 1 ≤ l ≤ L, and 1 ≤ m ≤M . IUC implies P̄B2 ∈ C(µ̄2, B).

5. We reapply Lemma 2.19 to relate (µ̄2, B) to (µ̄2, A2). Let

P̄2(a2(m)|ω̄2(l)) = P̄B2 (b(m)|ω̄2(l)),

1 ≤ l ≤ L, and 1 ≤ m ≤M . P̄2 ∈ C(µ̄2, A2)

6. Finally, IUC relates (µ̄2, A2) to (µ2, A2). Let

P2(a2(m)|ω2(l, i)) = P̄2(a2(m)|ω̄2(l))

for all 1 ≤ i ≤ I(l), 1 ≤ l ≤ L, and 1 ≤ m ≤M . IUC implies P2 ∈ C(µ2, A2).

Stringing these 6 steps together establishes

P2(a2(m)|ω1(l, i)) = P1(a1(m)|ω1(l, i))

and thereby completes the proof of the Lemma.

The final symmetry result we establish is that if C ∈ C with a UPS representation satisfies IUC,
the underlying strictly convex function T : Γ −→ R is symmetric in the natural sense.

Definition 5 Strictly convex function T : Γ −→ R is symmetric if it is equal on symmetric
beliefs,

γ1 ∼Γ γ2 =⇒ T (γ1) = T (γ2) .

Lemma 5.7: (Symmetric Costs) Given C ∈ C with a UPS representation satisfying IUC, any
function T : Γ −→ R in a UPS representation K(Q) =

∑
Γ(Q)Q (γ)T (γ) must be symmetric.

Proof. Consider γ1, γ2 ∈ Γ satisfying γ1 ∼Γ γ2 based on σ : Ω(γ1) → Ω(γ2). If γ1 = γ2,
T (γ1) = T (γ2) trivially. Therefore consider γ1 6= γ2. Consider now a distinct pair γ̄1 6= γ̄2 ∈ Γ
with Ω(γ̄1) = Ω(γ1), Ω(γ̄2) = Ω(γ2), and γ̄1 ∼Γ γ̄2 based on σ. Define two distinct weighted
averages,

µ1 =
3γ1 + γ̄1

4
and µ2 =

3γ2 + γ̄2

4
;

µ̄1 =
γ1 + 3γ̄1

4
and µ̄2 =

γ2 + 3γ̄2

4
.

By Lemma 5.3, µ1 ∼Γ µ2 and µ̄1 ∼Γ µ̄2.

By UPS Feasibility Implies Optimality, there exists (µ1, A1) ∈ D such that there exists λA1, λB1 ∈
Λ̂(µ1, A1|K) with:

QλA1
(γ1) =

3

4
and QλA1

(γ̄1) =
1

4
;

QλB1
(µ1) = 1.

Since C ∈ C has a UPS representation, we know that the corresponding data is seen, with
PλA1

,PλB1
∈ C(µ1, A1). We know by Lemma 2.14 that QPλA1

= QλA1
and QPλB1

= QλB1
.
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Create the set of actions A2, as follows. For each a ∈ A1, create a corresponding φ(a) ∈ A2

such that
u(a, ω) = u(φ(a), σ(ω))

for all ω ∈ Ω(γ1). Since σ : Ω(γ1)→ Ω(γ1) is a bijection by assumption, φ : A1 → A2 is a bijection
by construction, Ω(γ1) = Ω(µ1) and Ω(γ2) = Ω(µ2) by construction, and µ1 ∼Γ µ2 from above, we
have (µ1, A1) ∼D (µ2, A2).

By Lemma 5.2, defining P2(a|ω) = P1(φ−1(a)|σ−1(ω)) for all a ∈ A1 and ω ∈ Ω(γ2),

P1 ∈ C(µ1, A1)⇐⇒ P2 ∈ C(µ2, A2).

Hence in particular we can find PA2, PB2 ∈ C(µ2, A2) satisfying:

QPA2
(γ2) =

3

4
and QPA2

(γ̄2) =
1

4
;

QPB2
(µ2) = 1.

Hence by Lemma 2.15, ∃λA2, λB2 ∈ Λ̂(µ2, A2|K) with the corresponding properties,

QλA2
(γ2) =

3

4
and QλA2

(γ̄2) =
1

4
;

QλB2
(µ2) = 1.

We repeat the entire structure of the argument to find λ̄Ai, λ̄Bi ∈ Λ̂(µ̄i, Āi|K) for i = 1, 2 with the
reversed probabilities:

Qλ̄A1
(γ̄1) = Qλ̄B1

(γ̄2) =
3

4
;

Qλ̄A1
(γ1) = Qλ̄B1

(γ2) =
1

4
;

and QλA2
(µ̄1) = QλB2

(µ̄2) = 1.

Now consider any UPS representation K ∈ KUPS with K(Q) =
∑

Γ(Q)Q (γ)T (γ). To establish
symmetry of T , we use simultaneous optimality of an inattentive strategy and an attentive strategy
allows us to pin down the difference in costs as based on the difference in expected utility. Taking
first λA1, λB1 ∈ Λ̂(µ1, A1|K), we note that this implies equality of the corresponding net utilities,

3

4
[û(γ1, A1)− T (γ1)] +

1

4
[û(γ̄1, A1)− T (γ̄1)] = û(µ1, A1). (71)

where recall that û(γ,A) ≡ maxa∈A ū(γ, a).

Taking now λA2, λB2 ∈ Λ̂(µ2, A2|K) equality of the corresponding net utilities reduces to,

3

4
[û(γ2, A2)− T (γ2)] +

1

4
[û(γ̄2, A2)− T (γ̄2)] = û(µ2, A2). (72)
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Given all the symmetries, note that expected utilities are equivalent:

û(γ1, A1) = û(γ2, A2);

û(γ̄1, A1) = û(γ̄2, A2);

û(µ1, A1) = û(µ2, A2).

Substitution in (71) and (72) and using the equality between them, we derive,

3

4
T (γ1) +

1

4
T (γ̄1) =

3

4
T (γ2) +

1

4
T (γ̄2). (73)

We follow precisely the same logic with respect to the strategies λ̄Ai, λ̄Bi ∈ Λ̂(µ̄i, Āi|K) for i = 1, 2
to conclude that the corresponding equation holds with reversed weights

1

4
T (γ1) +

3

4
T (γ̄1) =

1

4
T (γ2) +

3

4
T (γ̄2). (74)

Adding up equations (73) and (74) yields equality of sums, while subtracting them yields equality
of differences,

T (γ1) + T (γ̄1) = T (γ2) + T (γ̄2);

T (γ1)− T (γ̄1) = T (γ2)− T (γ̄2).

Adding these together we finally conclude that T (γ1) = T (γ2), completing the proof.

A5.2.2: Directional Derivatives: Basic Results

For the next several sections of the proof, we fix an arbitrary strictly convex function T : Γ → R
for C ∈ C with a UPS representation satisfying IUC. In light of Lemma 5.7, it is symmetric, with
costs invariant under ∼, the equivalence relation on beliefs. We further restrict attention to interior
posteriors that place strictly positive probability on a fixed set of underlying states of cardinality 4
or higher. We are particularly interested in those interior posteriors at which this domain-restricted
cost function is differentiable.

Definition 6 We fix a strictly convex and symmetric function T : Γ→ R in a UPS representation.
We fix also a set of states Ω̃ ⊂ Ω of cardinality J ≥ 4, with the states indexed by 1 ≤ j ≤ J . We
define Γ̃ to the the set of posteriors with Ω(γ) = Ω̃. We define T̃ to be the restriction of the
underlying symmetric and strictly convex function on Γ to Γ̃,

T̃ : Γ̃→ R,

We let Γ̃′ ⊂ Γ̃ be posteriors at which T̃ : Γ̃→ R is differentiable. We let K̃(µ, λ) =
∑

Qλ(γ)T̃ (γ)
be the attention cost function on this limited domain.

The fundamental objects of interest in what follows are certain derivatives of the function T̃
on Γ̃. Note that Γ̃ does not allow for independent variation in any single state-specific posterior
γ(j) due to the adding up constraint on probabilities. Hence we use the directional derivatives in
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what follows. Given convex function T̃ : Γ̃ → R and γ ∈ Γ̃, the directional derivative at γ ∈ Γ̃ in
direction y ∈ RJ is defined as,

T̃ ′(γ|y) = lim
ε↓0

T̃ (γ + εy)− T̃ (γ)

ε
, (75)

if it exists. We use special notation for the directional derivatives of interest.

Definition 7 Given γ ∈ Γ̃ and any pair of states 1 ≤ i 6= j ≤ J , we define the one-sided
derivative in direction ji, T̃−→

ji
(γ), as the directional derivative associated with increasing the ith

coordinate and equally reducing the jth:

T̃−→
ji

(γ) = T̃ ′(γ|ei − ej) = lim
ε↓0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
; (76)

where ek ∈ RJ is the vector with its only non-zero element being 1 in the kth coordinate. Where it
exists, we define the two-sided derivative in direction ji, T̃(ji), by:

T̃(ji)(γ) = lim
ε→0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
. (77)

In what follows we will use standard results of convex analysis, almost all gathered in Rock-
afellar’s comprehensive treatise. The first such standard result that we translate to our setting
establishes existence of one-sided directional derivatives, as well as an inequality concerning one-
sided directional derivatives in opposite directions. For completeness, we note also the standard
results that a real-valued convex function is continuous on its relative interior, in this case Γ̃.

Lemma 5.8: T̃ is continuous on γ ∈ Γ̃, and, given 1 ≤ i 6= j ≤ J , T̃−→
ji

(γ) exists. Moreover,

−T̃−→
ij

(γ) ≤ T̃−→
ji

(γ). (78)

Proof. Continuity of T̃ on its relative interior is theorem 10.1 in Rockafellar. By (75), given γ ∈ Γ̃,

T̃−→
ji

(γ) = lim
ε↓0

T̃ (γ + εy)− T̃ (γ)

ε
;

where y = ei − ej . Rockafellar theorem 23.1 establishes that, since T̃ : RJ → R̄ is convex and T̃ (γ)
is finite at γ ∈ Γ̃, for any y ∈ RJ , the RHS of (75) is a non-decreasing function of ε > 0. Hence
T̃−→
ji

(γ) exists. With regard to (78), note directly from the definition that,

T̃−→
ij

(γ) = lim
ε↓0

T̃ (γ + ε(ej − ei))− T̃ (γ)

ε
= T̃ ′(γ| − (ei − ej)).

Theorem 23.1 in Rockafellar establishes with full generality that,

−T̃ ′(γ| − y) ≤ T̃ ′(γ|y).
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Applying this to y = ei − ej completes the proof of the Lemma,

−T̃−→
ij

(γ) = −T̃ ′(γ|ej − ei) ≤ T̃ ′(γ|ei − ej) = T̃−→
ji

(γ).

We are particularly interested in posteriors γ ∈ Γ̃ at which the inequality (78) is replaced with
an equality. The next result shows this to be equivalent to existence of the two-sided derivative. We
add also the standard result that differentiability of T implies existence of all 2-sided directional
derivatives.

Lemma 5.9: T̃(ji)(γ) exists if and only if (78) holds with equality,

−T̃−→
ij

(γ) = T̃−→
ji

(γ), (79)

in which case
T̃(ji)(γ) = T̃−→

ji
(γ) = −T̃−→

ij
(γ) = −T̃(ij)(γ). (80)

Moreover, given γ ∈ Γ̃′, T̃(ji)(γ) exists all 1 ≤ i 6= j ≤ J .

Proof. Note first that if (79) holds so that T̃−→
ji

(γ) = −T̃−→
ij

(γ), this corresponds to equality of the
limits from the left and right

lim
ε↓0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
= T̃−→

ji
(γ) = −T̃−→

ij
(γ) = − lim

ε↓0

T̃ (γ + ε(ej − ei))− T̃ (γ)

ε

= − lim
δ=−ε↑0

T̃ (γ − δ(ej − ei))− T̃ (γ)

−δ = lim
δ↑0

T̃ (γ + δ(ei − ej))− T̃ (γ)

δ
.

It is standard that this implies that the equal left and right limits define the limit itself,

T̃(ji)(γ) = lim
ε↓0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
,

establishing equivalence of (79) and existence of T̃(ji)(γ).

Conversely, note that if T̃(ji)(γ) exists,

T̃(ji)(γ) = lim
ε−→0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
= lim

ε↑0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
= T̃−→

ji
(γ);

and,

T̃(ji)(γ) = lim
ε−→0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε
= lim

ε↓0

T̃ (γ + ε(ei − ej))− T̃ (γ)

ε

= − lim
δ=−ε↑0

T̃ (γ + δ(ej − ei))− T̃ (γ)

−δ = lim
δ↑0

T̃ (γ + δ(ej − ei))− T̃ (γ)

δ
= −T̃−→

ij
(γ).

These equations together verify that (79) holds and also that,

T̃(ji)(γ) = T̃−→
ji

(γ) = −T̃−→
ij

(γ). (81)
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To complete the proof that (80) holds, note that since T̃−→
ji

(γ) = −T̃−→
ij

(γ), we know from (79)

that T̃(ij)(γ) exists, and therefore that it satisfies the corresponding equality,

T̃(ij)(γ) = T̃−→
ij

(γ) = −T̃−→
ji

(γ). (82)

In combination, (82) and (81) imply (80).

With regard to the final clause of the Lemma, that T̃(ji)(γ) exists all 1 ≤ i 6= j ≤ J if γ ∈ Γ̃′,
Rockafellar theorem 25.2 shows that γ ∈ Γ̃′ implies all directional derivatives T̃ ′(γ|y) exist and are
linear in y = (y(1), ..., y(J)). Hence they can be written in terms of partial derivatives T̃j(γ) as,

T̃ ′(γ|y) =
J∑
j=1

y(j)T̃j(γ).

Hence, given 1 ≤ i 6= j ≤ J ,

−T̃−→
ij

(γ) = −
[
T̃j(γ)− T̃i(γ)

]
= T̃i(γ)− T̃j(γ) = T̃ ′(γ|ei − ej)) = T̃−→

ji
(γ),

verifying (79) and thereby establishing existence of all 2-sided directional derivatives.

Our next preliminary result shows that symmetry of the cost function has implications for
directional derivatives. The Lemma specifies the inherited symmetry property precisely.

Lemma 5.10: If T̃(ji)(γ) exists, then for any bijection σ : {1, .., J} → {1, .., J},

T̃(ji)(γ) = T̃(σ(j)σ(i))(γ
σ),

where,
γσ(j) = γ(σ−1(j)).

Proof. Suppose that T̃(ji)(γ) exists and note by symmetry of T̃ (Lemma 5.7) and the bijective
nature of σ,

T̃ (γ) = T̃ (γσ).

Now consider the posterior γσ + ε(eσ(i) − eσ(j)) and note that,

γ̃(k) =


γσ(k) + ε = γ(σ−1(σ(i)) + ε = γ(i) + ε if k = σ(i);
γσ(k)− ε = γ(σ−1(σ(j))− ε = γ(j)− ε if k = σ(j);

γσ(k) else.

Hence,
γσ + ε(eσ(i) − eσ(j)) ∼Γ γ

σ + ε(ei − ej),

so that by the symmetry of T̃ ,

T̃
[
γσ + ε(eσ(i) − eσ(j))

]
= T̃ (γ + ε(ei − ej)).
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Hence,

T̃(ji)(γ
σ) = lim

ε→0

T̃
[
γσ + ε(eσ(i) − eσ(j))

]
− T̃ (γσ)

ε
= lim

ε→0

T̃ [(γ + ε(ei − ej))σ]− T̃ (γσ)

ε
= T̃(ji)(γ),

establishing the Lemma.

A5.2.3: Lagrangians and Directional Derivatives

The following result explains to some extent the relevance of directional derivatives to our approach.
It follows from the Lagrangian Lemma.

Lemma 5.11: (Optimality and Directional Derivatives) Suppose C ∈ C has a UPS repre-
sentation with K ∈ K, and consider (µ,A) ∈ D and P ∈ C(µ,A) with a, b ∈ A(P ) with
{γ̄aP , γ̄bP } ⊂ Γ̃. Then for all pairs of states 1 ≤ i 6= j ≤ J :

1. For c ∈ {a, b}, if T̃(ji)(γ̄
c
P ) does not exist, γ̄cP ∈ Γ̃\Γ̃′,

−T̃−→
ij

(γ̄cP ) ≤ u(c, i)− u(c, j)− [θ(i)− θ(j)] ≤ T̃−→
ji

(γ̄cP ); (83)

with at least one inequality strict.

2. For c ∈ {a, b}, if T̃(ji)(γ̄
c
P ) exists, γ̄cP ∈ Γ̃′,

T̃(ji)(γ̄
c
P ) = u(c, i)− u(c, j)− [θ(i)− θ(j)]; (84)

3. If a, b ∈ A(P ) are such that {γ̄aP , γ̄bP } ⊂ Γ̃′,

Ña
(ji)(γ̄

a
P ) = Ñ b

(ji)(γ̄
b
P ). (85)

Proof. Since C ∈ C has a UPS representation and γ̄aP , γ̄bP ∈ Γ(P ), we know from Lemma 2.15 that
there exists an optimal policy λ = (Qλ, qλ) ∈ Λ̂(µ,A|K) with γ̄aP , γ̄

b
P ∈ Γ(Qλ). Given that J ≥ 3,

we apply Lemma 5.10 to ensure that directional derivatives are invariant to re-indexing states if
needed to make that state J is neither i nor j. We now apply the UPS Lagrangian Lemma to
the decision problem (µ,A) ∈ D to identify corresponding multipliers θ(j). Introduce the function
F c(γ) on c ∈ A and γ ∈ Γ(µ) and its supremal value:

F c(γ) ≡ Ñ c(γ)−
J−1∑
k=1

θ(k)γ(k); (86)

where,

Ñ c(γ) =

J∑
k=1

u(c, k)γ(k)− T̃ (γ),

Note that for γ ∈ Γ̃′, net utility Ñ c
(ji)(γ) is well-defined since T̃(ji)(γ) is well-defined, and, since the

limit operation changes only posteriors i and j,

lim
ε→0

u(c, i)[γ(i) + ε− γ(i)] + u(c, j)[γ(j)− ε− γ(j)]

ε
= u(c, i)− u(c, j).
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With T̃(ji)(γ) well-defined, the same holds for F c(ij)(γ), which we can analogously compute from
(86) as,

F c(ij)(γ) = Ñ c
(ij)(γ)− θ(i) + θ(j). (87)

The Lagrangian Lemma implies that F̂ , the supremal value of F c(γ),

F̂ = supc∈A,γ∈Γ(µ) [F c(γ)]

is achieved by the posteriors associated with any optimal policy. By Lemma 2.14 this means that
it is achieved both by setting (c, γ) = (a, γ̄aP ) and (c, γ) =

(
b, γ̄bP

)
. By Lemma 5.9, if T̃(ji)(ν)

does not exist, we know that the derivative from the left must be non-negative and from the right
non-positive and that they cannot be equal. This corresponds precisely to

−T̃−→
ij

(γ̄cP ) + u(c, i)− u(c, j)− [θ(i)− θ(j)] ≤ 0 ≤ T̃−→
ji

((γ̄cP ) + u(c, i)− u(c, j)− [θ(i)− θ(j)],

confirming (83). Conversely, if T̃(ji)(γ̄
c
P ) exists for c ∈ {a, b}, this maximization implies that the

corresponding derivative Ñ c(γ̄cP ) must equal zero,

Ñ c
(ji)(γ̄

c
P ) = −T̃(ji)(γ̄

c
P ) + u(c, i)− u(c, j)− [θ(i)− θ(j)] = 0,

confirming (84). To complete the proof, note that when {γ̄aP , γ̄bP } ⊂ Γ̃′, (84) applies at both
posteriors. Hence by (87),

Ña
(ji)(γ̄

a
P ) = θ(i)− θ(j) = Ñ b

(ji)(γ̄
b
P ),

confirming (85) and establishing the Lemma.

A5.2.4: Ratio Sets and Linearity of Posteriors

The next key observation is that we can design decision problems in which the derivatives of net
utility are profoundly informative about the cost function. To do this we use decision problems
for which IUC places strong restrictions on how posteriors change as the prior changes. These
are decision problems with two equivalent states and corresponding posteriors satisfying a ratio
condition. To show what IUC implies for these problems, we provide a key extension to the
Feasibility implies Optimality Lemma. We show that IUC places strong restrictions on the optimal
strategies. In particular, it enables us to move the prior between equivalent states without altering
the observed state dependent stochastic choice data. Since that the data does not change, Bayes’
rule alone determines how changes in the prior impact the observed posteriors. We apply this in
the context of a set of parametrized decision problems (µt, A) in which the parameter t ∈ [0, 1]
adjusts the weight between the payoff equivalent states k 6= l ∈ Ω(γ).

Definition 8 Given α ∈ (0,∞) and two states 1 ≤ k 6= l ≤ J , we define the corresponding ratio
set Γkl(α) ⊂ Γ̃ as the set of posteriors in which α is the ratio between γ(k) and γ(l):

Γkl(α) =

{
γ ∈ Γ̃

∣∣∣∣γ(k)

γ(l)
= α

}
.

Γkl(α) is the intersection of Γ̃ and a J − 2 dimensional linear subspace of RJ . It is therefore
convex and has dimension J−2. Figure 10 depicts Γ̃ for J = 4. The blue triangle represents Γ12(α)
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for α = 2 so that γ ∈ Γ̃ if and only if γ(1) = 2γ(2). In the Figure Γ12(2) connects all points with
γ(1) = γ(2) = 0 (i.e. the line segment connecting γ(3) = 1 to γ(4) = 1) to the point with γ(1) = 2

3
and γ(2) = 1

3 .

Figure 10

Lemma 5.12: Suppose C ∈ C has a UPS representation K and satisfies IUC (A1). Consider
η 6= ν ∈ Γ with,

Ω(η) = Ω(ν) = {j|1 ≤ j ≤ J},

for J ≥ 3, and 1 ≤ k 6= l ≤ J such that η, ν ∈ Γkl(α) some α ∈ (0,∞),

η(k)

η(l)
=
ν(k)

ν(l)
= α. (88)

Define the mean belief,

µ̄ =
η + ν

2
,

and for t ∈ [0, 1] define µt, ηt, and νt by:

µt(j) =


t[µ̄(k) + µ̄(l)] for j = k;

(1− t)[µ̄(k) + µ̄(l)] for j = l;
µ̄(j) otherwise;

(89)

ζt(j) =

[
ζ(j)

µ̄(j)

]
µt(j) for 1 ≤ j ≤ J ; (90)
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for ζ = η, ν. Then there exists a, b ∈ A with u(a, k) = u(a, l) and u(b, k) = u(b, l) such that,

C(µt, {a, b}) = {Pt}; γ̄aPt = ηt, and γ̄
b
P = νt. (91)

Specifically, for t̄ = µ̄(k)
µ̄(k)+µ̄(l) ∈ (0, 1), µt̄ = µ̄ and,

ζ t̄(j) =

[
ζ(j)

µ̄(j)

]
µ̄(j) = ζ(j)

for ζ = η, ν.

Proof. Fix η 6= ν ∈ Γ with Ω(η) = Ω(ν) = {j|1 ≤ j ≤ J} for J ≥ 3 and k 6= l ∈ Ω(γ) for which
(88) holds. Note that this is only possible if |Ω(η)| ≥ 3 since otherwise (88) implies γ = η. By
construction, note from adding the last two equations that,

ηt(j) + νt(j)

2
=

1

2

[
η(j) + ν(j)

µ̄(j)

]
µ̄t(j) = µ̄t(j).

Now consider the case t = 1 so that µ1(l) = η1(1) = η1(l) = 0, µ1(j) = µ̄(j) for j 6= k, l, and:

µ1(k) = µ̄(k) + µ̄(l);

ζ1(k) = ζ(k)

[
µ1(k)

µ̄(k)

]
= ζ(k)

[
µ̄(k) + µ̄(l)

µ̄(k)

]
= ζ(k)

[
1 +

µ̄(l)

µ̄(k)

]
= ζ(k) + ζ(l);

for ζ = η, ν, where the last line follows (88) and the definition of the mean belief,

µ̄(l)

µ̄(k)
=

η(l) + ν(l)

η(k) + ν(k)
=
η(l)

η(k)
=
ν(l)

ν(k)
.

Note that since γ 6= η and (88) holds, we know that there exists j ∈ Ω(γ)\{k, l} with η(j) 6= ν(j),
so that η1 6= ν1. Hence we can apply Feasibility Implies Optimality to find action set {a, b} such
that there is an optimal strategy for the corresponding mean belief,

λ(1) = (Q1, q1) ∈ Λ̂(µ1, {a, b}|K)

in which the only chosen posteriors are η1 and ν1, so that Q1(η1) = Q1(ν1) = 0.5. Feasibility
Implies Optimality implies also that the deterministic strategy involving each action being chosen
deterministically at its corresponding posterior is optimal. In fact. given that the two posteriors
are distinct, we know that they are linearly independent, so that the optimal strategy is unique by
Lemma 2.4. WLOG,

q1(a|η1) = q1(b|ν1) = 1.

We can readily characterize the corresponding revealed posteriors. Since C ∈ C has a UPS repre-
sentation K and the data corresponding to the optimal strategy is observed, we know by Lemmas
2.13 that C(µ1, {a, b}) = {P1} has the given revealed posteriors,

γ̄aP1
= η1 and γ̄

b
P1

= ν1.
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By Lemma 2.19 note that since µ1(l) = 0, we can set u(a, l) = u(a, k) and u(b, l) = u(b, k) without
affecting the observed pattern of SDSC data, P1.

We now consider decision problem (µt, {a, b}) ∈ D noting that (µ1, {a, b}) ∈ B(µt, {a, b}) all
t ∈ (0, 1). Since C(µ1, {a, b}) = {P1} and C satisfies IUC (A1) , we conclude that Pt ∈ C(µt, {a, b})
if and only if it satisfies,

Pt(c|j) =

{
P1(c|j) if j ∈ Ω(η)\{k, l};
P1(c|k) if j ∈ {k, l}; (92)

for c ∈ {a, b}. We now show that γ̄aPt = ηt and that γ̄
b
Pt

= νt all t ∈ (0, 1).

Note first that Bayes’ rule combined with (92) implies that, for all j ∈ Ω(γ)\{k, l}, and for
c ∈ {a, b},

γ̄cPt(j) =

[
Pt(c|j)
Pt(c)

]
µt(j) =

[
P1(c)

Pt(c)

] [
P1(c|j)
P1(c)

]
µ1(j) =

[
P1(c)

Pt(c)

]
γ̄cP1

(j),

since µt(j) = µ1(j). To compute the unconditional choice probabilities P1(c), note that µt(j) =
µ1(j) for j 6= k, l and that, given t ∈ (0, 1),

µt(k) + µt(l) = µ1(k).

Hence,

Pt(c) =
∑
j 6=k,l

P (c|j)µt(j) + P (c|k)µt(k) + P (c|l)µt(l)

=
∑
j 6=k,l

P1(c|j)µ1(j) + P1(c|k) (µt(k) + µt(l))

=
∑
j 6=k,l

P1(c|j)µ1(j) + P1(c|k)µ1(k) = P1(c).

Applying this to actions c = a, b separately we derive that for all j ∈ Ω(γ)\{k, l},

γ̄aPt(j) = γ̄aP1
(j) = η1(j) = η(j);

γ̄bPt(j) = γ̄bP1
(j) = ν1(j) = ν(j)

For j = k we make the corresponding substitutions,

γ̄cPt(k) =

[
Pt(c|k)

Pt(c)

]
µt(k) =

[
P1(c)

Pt(c)

] [
P1(c|k)

P1(c)

]
t [µ̄(k) + µ̄(l)]

=

[
P1(c|k)

P1(c)

]
tµ1(k) = tγ̄cP1

(k).

Applying this to actions c = a, b separately we derive,

γ̄aPt(k) = tγ̄aP1
(k) = tη1(k) = ηt(k);

γ̄bPt(k) = tγ̄bP1
(k) = tν1(k) = νt(k);
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where the final equalities derive from,

ηt(k)

η1(k)
=
νt(k)

ν1(k)
=
µt(k)

µ1(k)
= t.

Finally, using the corresponding substitutions for j = l we derive,

γ̄cPt(l) =

[
Pt(c|l)
Pt(c)

]
µt(l) =

[
P1(c)

Pt(c)

] [
P1(c|k)

P1(c)

]
(1− t) [µ̄(k) + µ̄(l)]

=

[
P1(c|k)

P1(c)

]
(1− t)µ1(k) = (1− t)γ̄cP1

(k).

Applying this to actions c = a, b separately we derive,

γ̄aPt(l) = (1− t)γ̄aP1
(k) = (1− t)η1(k) = ηt(l);

γ̄bPt(l) = (1− t)γ̄bP1
(k) = (1− t)ν1(k) = νt(l);

where the final equalities derive from,

ηt(l)

η1(k)
=

νt(l)

ν1(k)
=

µt(l)

µ1(k)
= (1− t).

The above concludes the proof that γ̄aPt = ηt and γ̄
b
Pt

= νt all t ∈ (0, 1). To finish the proof of
the main clause, note that the result directly holds for t = 1. But note that by symmetry that the
state labels are irrelevant, so that it also holds for t = 0.

The final step in the proof involves direct substitution to show that,

t̄ =
µ̄(k)

µ̄(k) + µ̄(l)
=⇒ µt̄ = µ̄,

and correspondingly that,

ζ t̄(j) =

[
ζ(j)

µ̄(j)

]
µ̄(j) = ζ(j)

for ζ = η, ν.

A5.2.5: Condition D

Ratio sets are very useful in establishing separability properties, but we need to operate with four
posteriors to apply rectangle conditions. The key step is to compare the values of T̃−→

ji
(γ) at four

different posteriors η1, η2, ν1, ν2 ∈ Γ̃ that satisfy powerful regularity conditions.

Definition 9 Given γ̂ ∈ Γ̃ and two states k, l ∈ J , we let Φkl(γ̂) denote the set of posteriors that
agree with γ on all states j 6= k, l

Φkl(γ̂) = {γ|γ(j) = γ̂(j), j 6= k, l}

Φkl(γ̂) represents a line in Γ̃ through γ̂ in the direction ek − el where ej is the unit vector in RJ
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with a one in the jth coordinate.

Figure 11 reproduces Figure 10 and adds the point γ̂ ∈ Γ12(2). The red line in the Figure
represents Φ12(γ̂). It is the set of points for on which γ (3) = γ̂(3) and γ(4) = γ̂(4). This line
segment is parallel to the line connecting γ(1) = γ(2) = 1.

Figure 11

With these definitions we introduce the key sets of four posteriors.

Definition 10 A set of four distinct posteriors η1, η2, ν1, ν2 ∈ Γ̃ satisfy condition D if there exist
distinct α(1) 6= α(2) > 0 and 1 ≤ k 6= l ≤ J such that:

1. η1,ν1 ∈ Γkl(α1),
η1(k)

η1(l)
=
ν1(k)

ν1(l)
= α1.

2. η2,ν2 ∈ Γkl(α2),
η2(k)

η2(l)
=
ν2(k)

ν2(l)
= α2.

3. η2 ∈ Φkl(η1), so that η2(j) = η1(j) for j 6= k, l.

4. ν2 ∈ Φkl(ν1), so that ν2(j) = ν1(j) for j 6= k, l.
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Note that the condition α1 6= α2 is imposed since with α1 = α2, the conditions would give rise
to η1 = η2 and ν1 = ν2, contrary to the defining feature that these are distinct posteriors.

Figure 12 illustrates Condition D. η1 and ν1 both lie in Γ12(α1) and η2 and ν3 both lie in
Γ12(α2). η1 and η2 both on the line segment Φ12(η1) and ν1 and ν2 both on the line segment
Φ12(ν1). The key observation is that, since the points in Φ12(η1) and Φ12(ν1) only differ in their
first and second coordinate, the two line segments are parallel, so that the points η1, η2, ν1 and
ν2 form a trapezoid. Below we will use this observation to establish the additive separability of
T̃(ji)(η1).

Figure 12

A5.2.6: Equalization of Differences For Two-Sided Directional Derivatives

Our next result relates Condition D, IUC, and the Lagrangian Lemma. If four posteriors η1, η2,
ν1, and ν2 satisfy Condition D and if T̃ is differentiable at each of these points, then IUC and the
Lagrangian Lemma relate the change in T̃(ji) between η1 and η2 to that between ν1 and ν2.

Lemma 5.13: Suppose C ∈ C has a UPS representation T̃ and satisfies IUC (A1). If η1, η2, ν1, ν2 ∈
Γ̃′ satisfy condition D for some pair of distinct states 1 ≤ k 6= l ≤ J , then

T̃(ji)(η1)− T̃(ji)(η2) = T̃(ji)(ν1)− T̃(ji)(ν2) (93)

for all pairs of distinct states 1 ≤ i 6= j ≤ J
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Proof. Consider η1,ν1, η2 and ν2 satisfying condition D such that T̃(ji) exists at all four points.
By Lemma 5.12, defining,

µ̄ =
η1 + ν1

2
,

there exists a, b ∈ A with u(a, k) = u(a, l) and u(b, k) = u(b, l) such that, for t ∈ [0, 1],

C(µ(t), {a, b}) = {Pt}; γ̄aPt = η(t), and γ̄bPt = ν(t).

where,

µ(t, j) =


t[µ̄(k) + µ̄(l)] for j = k;

(1− t)[µ̄(k) + µ̄(l)] for j = l;
µ̄(j) otherwise.

and

η(t, j) =

[
η1(j)

µ̄(j)

]
µ(t, j) for 1 ≤ j ≤ J ;

ν(t, j) =

[
ν1(j)

µ̄(j)

]
µ(t, j) for 1 ≤ j ≤ J ;

Where we have placed t as an argument in brackets and avoided the subscript so as to avoid
confusion with η1 and ν1.

In particular, for t̄1 = µ̄(k)
µ̄(k)+µ̄(l) ∈ (0, 1),

µ(t̄1) = µ̄,

η(t̄1) = η1,

ν(t̄1) = ν1.

Moreover, since T̃ is differentiable at both η1 and ν1, Lemma 5.11, the Optimality and Direc-
tional Derivatives Lemma, then implies,

Ña
(ji)(η1) = Ñ b

(ji)(ν1), (94)

for all i, j ∈ J .

Now note generally that:

η(t, k) =

[
η1(k)

µ̄(k)

]
µ̄(t, k)

= t

[
η1(k)

µ̄(k)

]
[µ̄(k) + µ̄(l)]

= tη1(k)

[
η1(k) + ν1(k) + η1(l) + ν1(l)

η1(k) + ν1(k)

]
= tη1(k)

[
α(1)η1(l) + α(1)ν1(l) + η1(l) + ν1(l)

α(1)η1(l) + α(1)ν1(l)

]
= tη1(k)

[
α(1) + 1

α(1)

]
;
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where α1 = η1(k)/η1(l).

Hence if we define t̄2 such that

t̄2 =
η2(k)α1

η1(k)(1 + α1)
,

then,
η(t̄2, k) = η2(k).

and since η2(j) ∈ Φjk (η1) implies that η(t, j) = η2(j) for all j 6= k, l,

η(t̄2) = η2.

Note that since η2(j) ∈ Φjk (η1), η2(j) lies on the line segment connecting η(0) and η(1), hence
t̄2 ∈ [0, 1]

Similarly, we can show that

ν(t, k) = tν1(k)

[
α1 + 1

α1

]
.

so that

ν(t̄2, k) =
η2(k)

η1(k)
ν1(k) = ν2(k)

where the last equality follows from the following line of reasoning:

1. η2 ∈ Φjk (η1) implies η1(k) + η1(l) = η2(k) + η2(l).

2. η1 ∈ Γ12(α1) and η2 ∈ Γ12(α2) imply further that η1(k)[1 + 1/α1] = η2(k)[1 + 1/α2] for
α1 = η1(k)/η1(l) and α2 = η2(k)/η2(l).

3. Similarly, ν1(k)[1 + 1/α1] = ν2(k)[1 + 1/α2].

4. So that η1(k)/ν1(k) = η2(k)/ν2(k) as required.

Therefore given the problem (µ(t̄2), A), η2 is the revealed posterior associated with a and ν2 is
the revealed posterior associated with b. Since T̃ is differentiable at both η2 and ν2, Lemma 5.11
then implies that,

Ña
(ji)(η2) = Ñ b

(ji)(ν2) (95)

for all i, j ∈ J . Since Ña(γ) =
∑

j u(a, j)γ(j)− T̃ (γ), equations (94) and (95) imply

T̃(ji)(η1) = u(b, i)− u(b, j)− u(a, i) + u(a, j) + T̃(ji)(ν1)

and
T̃(ji)(η2) = u(b, i)− u(b, j)− u(a, i) + u(a, j) + T̃(ji)(ν2)

Subtracting these two equations yields the desired result.

A5.2.7: Monotonicity and Limits

Condition (93) only holds at points at which the two-sided directional derivatives exist. Our next
goal is to generalize to one-sided directional derivatives which always exist, thereby extending
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the result to all sets of posteriors in Γ̃ that satisfy Condition D. Our strategy will be to take
limits of well-chosen sequences at which the two-sided derivatives exist. Two standard features
of the subdifferential map (associating with each posterior γ ∈ Γ̃ the full set of corresponding
subderivatives of T ) allow us to select appropriate sequences. The first is that the sub-differential
maps of convex functions are monotone. The second is that they satisfy a form of lower hemi-
continuity. The next two lemmas translate these standard results to our setting, starting with the
monotonicity lemma.

Lemma 5.14: Given γ ∈ Γ̃ and ε > 0 such that γ + ε(ei − ej) ∈ Γ̃,

T̃−→
ji

(γ + ε(ei − ej)) ≥ −T̃−→ij (γ + ε(ei − ej)) ≥ T̃−→ji (γ) (96)

Proof. The result follows directly from monotonicity properties of the subdifferential maps of
convex functions (Rockafellar p. 240). This is particularly simple for one dimensional functions as
the general version of the statement that differentiable convex functions have non-decreasing first
derivatives. To use in this simple setting, let δ > ε > 0 such that,

Y ≡ (γ − δ(ei − ej), γ + δ(ei − ej)) ⊂ Γ̃,

which is possible since Γ̃ is relatively open on the line. We then define convex function G : R→ R
to have value

G(α) = T̃ (γ + α(ei − ej)),

on α ∈ (−δ, δ), with its value being infinite elsewhere. It is direct from the definitions that
T̃−→
ji

(γ + α(ei − ej)) and the right derivatives of G(α) are equivalent at corresponding points,

T̃−→
ji

(γ + α(ei − ej)) = lim
ς↓0

T̃ (γ + α(ei − ej) + ς(ei − ej))− T̃ (γ + α(ei − ej))
ς

= lim
ς↓0

G(α+ ς)−G(α)

ς
≡ G′+(α).

Similarly, −T̃−→
ij
and the left derivatives of G

′
−(α) are equivalent where

G
′
−(α) = − lim

ς↑0

G(α+ ς)−G(α)

ς

Rockafellar theorem 24.1 establishes monotonicity properties for G
′
+(α) and G

′
−(α) when G is

convex. In particular for ε > 0,
G
′
+(0) ≤ G′−(ε) ≤ G′+(ε).

which, given the equivalence between T̃ and G, establishes (96).

Lemma 5.15: Given any sequence {εn}∞n=1 with εn > 0 and limn→∞ εn = 0,

lim
n→∞

T̃−→
ji

(γ + εn(ei − ej)) = T̃−→
ji

(γ) (97)

Proof. By the directional derivative monotonicity lemma 5.14, given {εn}∞n=1 with εn > 0, and
limn→∞ εn = 0, such that γ + εn(ei − ej) ∈ Γ̃, (96) implies that the limit exists and that the
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inequality survives,
lim
n→∞

T̃−→
ji

(γ + εn(ei − ej)) ≥ T̃−→ji (γ). (98)

Conversely, Rockafellar 24.5 shows with full generality that given convex function T̃ : RJ → R̄, any
γ ∈ RJ at which T̃ (γ) is finite, and any sequence {γn}∞n=1 → γ and y ∈ RJ ,

lim sup T̃ ′(γn|y) ≤ T̃ ′(γ|y). (99)

Defining γn = (γ + εn(ei − ej) and y = ei − ej we get,

lim
n→∞

T̃−→
ji

(γ + εn(ei − ej)) ≤ T̃−→ji (γ). (100)

Combining (98) with (100) establishes (97), and completes the proof of the Lemma.

A5.2.8: Equal Difference Conditions for One-Sided Directional Differences

To complete the transition from equal difference conditions on two-sided to one-sided directional
derivatives, we apply standard results on “almost everywhere”differentiability of convex functions
on various important subdomains. These are all convex subdomains of Γ̃ whose affi ne hull is of
lower dimension, several of which have appeared already in the proof. When thinking about T̃
even on its full domain Γ̃, there is a subtlety in the statement. Since Γ̃ respects the adding up
constraint on probabilities, it has measure zero as a subset of RJ . For that reason the full measure
result applies “relative to”Γ̃. This is how we state the corresponding result for more general convex
subdomains Y . We note also the preservation of one-sided and two-sided directional derivatives on
subdomains. The precise formalism is standard.

Definition 11 Given a non-empty convex set Y ⊂ RJ , define Γ̃(Y ) to be the corresponding subdo-
main of Γ̃,

Γ̃(Y ) ≡ Y ∩ Γ̃;

and define T̃ Y : Γ̃(Y ) → R with T̃ Y (γ) ≡ T̃ (γ) to be the restriction of T̃ to this domain. We
define Γ̃′(Y ) ⊂ Γ̃(Y ) to be the set on which T̃ Y is differentiable. Finally, given γ ∈ Γ̃(Y ) and
1 ≤ i 6= j ≤ J such that Y for which there exists δ > 0 such that,

[γ − δ(ei − ej), γ + δ(ei − ej)] ⊂ Γ̃(Y ), (101)

we define one and two-sided directional derivative T̃ Y−→
ji
and T̃ Y(ji) in the standard manner.

We now state the key result about convergence of one-sided directional derivatives for appro-
priately selected sequences of posteriors.

Lemma 5.16: For any non-empty convex set Y ⊂ RJ , T̃ Y is almost everywhere differentiable
in the relative interior of Γ̃(Y ) and Γ̃(Y )\Γ′(Y ) is of measure zero, and whenever T̃ Y−→

ji
(γ) is

well-defined,
T̃ Y−→
ji

(γ) = T̃−→
ji

(γ). (102)
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Proof. Given that Y is non-empty and convex set, T̃ Y is a proper convex function. Rockafellar
theorem 25.5 translates precisely to the fact that Γ̃′(Y ) is dense in Γ̃(Y ) and its complement
Γ̃(Y )\Γ̃′(Y ) is of measure zero in the relative interior of Γ̃(Y ). The equality T̃ Y−→

ji
= T̃−→

ji
is definitional

given the existence of appropriate convergent sequences in the shared domain and equality of the
underlying function.

Lemma 5.17: Suppose C ∈ C has a UPS representation T̃ and satisfies IUC (A1). Given {η1, η2, ν1, ν2} ⊂
Γ̃ satisfying condition D for some pair of distinct states 1 ≤ k 6= l ≤ J , then

T̃−→
ji

(η1)− T̃−→
ji

(ν1) = T̃−→
ji

(η2)− T̃−→
ji

(ν2), (103)

for all pairs of distinct states i, j ∈ {1, . . . J}\{k, l} that are distinct from k and l.

Proof. Consider an arbitrary set of four posteriors {ξm} ⊂ Γ̃ for ξ = η, ν and m = 1, 2 satisfying
condition D. We construct four corresponding sequences of posteriors {ξnm}∞n=1 that converge to
ξm as n → ∞. We ensure that at each n (93) holds and that (93) converges to (103). In light of
Lemma 5.14 and 4.15, we ensure that the sequence is picked in a special manner ensuring proper
convergence. Specifically, let Θ(ξm) be the set containing posteriors that lie within 1

n of ξm in the

direction
−→
ji :

Θ(ξm) = {γ ∈ Γ̃|γ = ξm + λ(ei − ej) and λ ∈ (0,
1

n
)}.

for all γ ∈ Θ(ξm).

Note that Θ(ξm) is a convex subset of Γ̃, hence satisfies the conditions of the Lemma 5.16, so
that T̃Θ(ξm))

(ji) = T̃(ji) exists for almost all λ ∈ (0, 1
n). Let Λn(ξm) denote the set of λ ∈ (0, 1

n) at

which the two-sided directional derivative T̃(ji) exists,

Λn(ξm) = {λ ∈ (0,
1

n
)|T̃(ij)(γ) exists at γ = ξm + λ(ei − ej)}.

It follows that Λn(ξm) has measure 1
n , as does the corresponding intersection,

Λ(n) ≡ ∩ξ=η,ν ∩m=1,2 Λn(ξm).

Select λ̄(n) ∈ Λ(n) and correspondingly define,

ξnm = ξm + λ̄(n)(ei − ej),

for ξ = η, ν and m = 1, 2.

By construction, for each n, ξnm ∈ Γ̃ for ξ = η, ν and m = 1, 2 satisfy condition D. To confirm,
note that for ξ = η, ν and m = 1, 2, ξnm(k) and ξm(k) differ only in coordinates i and j. Hence we
know that ξnm(k) = ξm(k) and ξnm(l) = ξm(l). Given that the ξm satisfy condition D, it follows that
the ξnm satisfy condition D as well. Since T̃(ji) exists at each of the ξ

n
m, and since the ξ

n
m satisfy

condition D, Lemma 5.13 states

T̃(ji)(η
n
1 )− T̃(ji)(ν

n
1 ) = T̃(ji)(η

n
2 )− T̃(ji)(ν

n
2 ) (104)
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Now consider each element T̃(ji)(ξ
n
m) and note that, since λ̄(n) > 0 and

ξnm = ξm + λ̄(n)(ei − ej),

we can apply Lemma 5.14 directly to conclude that (96) holds,

T̃−→
ji

(ξnm) ≥ T̃−→
ji

(ξm) (105)

Since λ̄(n) → 0 we know in addition that limn−→∞ ξ
n
m = ξm, so that Lemma 5.15 applies to show

that,
lim
n→∞

T̃−→
ji

(ξnm) = lim
n→∞

T̃(ji)(ξ
n
m) = T̃−→

ji
(ξm). (106)

Substituting (106) in (104) establishes (103), and completes the proof.

A5.2.9: Propagating Existence of Directional Derivatives

A key result shows how to propagate existence of directional derivatives. If the two-sided directional
derivative T̃(ji)(η) exists at a point η, then T̃(ji)(ν) exists for all ν ∈ Γαji where α = η(j)

η(i) . The
intuition for the result is that this set of v can be linked to η by a problem in which the states i
and j are redundant. IUC then allows us to alter the prior on i and j and thereby smoothly shift
the the resulting posteriors. These posteriors maintain the original ratio between states j and i:
ν(j)
ν(i) = ν(j)

ν(i) . If T̃ (η) is smooth in the direction (ji), T̃ (ν) must also be smooth, if the posteriors are
to evolve proportionately.

Before proving the result we establish some additional continuity properties that we can import
to our apparatus directly from Rockafellar.

Lemma 5.18: Given η ∈ Γ̃ and 1 ≤ i 6= j ≤ J such that T̃(ji)(η) exists, then T̃(ji)(ν) exists for all
ν ∈ Γ̃ such that:

ν(j)

ν(i)
=
η(j)

η(i)
. (107)

Proof. The proof is by contradiction. Choose η such that T̃(ji)(η) exists and suppose that there
exists ν satisfying (107) such that T̃(ji)(ν) does not exist. By Lemma 5.9 above, this means that
−T̃−→

jl
(ν) 6= T̃−→

lj
(ν).

By Lemma 5.12 there exists (µ,A) ∈ D with A = {a, b} such that η is the revealed posterior
related to a and ν is the revealed posterior related to b and the states i and j are redundant. The
lemma then guarantees that given the parameterized set of problems (µt, A) where

µt(k) =


t [µ(i) + µ(j)] for k = i;

(1− t) [µ(i) + µ(j)] for k = j;
µ(k) otherwise;

for t ∈ (0, 1), ηt is the revealed posterior for action a and νt is the revealed posterior for action
b and

ηt(j) =
η(j)

µ(j)
µt(j) and νt(j) =

ν(j)

µ(j)
µt(j)
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Let t̄ be defined by µt̄ = µ.

By the Lagrangian Lemma, for each t, there exists θt ∈ RJ−1 such that

Ña(ηt)−
J−1∑
k=1

θt(k)ηt(k) = Ñ b(νt)−
∑
k 6=j

θt(k)νt(k) ≥ Ñ c(γ)−
J−1∑
k=1

θ(k)γ(k)

for all γ ∈ Γ and c = {a, b}.

Since T̃(ji)(η) exists, the Optimal Directional Derivative Lemma (4.11) tells us that

T̃(ji)(η) = u(a, i)− u(a, j)− θt̄(i)− θt̄(j) (108)

and since T̃(ji)(ν) does not exist, Lemma 5.11 implies that,

−T̃−→
ij

(ν)− u(b, i) + u(b, J) + θt̄(i) + θt̄(j) ≤ 0 ≤ T̃−→
ji

(ν)− u(b, i) + u(b, J) + θt̄(i) + θt̄(j),

with one of these two inequalities strict. Without loss of generality suppose

T̃−→
ji

(ν)− u(b, i) + u(b, J) + θt̄(i) + θt̄(j) = ∆ > 0. (109)

Define now Y ⊂ RJ as all vectors ηt,

Y = {ηt ∈ Γ̃|t ∈ [0, 1]},

noting that, since Γ̃(Y ) = Y since Y ⊂ Γ̃. Lemma 5.16 implies that T̃ Y is differentiable for almost
all ηt, so that Lemma 5.9 implies that the two-sided directional derivative,

T̃ Y(ji)(ηt) = T̃(ji)(ηt),

also exists for almost all ηt ∈ Y .

Now consider a sequence ηt(n) → η such that t(n) > t̄ and T̃(ji)(ηt(n)) exists. Lemma 5.15
implies that

lim
t(n)→t̄

T̃(ji)(ηt(n)) = T̃(ji)(η).

Therefore there exists t(m) 6= t̄ such that T̃(ji)(ηt(m)) ∈ (T̃(ji)(η), T̃(ji)(η) + ∆). Given that

T̃(ji)(ηt(m)) exists,

T̃(ji)(ηt(m)) = u(a, i)− u(a, j)− θt(m)(i)− θt(m)(j). (110)

Hence, with T̃(ji)(ηt(m))− T̃(ji)(η) ∈ (0,∆), we can subtract the right-hand sides of (108) from (110)
to conclude that,

θt̄(i) + θt̄(j)− θt(m)(i)− θt(m)(j) ∈ (0,∆),

so that,
−θt(m)(i)− θt(m)(j) < −θt̄(i)− θt̄(j) + ∆. (111)

Applying now the Optimal Directional Derivative Lemma (4.11) to νt(m) we conclude that,

−T̃−→
ij

(νt(m)) ≤ u(b, i)− u(b, j)− θt(m)(i)− θt(m)(j) ≤ T̃−→ji (νt(m)).
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Substitution of (111) thereupon yields,

−T̃−→
ij

(νt(m)) ≤ u(b, i)− u(b, j)− θt(m)(i)− θt(m)(j) < u(b, i)− u(b, j)− θt̄(i)− θt̄(j) + ∆ = T̃−→
ji

(ν)

But t(m) > t̄, so that the Lemma 5.14 implies directly that −T̃−→
ij

(νt(m)) > T̃−→
ji

(ν). This contradic-
tion establishes the result.

A5.2.10: Weak Form Additive Separability

In this section we establish a weak form of additive separability. The basic observation is that (93)
is very close to the rectangle condition for this form of additive separability. The difference is that
η1, η2, ν1, ν2 ∈ Γ̃ satisfying condition D form a trapezoid, not a rectangle. We rectify this problem
by deforming Γ̃.

Definition 12 Given M ∈ N, define ZM as the strictly positive vectors summing to strictly below
1,

ZM = {(z1, . . . zM ) ∈ RM |zm > 0 all m and
∑
m

zm < 1},

and define X = (0, 1)× ZJ−2.

We now deform Γ̃ to create rectangles. To simplify the notation, we start with arbitrary states
k and l but then re-order the states so that k = 1 and l = J . Given Lemma 5.7, this is without
loss of generality. With this naming convention we will suppress the dependence of the function Ψ
on k and l in the following definition.

Definition 13 Define Ψ : Γ̃→ X with Ψ(γ) = x ∈ X where:

x(j) =

{
γ(j)

γ(j)+γ(J) for j = 1;

γ(j) for 2 ≤ i 6= j ≤ J − 1.

The next Lemma points out that Ψ is bijective.

Lemma 5.19: Ψ : Γ̃→ X is bijective.

Proof. The mapping Ψ can be constructed as the combination of two mappings each of which we
show to be bijective. The first maps the J − 1 dimensional simplex Γ̃ to ZJ−1 by dropping the
coordinate γ(J). Given γ ∈ Γ̃ define Ψ1(γ) ∈ ZJ−1 by:

Ψ1(γ(j)) = γ(j) for 1 ≤ j ≤ J − 1.

The second function divides γ(1) by,

γ(1) + γ(J) = 1−
J−1∑
m=2

γ(m).
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Technically, given z ∈ ZJ−1 define Ψ2(z) ∈ X by,

Ψ2(z(j)) =

{
z(j)

1−
∑J−1
m=2 z(m)

for j = 1;

z(j) for 2 ≤ i 6= j ≤ J − 1.

Clearly Ψ1 : Γ̃ → ZJ−1 is bijective. With regard to Ψ2, note that if that z1, z2 ∈ ZJ−1 both
map to x ∈ X, it is immediate that z1 = z2. Hence Ψ2 : ZJ−1 → X is injective. To show that it is
also surjective, given x ∈ X, define h(x) ∈ ZJ−1 by,

h(x(j)) =

{ [
1−

∑J−1
m=2 x(m)

]
x(1) if j = 1

x(j) for 2 ≤ j ≤ J − 1.

We now consider Ψ2(h(x)) ∈ X. By construction, this satisfies:

Ψ2(h(x(j))) =

{
h(x(j))

1−
∑J−1
m=2 h(x(m))

for j = 1;

x(j) for 2 ≤ i 6= j ≤ J − 1.

where

h(x(j))

1−
∑J−1

m=2 h(x(m))
=

[
1−

∑J−1
m=2 x(m)

]
x(1)[

1−
∑J−1

m=2 x(m)
] = x(1).

Hence Ψ2(h(x)) = x so that Ψ2 is surjective. Given that it is also injective, it is bijective.

To complete the proof, we now show that Ψ = Ψ2 ◦Ψ1 is the composition of these mappings:

Ψ = Ψ2 (Ψ1(γ)) =

{
Ψ1(γ(j))

1−
∑J−1
m=2 Ψ1(γ(m))

for j = 1;

Ψ1(γ(j)) for 2 ≤ i 6= j ≤ J − 1.

=

{
γ(j)

1−
∑J−1
m=2 γ(m)

for j = 1;

γ(j) for 2 ≤ i 6= j ≤ J − 1.

This completes the proof that Ψ is bijective.

The next lemma shows that, in this space, condition D transforms into a rectangle condition
on X.

Lemma 5.20: Given η1, η2, ν1, ν2 ∈ Γ̃ that satisfy condition D for states k = 1 and j = J , the
elements x1, x2, y1, y2 ∈ X such that xm = Ψ(ηm) and ym = Ψ(νm) for m = 1, 2, form a
rectangle:

x1(1) = x2(1) and y1(1) = y2(1);

x1(j) = y1(j) and x2(j) = y2(j); for 2 ≤ j ≤ J − 1.

Proof. Consider x1, x2, y1, y2 ∈ X such that xm = Ψ(ηm) and ym = Ψ(υm) for m = 1, 2. By
condition D and the definition of Ψ, for 2 ≤ j ≤ J − 1 and m = 1, 2,

xm(j) = Ψ(ηm(j)) = ηm(j) = νm(j) = Ψ(νm(j)) = νm(j).
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Note also that,

x1(1)− x2(1) =
η1(1)

η1(1) + η1(J)
− η2(1)

η2(1) + η2(J)

=

η1(1)
η1(J)

η1(1)
η1(J) + 1

−
η2(1)
η2(J)

η2(1)
η2(J) + 1

=
α

α+ 1
− α

α+ 1
= 0

Similarly,

y1(1)− y2(1) =

ν1(1)
ν1(J)

ν1(1)
ν1(J) + 1

−
ν1(1)
ν1(J)

ν1(1)
ν1(J) + 1

= 0,

completing the proof.

With this we are in position to establish our first version of additive separability.

Lemma 5.21: Suppose C ∈ C has a UPS representation and satisfies IUC (A1). Then, given

2 ≤ i 6= j ≤ J − 1, T̃−→
ji

(γ) is additively separable in
[

γ(1)
γ(1)+γ(J)

]
and {γ(j)| 2 ≤ j ≤ J − 1} in

that there exists A : R+ −→ R and B : RJ−2 −→ R such that,

T̃−→
ji

(γ) = A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), ..., γ(J − 1))

Proof. We consider any four posteriors η1, η2, ν1, ν2 ∈ Γ̃ that satisfy Condition D for states k = 1
and l = J . We now define x1, x2, y1, y2 ∈ X by xm = Ψ(ηm) and ym = Ψ(υm) for m = 1, 2. We
transfer the directional derivatives to this space by defining the function T : X → R by,

T (x) ≡ T̃−→
ji

(Ψ−1(x)),

using the bijective function Ψ : Γ̃→ X introduced above.

Note that the space X is of the cross-product form X = XA × XB with XA = (0, 1) and
XB = ZJ−2. A standard condition for such an arbitrary function f : X −→ R on such a space to
be additively,

f(a, b) = f1(a) + f2(b)

is that the rectangle conditions are satisfied: given a1, a2 ∈ XA and b1, b2 ∈ XB,

f(a1, b1)− f(a2, b1) = f(a1, b2)− f(a2, b2).

To confirm, pick arbitrary
(
ā, b̄
)
∈ XA ×XB and note that for any (a, b) ∈ XA ×XB,

f(a, b) = f(a, b̄) + f(ā, b)− f
(
ā, b̄
)
,

which is of the additively separable form for f1(a) = f(a, b̄)− f
(
ā, b̄
)
and f2(b) = f(ā, b).

Since η1, η2, υ1, and ν2 satisfy Condition D, Lemma 5.13 states,

T̃−→
ji

(η1)− T̃−→
ji

(ν1) = T̃−→
ji

(η2)− T̃−→
ji

(ν2)
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By the definition of T we have,

T (x1)− T (y1) = T (x2)− T (y2)

By Lemma 5.20, xm = Ψ(ηm) and ym = Ψ(υm) for m = 1, 2, form a rectangle:

x1(1) = x2(1) ≡ a1 and y1(1) = y2(1) ≡ a2;

x1(j) = y1(j) and x2(j) = y2(j); for 2 ≤ j ≤ J − 1.

Define bm ∈ ZJ−2 for m = 1, 2 by,

bm(j) = xm(j + 1) for 2 ≤ j ≤ J − 1,

substitution yields the rectangle condition,

T (a1, b1)− T (a2, b1) = T (x1)− T (y1) = T (x2)− T (y2) = T (a1, b2)− T (a2, b2).

It follows that T is additively separable between a ∈ XA = (0, 1) and b ∈ XB = ZJ−2

T (a, b) = A(a) +B(b)

In the final step, we use Ψ to move from T to T̃−→
ji
. Given x = Ψ(γ),

T̃−→
ji

(γ) = T (Ψ−1(γ)) = T (x) = A(x(1)) +B(x(2), .., x(J − 1))

= A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), .., γ(J − 1)) ,

completing the proof.

A5.2.11: Strong Form Additive Separability

In this section we establish a stronger form of additive separability relying on already established
symmetry and differentiability properties of the T̃ function.

Lemma 5.22: Suppose C ∈ C has a UPS representation and satisfies IUC (A1). If γ ∈ Γ̃′, then,
given γ ∈ Γ̃′ and 1 < i 6= j < J , there exists B : RJ−2 −→ R such that

T̃(ji)(γ) = B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) (112)

Proof. We arbitrarily order states, fix states 1 and J , and consider distinct states 2 ≤ i 6= j ≤ J−1.
By Lemma 5.9, γ ∈ Γ̃′ implies T̃(ji)(γ) exists. We set i = 2 and j = 3. Given Lemma 5.7, this is
without loss of generality.

Applying Lemma 5.21

T̃(32)(γ) = A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) .
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By Lemma 5.9 we also know that,

T̃(23)(γ) = −T̃(32)(γ) = −A
(

γ(1)

γ(1) + γ(J)

)
−B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) . (113)

Define the mapping σ : {1, .., J} −→ {1, .., J} that permutes elements 2 and 3:

σ(k) =


3 if k = 2;
2 if k = 3;
k otherwise.

Defining γσ ∈ Γ̃ as the correspondingly permuted posterior, γσ(j) = γ(σ−1(j)). Lemma 5.10 then
that, since T̃(ji)(γ) exists,

T̃(23)(γ) = T̃(32)(γ
σ)

Directly by Lemma 5.21,

T̃(32)(γ
σ) = A

(
γσ(1)

γσ(1) + γσ(J)

)
+B (γσ(2), γσ(3), ..., γσ(J − 2), γσ(J − 1))

= A

(
γ(1)

γ(1) + γ(J)

)
+B (γ(3), γ(2), ..., γ(J − 2), γ(J − 1)). (114)

Since both equal T̃(23)(γ) we know that the right-hand sides of (113) and (114) are equal,

2A

(
γ(1)

γ(1) + γ(J)

)
= −B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1))−B (γ(3), γ(2), ..., γ(J − 2), γ(J − 1))

(115)
By assumption T̃(32)(γ) exists so that by Lemma 5.18 it also exists for all η such that η(2)/η(3) =
γ(2)/γ(3), including all at which,

ρ ≡ η(1)

η(1) + η(J)
> 0

takes arbitrary values while η(k) = γ(k) for all k 6= 1, J, which by construction differ from i, j.
Hence (115) must hold for all ρ > 0. Since the right-hand side of the equation is independent of ρ,
A (ρ) is independent of ρ,

A (ρ) = Ā ∈ R.

Hence we can add Ā to B and normalize to A(x) = 0, completing the proof.

In the proceeding, the has been no guarantee that there is a single B that works for all pairs of
states. In the next lemma we further restrict the functional dependence of the two-sided directional
derivative, and in the process show that there exists a single function B̄ that characterizes this
derivative.

Lemma 5.23: Suppose C ∈ C has a UPS representation and satisfies IUC (A1), then there exists
B̄ : (0, 1)× (0, 1)→ R such that, given γ ∈ Γ̃′, and states 1 ≤ i 6= j ≤ J ,

T̃(ji)(γ) = B̄(γ(i), γ(j)). (116)
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Proof. Given arbitrarily fixed states 1 and J with J ≥ 4, Lemma 5.22 establishes that if we
consider distinct states i = 2 and j = 3, there exists B : RJ−2 −→ R such that, given γ̄ ∈ Γ̃′,

T̃(32)(γ) = B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1))

If J = 4, then B has only two arguments and is of the desired form,

T̃(ji)(γ̄) = B (γ̄(i), γ̄(j)) ≡ B (γ̄(2), γ̄(3)) ≡ B̄ (γ̄(2), γ̄(3)) .

By the symmetry Lemma 5.10, this same function applies regardless of how we label states, com-
pleting the proof for J = 4.

T̃(ji)(γ̄) = B̄(γ̄(i), γ̄(j))

If J > 4 we again arbitrarily fixed states 1 and J , and consider state s 6= i, j with 2 ≤ s ≤ J−1.
Hence by Lemma 5.22 and Lemma 5.10, we can transpose posteriors 1 and s without changing the
form of the function, so that,

T̃(ji)(γ) = B(γ(2), .., γ(s− 1), γ(1), γ(s+ 1), ..., γ(J − 2), γ(J − 1)). (117)

Raising γ(s) and reducing γ(J) has no effect on the right hand side of (117), hence no effect on
the RHS of (112) so that B (γ(2), γ(3), ..., γ(J − 2), γ(J − 1)) is independent of γ(s). Proceeding
in this matter for all s 6= {i, j}, we have

T̃(ji)(γ) = B̄(γ(i), γ(j)),

where B̄(γ(i), γ(j)) is the common value. To complete the proof, note again that by the symmetry
lemma, the same function applies regardless of how we label the states, completing the proof.

Note that the function B̄(γ(i), γ(j)) is pinned down only for γ ∈ Γ̃′ and not the full domain
(0, 1)× (0, 1). However we know that it is pinned down on a dense subset of this space, so that it is
natural to think of using a limit operation to fill out the function. The next Lemma establishes that
this can be done in an unambiguous manner, and characterizes the one-sided directional derivative.

Lemma 5.24: There exists B̄ : (0, 1)× (0, 1)→ R such that, given γ ∈ Γ̃,

T̃−→
ji

(γ) = B̄(γ(i), γ(j)). (118)

Proof. Where T̃(ji)(γ), exists, Lemma 5.9 shows that it is equal to T̃−→
ji

(γ). Hence the function

defined in (116) is of the appropriate form for γ ∈ Γ̃′. What is left is to establish that we can define
B̄(γ(i), γ(j)) that equals T̃−→

ji
(γ) on γ ∈ Γ̃\Γ̃′.

Consider γ ∈ Γ̃\Γ̃′, and consider any sequence {γn}∞n=1 with γn = γ + εn(ei − ej) such that
T̃(ji)(γn) exists for all n and εn ↓ 0. To see that such a sequence must exist, let Y (γ, i, j) =

{x ∈ RJ |x(k) = γ(k) for all k 6= i, j}. Y (γ, i, j) is a convex set, and T̃ Y (γ,i,j) : Γ̃(Y (γ, i, j)) → R
is the restriction of T̃ to Y (γ, i, j) ∩ Γ̃. Lemma 5.16 states that T̃ Y (γ,i,j) is almost everywhere
differentiable in the relative interior of Γ̃(Y (γ, i, j)), and that T̃ Y (γ,i,j)

(ij) = T̃(ji). We can therefore

select the sequence {γn}∞n=1 from Γ̃(Y (γ, i, j)).
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As T̃(ji)(γn) exists, Lemma 5.23 implies,

T̃(ji)(γn) = B̄(γn(i), γn(j)).

Lemma 5.15 then ensures that,

lim
n→∞

T̃−→
ji

(γ + εn(ei − ej)) = T̃−→
ji

(γ).

We therefore define B̄(γ) on γ ∈ Γ̃\Γ̃′ as,

B̄(γ) ≡ lim
n→∞

B̄(γn(i), γn(j)) = T̃−→
ji

(γ), (119)

By construction we know that T̃−→
ji

(γ) = B̄(γ) on the full domain, and that it is of the form

B̄(γ(i), γ(j)) on γ ∈ Γ̃\Γ̃′. Equation (119) implies that this extends to the limit points, completing
the proof of (118) and with it the Lemma.

Note that the function B̄ : (0, 1) × (0, 1) → R as introduced above allows for certain jumps
at posteriors at the two sided directional derivatives fail to exist. In further characterizing the
implications of Compression, such cases will be ruled out.

A5.2.12: Full Additive Separability

We have now established that directional derivatives at any posterior depends only on the proba-
bilities of the two involved states. We now establish that the corresponding function can be defined
based on a fixed function of each probability alone. This is what we refer to as full additive separa-
bility. The result is connected with a triangular pattern in two-sided directional derivatives. Given
γ ∈ Γ̃ we know that T̃(ji)(γ), T̃(ik)(γ), T̃(jk)(γ) all exist, and furthermore that they are interdepen-
dent,

T̃(ji)(γ) = T̃(jk)(γ) + T̃(ki)(γ). (120)

In Lemma 5.25 we show that this relationship rests only on existence of any two of these three two-
sided directional derivatives. The lemma also uses the negative inverse feature of these directional
derivatives to point to the method for identifying the appropriate form of the function that generates
the sought after representation.

Lemma 5.25 Given γ ∈ Γ̃, suppose that there exist three distinct indices 1 ≤ i, j, k ≤ J such that
T̃(ki)(γ) and T̃(kj)(γ) both exist. Then T̃(ji)(γ) exists and,

T̃(ji)(γ) = B̄(γ(i), γ(k))− B̄(γ(j), γ(k)). (121)

Proof. Given Lemma 5.7, we may take i = 1, j = 2 and k = 3 without loss of generality.

Given γ ∈ Γ̃, define the set X by

X ≡

x ∈ R2|x1, x2 > 0 and x1 + x2 < 1−
∑
l 6=i,j,k

γ(l)

 . (122)
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Define η(x) ∈ Γ̃

[η(x)] (l) =


x1 if l = 1;
x2 if l = 2;

1−
∑
l 6=i,j,k

γ(l)− x1 − x2 if l = 3;

γ(l) otherwise

(123)

Finally, define H : X → R by
H(x) = T̃ (η(x)) (124)

Note that
η (γ(1), γ(2)) = γ

Note also that, given T̃(32)(γ) exists,

T̃(32)(γ) = lim
ε→0

T̃ (γ + ε(e2 − e3))− T̃ (γ)

ε
= lim

ε→0

T̃ (η(γ(1), γ(2) + ε))− T̃ (η(γ(1), γ(2)))

ε

= lim
ε→0

H(γ(1), γ(2) + ε)−H(γ(1), γ(2))

ε

Hence,
T̃(32)(γ) = H2(γ(1), γ(2)). (125)

Analogously,
T̃(31)(γ) = H1(γ(1), γ(2)).

Since both partials exist, note from Rockafellar theorem 25.1 that H is differentiable at γ and from
theorem 25.2 that the directional derivative function H ′(γ|y) is linear in direction y ∈ R2. Hence
the directional derivative in direction e1 − e2 is the difference between the partials,

H ′(γ|e1 − e2) = H1(γ(1), γ(2))−H2(γ(1), γ(2)) = T̃(31)(γ)− T̃(32)(γ). (126)

To complete the proof of (121), note directly from the definitions that H ′(γ|e2 − e1) is equal to
T̃(ji)(γ),

H ′(γ|e1 − e2) = lim
ε→0

H(γ(1) + ε, γ(2)− ε)−H(γ(1), γ(2))

ε
(127)

= lim
ε→0

T̃ (γ + ε(ej − ei))− T̃ (γ)

ε
≡ T̃(ji)(γ)

Setting the right-hand sides of (126) and (127) to equality establishes that

T̃(ji)(γ) = T̃(ki)(γ)− T̃(kj)(γ).

In light of Lemma 5.24 this completes the proof of (121).

Lemma 5.25 points the way to a possible method for expressing T̃(ji)(γ) in a fully additively
separable manner. Given k 6= i, j and x̄ ∈ (0, 1− γ(i)− γ(j)), Lemma 5.25 implies

T̃(ji)(γ) = B̄(γ(i), x̄)− B̄(γ(j), x̄)
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so that T̃(ji)(γ) is additively separable in γ(i) and γ(j). The complication in establishing this form
of additive separability is that the requirement that x̄ < 1− γ(i)− γ(j) means that that no single
x̄ works for all γ ∈ Γ̃. In the following, we establish additive separability on a subset of Γ̃ and then
drive the value of x̄ down to zero to establish additive separability on the whole of Γ̃.

Lemma 5.26: Given ε ∈ (0, 0.5), there exists x(ε) ∈
(
ε
8 ,

ε
4

)
and a full measure set I(ε) ⊂ (0, 1− ε)

such that, for any distinct states 1 ≤ i, k ≤ J , given γ ∈ Γ̃ with γ(k) = x(ε), T̃(ik)(γ) exists
whenever γ(i) ∈ I(ε).

Proof. Pick distinct states 1 ≤ i, k ≤ J and ε ∈ (0, 0.5). Let Y (k, ε) = {z ∈ RJ |z(k) ∈
(
ε
8 ,

ε
4

)
}

denote the set of vectors in RJ for which z(k) ∈ ( ε4 ,
ε
2) and focus on posteriors with γ(k) so

restricted,

Γ̃(Y (k, ε)) =
{
γ ∈ Γ̃|γ(k) ∈

( ε
8
,
ε

4

)}
. (128)

Per the general prescription, define the restricted function T̃ Y (k,ε) : Γ̃(Y (k, ε)) → R, and note for
arbitrary indices 1 ≤ j 6= l ≤ J ,

T̃
Y (k,ε)
−→
lj

(γ) = T̃−→
lj

(γ),

given that there is suitable variation of the posterior in all directions.

By Lemma 5.16 we know that T̃ Y (k,ε) is almost every differentiable in the relative interior
of Γ̃(Y (k, ε)). At point of differentiability of T̃ Y (k,ε), we know by Lemma 5.9 that all two-sided
directional derivatives exists. Hence, we know that T̃(ik)(γ) exists for almost all γ ∈ Γ̃(Y (k, ε)).
But we already know from Lemma 5.24 that such existence can only depend on the values γ(i) and
γ(k), so that existence is ensured on a full measure subset of the corresponding domain defined by:

γ(k) ∈
( ε

8
,
ε

4

)
and γ(i) ∈ (0, 1− γ(k)).

Now fix x ∈
(
ε
8 ,

ε
4

)
and define

I(x) = {y ∈ (0, 1− x)|T̃(ik)(γ) exists when γ(k) = x and γ(i) = y} ⊂ (0, 1− x). (129)

Note that the union of these sets across x ∈
(
ε
8 ,

ε
4

)
is precisely the set of γ ∈ Γ̃(Y (k, ε)) on which

T̃(ik)(γ) exists, which we know to have the same measure as the relative interior of Γ̃(Y (k, ε)). This
means that there exists x(ε) ∈

(
ε
8 ,

ε
4

)
such that the measure of I(x(ε)) is 1−x(ε). As x(ε) ∈

(
ε
8 ,

ε
4

)
,

take I(ε) = I(x(ε)) ∩ (1, 1− ε). This completes the proof.

We now show how to define an appropriate fully additively separable function of the form we
seek for any given ε ∈ (0, 0.5).

Lemma 5.27: Given ε ∈ (0, 0.5) and there exists a dense subset I(ε) ⊂ (0, 1 − ε) and a function
f ε : I(ε)→ R such that,

T̃(ji)(γ) = f ε(γ(i))− f ε(γ(j)), (130)

for all γ ∈ Γ̃ such that γ(i), γ(j) ∈ I(ε) and γ(i) + γ(j) < 1− ε.

Proof. Given ε ∈ (0, 0.5), define x(ε) ∈
(
ε
8 ,

ε
4

)
and the dense subset I(ε) of (0, 1 − ε) so that

the conditions of the last Lemma are satisfied. Now consider Γ̃(ε), the set of posteriors for which
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Lemma 5.26 tells us that both T̃(ik)(γ) and T̃(jk)(γ) are well-defined,

Γ̃(ε) =
{
γ ∈ Γ̃|γ(i), γ(j) ∈ I(ε), γ(k) = x(ε)

}
,

Since both T̃(ik)(γ) and T̃(jk)(γ) exist on Γ̃(ε), by Lemma 5.25,

T̃(ji)(γ) = B̄(γ(i), x(k))− B̄(γ(j), x(k)). (131)

for γ ∈ Γ̃(ε). We define the candidate function,

f ε(γ) = B̄(γ(i), x(ε)).

The Lemma requires one more step, which is to remove the condition that γ(k) = x(ε), which
is absent in the conditions of the Lemma. The key observation here is that Hence given γ′ such
that γ′(i) = γ(i) and γ′(j) = γ (i),

T̃(ji)(γ
′) = T̃(ji)(γ) = f ε(γ(i))− f ε(γ(j)).

Hence the characterization applies to all γ ∈ Γ̃ such that γ(i), γ(j) ∈ I(ε) and γ(i) + γ(j) < 1 − ε
as required.

Lemma 5.28: There exists f : Ī → R with Ī ⊂ (0, 1) of full measure such that for all γ ∈ Γ̃ with
γ(i), γ(j) ∈ Ī, T̃(ji)(γ) exists and,

T̃(ji)(γ) = f(γ(i))− f(γ(j)) (132)

Proof. We construct a diminishing sequence {ε(n)}∞n=1 > 0 with ε(n + 1) < ε(n) by setting
ε(1) ∈ (0.0.5) and thereupon successively halving,

ε(n+ 1) =
ε(n)

2
,

on n > 1. For each n, Lemma 5.26 states that there exists x(n) ∈
(
ε(n)

8 , ε(n)
4

)
and a set I(n) ⊂

(0, 1−ε(n)) which is dense in (0, 1−ε(n)) such that T̃(ji) exists whenever γ(j) = x(n) and γ(i) ∈ I(n).

We now show that I(n) ⊂ I(n + 1). Since I(n) is dense in (0, 1 − ε(n)) and I(n + 1) is dense
in (0, 1 − ε(n + 1)) and (0, 1 − ε(n)) ⊂ (0, 1 − ε(n + 1)), I(n) ∩ I(n + 1) is not empty. Consider
y ∈ I(n)∩ I(n+ 1) and choose η such that γ(i) = y, γ(j) = x(n). That this is possible follows from
the fact that

y + x(n) + x(n+ 1) < y +
ε(n)

4
+
ε(n+ 1)

4
≤ y +

ε(n)

4
+
ε(n)

8
< 1

Since γ(i) ∈ I(n), T̃(ji) exists, and since γ(i) ∈ I(n+ 1), T̃(ki) exists. It follows from Lemma 5.25,
that T̃(kj) exists. Now consider any y ∈ I(n), and consider η such that γ(i) = y, γ(j) = x(n), and
γ(k) = x(n+ 1). Since γ(i) ∈ I(n), T̃(ji) exists, and since T̃(kj) exists, it follows from Lemma 5.25,
that T̃(ki) exists. Hence y ∈ I(n+ 1).
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By Lemma 5.27,
T̃(ji)(γ) = B̄(γ(i), x(n))− B̄(γ(j), x(n))

for all γ such that γ(i), γ(j) ∈ I(n). Fix z ∈ I(1), since I(n) ⊂ I(n+ 1), z ∈ I(n). For γ(i) ∈ I(n),
define

Gn(γ(i)) = B̄(γ(i), x(n))− B̄(z, x(n))

It follows that

T̃(ji)(γ) = B̄(γ(i), x(n))− B̄(γ(j), x(n))

= B̄(γ(i), x(n))− B̄(z, x(n))− B̄(γ(j), x(n)) + B̄(z, x(n))

= Gn(γ(i))−Gn(γ(j))

We now compare Gn(γ(i)) to Gn+1(γ(i)). Consider γ(i) ∈ I(n) ⊂ I(n+ 1),

Gn+1(γ(i)) = B̄(γ(i), x(n+ 1))− B̄(z, x(n+ 1))

= B̄(γ(i), x(n))− B̄(x(n+ 1), x(n))− B̄(z, x(n)) + B̄(x(n+ 1), x(n))

= B̄(γ(i), x(n))− B̄(z, x(n))

= Gn(γ(i))

where the second equality follows from Lemma 5.25 applied to γ̃ with γ̃(i) = x(n+ 1), γ̃(j) = x(n)
and γ̃(k) = γ(i) :

T̃(ji)(γ̃) = B̄(x(n+1), x(n)) = B̄(x(n+1), γ(i))−B̄(x(n), γ(i)) = −B̄(γ(i), x(n+1))+B̄(γ(i), x(n))

and similarly for z in place of γ(i).

Hence we can define a limit function f : ∪∞n=1I(n) → R unambiguously by taking any x ∈
∪∞n=1I(n), selecting a particular n̄ such that x ∈ I(n̄), and defining,

f(x) = Gn̄(x).

By Lemma 5.27, we know that with γ(i), γ(j) ∈ I(n), a dense subset of (0, 1− ε(n)), (132) holds,

T̃(ji)(γ) = f(γ(i))− f(γ(j). (133)

Since limn→∞ ε(n) = limn→∞ ε(n) = 0, note that

Ī ≡ ∪∞n=1I(n)

is a dense subset of (0, 1), establishing the Lemma.

Lemma 5.29: The function f : Ī −→ R defined in Lemma 5.28 for which (132) holds is non-
decreasing, and can be extended to a function f : (0, 1) −→ R that is non-decreasing.

Proof. We pick arbitrary x, x + ε ∈ ∪∞n=1I(n) = Ī with ε > 0 and show that f(x + ε) ≥ f(x).
Consider γ ∈ Γ̃ with γ(i) = x and γ(j) = x+ ε, by Lemma 5.28

T̃(ji)(γ) = f(γ(i))− f(γ(j)) = f(x)− f(x+ ε).
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If we now define γ′ ∈ Γ̃ as,
γ′ = γ + ε(ei − ej),

Lemma 5.28 implies that,

T̃(ji)(γ
′) = f(γ′(i))− f(γ′(j)) = f(x+ ε)− f(x).

By the monotonicity lemma 5.14, γ′ = γ + ε(ei − ej) for ε > 0 implies T̃(ji)(γ
′) ≥ T̃(ji)(γ), which

translates to,
f(x+ ε)− f(x) ≥ f(x)− f(x+ ε),

which directly implies f(x+ ε) ≥ f(x), completing the proof that f is non-decreasing on Ī.

To complete the proof, pick x ∈ Ī\(0, 1). Since Ī ⊂ (0, 1) is of full measure in (0, 1), we can
find sequence {x(n)}∞n=1 > x with x(n + 1) < x(n) and limn→∞ x(n) = x such that x(n) ∈ Ī. We
define f(x) as the corresponding limit,

f(x) = lim
n→∞

f(x(n)

Since we have just shown f to be non-decreasing, the limit is well-defined, and also non-decreasing.

We now show a connection between continuity properties of f and existence of two-sided direc-
tional derivatives.

Lemma 5.30: Given η ∈ Γ̃, T̃(ji)(η) exists if and only if f(γ(i))− f(γ(j)) is continuous at η.

Proof. Consider η ∈ Γ̃. Pick distinct states 1 ≤ i, j ≤ J and define

Y (η, i, j) = {γ ∈ RJ |γ(k) = η(k), k 6= i, j}.

Note Y (η, i, j) is convex set. Per the general prescription, define the restricted function T̃ Y (η,i,j).
By Lemma 5.16 this function is differentiable almost everywhere in the relative interior of the
restricted domain Γ̃(Y (η, i, j)). Hence the directional derivative in the only relevant direction,

T̃
Y (k,ε)
(ji) (γ) = T̃(ji)(γ),

exists almost everywhere. Hence we can find sequences approaching from η both corresponding
directions. We now select {ε(n)}∞n=1 > 0 with limn→∞ ε(n) = 0 such that given γn = η+ε(n)(ei−ej),
T̃(ji)(γn) exists. We select also {ε′(n)}∞n=1 < 0 with limn→∞ ε′(n) = 0 such that, defining γ′n =

η + ε′(n)(ei − ej), T̃(ji)(γ
′
n) exists.

Since T̃ is convex we know that the one-sided directional derivatives are monotonically increas-
ing,

lim
n→∞

T̃(ji)(γ
′
n) ≤ −T̃−→

ji
(η) ≤ T̃−→

ji
(η) ≤ lim

n→∞
T̃(ji)(γn). (134)
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We now use Lemma 5.28 to substitute in (134) at all γn and γ
′
n since T̃(ji)(◦) is well-defined at

these points, to arrive at,

T̃(ji)(γn) = f(η(i) + εn)− f(η(j)− εn);

T̃(ji)(γ
′
n) = f(η(i) + ε′n)− f(η(j)− ε′n);

Now suppose that f(γ(i))− f(γ(j)) is continuous at η. In this case,

lim
n→∞

[
f(η(i) + ε′n)− f(η(j)− ε′n)

]
= lim

n→∞
[f(η(i) + εn)− f(η(j)− εn)] ,

so that correspondingly,
lim
n→∞

T̃(ji)(γ
′
n) = lim

n→∞
T̃(ji)(γn),

hence by (134),
−T̃−→

ji
(η) = T̃−→

ji
(η),

establishing through Lemma 5.9 that T̃(ji)(η) exists.

Suppose conversely that T̃(ji)(η) does not exist. In this case we know by Lemma 5.9 that
T̃−→
ji

(η) < T̃−→
ji

(η), so that by (134),

lim
n→∞

T̃(ji)(γn) = lim
n→∞

f(η(i) + ε′n)−f(η(j)− ε′n) < lim
n→∞

T̃(ji)(γn) = lim
n→∞

f(η(i) + εn)−f(η(j)− εn),

establishing that f(γ(i))− f(γ(j)) is discontinuous at η, and completing the proof.

A5.2.13: Existence of Directional Derivatives

Lemma 5.31: Given η and given α = η(k)
η(l) , if T̃(kl)(η) exists then T̃ is differentiable for almost all

γ ∈ Γkl(α).

Proof. Consider η ∈ Γ̃ such that T̃(kl)(η) exists and set α = η(k)
η(l) . Since Γkl(α) is convex, T̃Γkl(α)

almost everywhere differentiable on the relative interior of Γkl(α) by Lemma 5.16. At points of
differentiability, we know from Lemma 5.9 that T̃(ji)(γ) = T̃

Γkl(α)
(ji) (γ) exists provided Γkl(α) contains

a line segment through γ in direction (ei − ej), By definition of Γkl(α), this holds for all directions
except that defined by the pair of states (lk) whose posterior belief ratio is held fixed through the
set.

Consider γ ∈ Γkl(α) at which T̃Γkl(α) is differentiable. As T̃(kl)(η) exists, Lemma 5.18 implies
that T̃(kl)(γ) also exists. Hence at all such γ, we know that all 2-sided directional derivatives exist.
Following precisely the steps in Lemma 5.25, we can remove an arbitrary state k 6= i, j from the
domain and construct set X as in (122), then define η(x) ∈ Γ̃ on x ∈ X as in (123) and function
H(x) on X by (124), whose partial derivatives are precisely the directional derivatives T̃(km)(γ),

T̃(km)(γ) = H1(γ(m), γ(i)),

all m 6= k.
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Since all partials of this function therefore exist, we note from Rockafellar theorem 25.2 that
H(γ) is differentiable at γ and that the directional derivative function H ′(γ|y) is linear in direction
y ∈ R2. Re-application of Rockafellar theorem 25.2 implies that T̃ is differentiable at γ, completing
the proof.

Lemma 5.32: T̃(ji)(γ) exists for all i, j and γ ∈ Γ̃.

Proof. The proof is by contradiction. Consider a posterior η at which T̃(ji)(η) does not exist. It
follows from Lemma 5.30 that f(η(i))− f(η(j)) is discontinuous at this point:

lim
ε↑0

f(η(i) + ε)− f(η(j) + ε) ≤ lim
ε↓0

f(η(i) + ε)− f(η(j) + ε)

Without loss of generality, suppose that it is f(η(i)) that is discontinuous.

Since f is monotonic, f(γ(j)) is continuous for almost all γ(j) ∈ (0, 1 − η(i)) (Rudin (1976)
Theorem 4.30). The discontinuity of f at η(i) and the continuity of f almost everywhere else
implies that f(η(i)) − f(γ(j)) is discontinuous in the direction (ji) for almost all γ(j) ∈ (0, 1 −
η(i)). Hence by Lemma 5.30, T̃(ji)(γ) does not exist for almost all γ such that γ(i) = η(i) and

γ(j) ∈ (0, 1 − η(i)). It follows that for almost all α ∈
(

η(i)
1−η(i) ,∞

)
, there exists γ ∈ Γαji such that

T̃(ji)(γ) does not exist. But by Lemma 5.18, if T̃(ji)(γ) exists for any η ∈ Γαji, then T̃(ji)(γ) exists

for all γ ∈ Γαji. Hence for almost all α ∈
(

η(i)
1−η(i) ,∞

)
, T̃(ji)(γ) does not exist for any γ ∈ Γαji.

But
{
γ|γ ∈ Γji(α), α ∈

(
η(i)

1−η(i) ,∞
)}

is a set of positive measure and T̃ is differentiable almost

everywhere. This contradiction establishes the result.

Lemma 5.33: T̃ is continuously differentiable on γ ∈ Γ̃ and f(γ(j)) is continuous on Γ̃

Proof. Lemma 5.32 establishes that the directional derivatives T̃(ji)(γ) exist for all (ji) and all
γ ∈ Γ̃. It follows from Rockafellar (1970) Theorem 25.2 that T̃ is differentiable and from Rockafellar
(1970) Corollary 25.5.1 that T̃ is continuously differentiable on γ ∈ Γ̃. Since T̃(ji)(γ) = f(γ(i)) −
f(γ(j)) continuity of f follows.

A5.2.14: Existence of Cross-Directional Derivatives

The twice differentiability of a convex function such as T̃ normally a subtle object as convexity
alone is not suffi cient to establish differentiability on any open set. In our case, however, we know
from Lemma 5.33 that T̃ is continuously differentiable on γ ∈ Γ̃ and hence standard notions of
twice differentiability apply. We now introduce the cross derivatives of T̃ , which are of the essence
in the proof of theorem 1.

Definition 14 Given γ ∈ Γ̃ and any two pair of states 1 ≤ i 6= j ≤ J and 1 ≤ k 6= l ≤ J we
define the corresponding cross derivative in direction lk of T̃(ji), as the corresponding directional
derivative of T̃(ji), should it exist:
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T̃(ji)(lk)(γ) = lim
ε→0

T̃(ji)(η + ε(ek − el))− T̃(ji)(η)

ε

The next results show that the cross-directional derivatives exist almost everywhere.

Lemma 5.34: T̃(ji)(il) exists almost everywhere in Γ̃

Proof. Rockafellar (1999) Theorem 2.3 states that for almost all γ ∈ Γ̃ the gradient of T̃ (γ),
∇T̃ (γ), exists and

∇T̃ (γ) = ∇T̃ (γ + ω) +Aω + o(|ω|)

holds with respect to {ω|γ + ω ∈dom∇T̃} for some J − 1 by J − 1 matrix A. By Lemma 5.33, T̃
is differentiable everywhere on Γ̃, and so dom∇T̃ = Γ̃. The Lemma follows from considering the
direction in ∇T̃ associated with (il) after the direction associated with (ji).

Lemma 5.35: Given η ∈ Γ̃ at which T̃(ij)(lk)(η) exists and given α = η(k)
η(l) , T̃(ij)(lk)(ν) exists for all

ν ∈ Γkl(α).

Proof. Choose η at which T̃(ij)(lk) exists and set α = η(k)
η(l) . Consider ν ∈ Γkl(α). Lemma 5.12

establishes the existence of a parameterized set of problems (µt, A) indexed by t ∈ [0, 1] where:

µt(j) =


t [µ(k) + µ(l)] for j = k;

(1− t) [µ(k) + µ(l)] for j = l;
µ(j) otherwise;

and ηt is the revealed posterior for action a and νt is the revealed posterior for action b where

ηt(j) =
η(j)

µ(j)
µt(j) and νt(j) =

ν(j)

µ(j)
µt(j).

By Lemma 5.31, T̃ is differentiable everywhere in Γ̃. It follows from Lemma 5.9 that T̃(ij)(ηt)

and T̃(ij)(νt) exist for all t. Lemma 5.11 implies therefore that,

Ña
(ij)(ηt) = Ñ b

(ij)(νt)

for all t. Substituting the definition of net utility yields

T̃(ij)(νt) = T̃(ij)(ηt)− u(a, k) + u(a, l) + u(b, k)− u(b, l) (135)

Differencing (135) evaluated at t and t̄ and taking µt = µ+εt(ek−el) implies ηt = η+εt
η(k)
µ(k)(ek−el)

and νt = ν + εt
ν(k)
µ(k)(ek − el) yields

lim
εt→0

T̃(ij)

(
ν + εt

ν(k)
µ(k)(ek − el)

)
− T̃(lk)(η)

εt
ν(k)
µ(k)

= lim
εt→0

T̃(ij)

(
η + εt

η(k)
µ(k)(ek − el)

)
− T̃(lk)(η)

εt
η(k)
µ(k)

(136)
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Since T̃(ij)(lk)(η) exists, the right-hand side limit exists, and so the left-hand side limit exists,
establishing the result.

Lemma 5.36: Given γ ∈ Γ̃, 1 ≤ i 6= j ≤ J and 1 ≤ k 6= l ≤ J , all cross-derivatives T̃(ji)(lk)(γ)
exist.

Proof. Note first that for all γ ∈ Γ̃ for any distinct states i, j, k, and l, T̃(ji)(lk)(γ) = 0, since
Lemma 5.29 and 4.33 imply that T̃(ji)(γ) = f(γ(i))−f(γ(j)) which is independent of γ(k) and γ(l).

Now consider cases with overlap. Consider first the case in which k = i and l 6= j. The proof is
by contradiction. Consider a posterior η ∈ Γ̃. By Lemma 5.32, T̃ is differentiable at η, and hence
by Lemma 5.29, T̃(ji)(η) = f(η(i))− f(η(j)). It follows that

T̃(ji)(η + ε(ei − el))− T̃(ji)(η)

ε
=
f(η(i) + ε)− f(η(i))

ε

so that T̃(ji) is differentiable in the direction (li) if and only if f is differentiable at η(i). Suppose
now that f is not differentiable at η(i). Consider the set of posteriors ν such that ν(i) = η(i) and
v(j) ∈ (1, 1− η(i)). Since

T̃(ji)(ν + ε(ei − el))− T̃(ji)(ν)

ε
=
f(η(i) + ε)− f(η(i))

ε

T̃(ji)(il)(γ) does not exist for all such ν. It follows that for each α ∈ ( η(i)
1−η(i) ,∞), there exists γ ∈ Γαji

such that T̃(ji)(il)(γ) does not exist, namely any γ such that γ(i) = η(i) and γ(j) = η(j)/α. But
by Lemma 5.35, if T̃(ji)(il)(γ) exists at any γ ∈ Γji(α) then T̃(ji)(il) exists for all γ ∈ Γji(α). Hence

T̃(ji)(il)(γ) does not exist for any γ ∈ Γji(α) such that α ∈
(

η(i)
1−η(i) ,∞

)
. But this is a set of positive

measure in Γ̃ which contradicts the result of Lemma 5.34. This contradiction establishes that
T̃(ji)(il)(γ) exists for k = i and l 6= j.

Finally, note that the above proves the differentiability of f which establishes that T̃(ji)(il)(γ)
exists in the case that k = i and l = j.

A5.3: Theorem 1 (Suffi ciency)

Theorem 1: If data set C ∈ C with a UPS representation satisfies IUC, it has a Shannon repre-
sentation.

Proof. We are looking to show that if C ∈ C has a UPS representation K ∈ KUPS and satisfies
IUC, then there exists κ > 0 such that, given (µ,Q) ∈ F such that Q ∈ Q̂(µ|K),

K(µ,Q) = Σγ∈Γ(Q)Q(γ)T (γ),

where,
T (γ) = κ

∑
ω∈Γ(γ)

γ(ω) ln(γ(ω)). (137)
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The proof has three parts. The first establishes that, given any fixed set of states Ω̄ of cardinality
J ≥ 4, there exists κJ > 0 such that, for all corresponding interior posteriors γ ∈ Γ̃ with Ω̄, the
corresponding strictly convex function T̃ : Γ̃→ R in the UPS representation has the form,

T̃ (γ) = κJ
J∑
j=1

γ(j) ln γ(j). (138)

The second part of the proof shows all optimal strategies are precisely as if κJ applied to all
posteriors γ ∈ Γ(µ) with |Ω(γ)| = L ≤ J . This implies that one can identify all optimal strategies,
and hence the full data in this CIR, using the necessary and suffi cient conditions for optimality
when this function to all feasible posteriors. The final step is to apply IUC (A1) not only to show
that κJ+1 = κJ for J ≥ 4, but also that the same Shannon functional form and multiplier applies
for all J ≥ 2, which completes the proof.

To prove the first part, we pick any fixed set of states Ω̄ of cardinality J ≥ 4, and define the
corresponding interior posteriors Γ̃. We choose η ∈ Γ̃, set α = η(k)

η(l) , and consider ν ∈ Γkl(α), so
that,

η(k)

η(l)
=
ν(k)

ν(l)
> 0.

By Lemma 5.7 (Symmetric Costs), we can order the arguments such that l = J . Define the mean
belief µ̄ = η+ν

2 , and µt for t ∈ [0, 1] by:

µt(j) =


t[µ̄(k) + µ̄(l)] for j = k;

(1− t)[µ̄(k) + µ̄(l)] for j = l;
µ̄(j) otherwise.

By Lemma 5.12 we know that there exists a, b ∈ A with u(a, k) = u(a, l) and u(b, k) = u(b, l) such
that C(µt, {a, b}) = {Pt} and for t ∈ (0, 1), ηt is the revealed posterior for action a and νt is the
revealed posterior for action b where,

ηt(j) =

[
η(j)

µ̄(j)

]
µt(j) and νt(j) =

[
ν(j)

µ̄(j)

]
µt(j)

for 1 ≤ j ≤ J . Since µt(j) = µ̄(j) for j 6= k, l and µt(k) = t[µ̄(k) + µ̄(l)], note that µt̄ = µ̄ if and
only it,

t̄ =
µ̄(k)

µ̄(k) + µ̄(l)
,

in which case,
ηt̄(j) = η(j) and ν t̄(j) = ν(j).

By Lemma 5.33, T̃ is differentiable for all γ ∈ Γ̃. By Lemma 5.11, we know that (85) holds for
all t ∈ (0, 1),

u(a, i)− u(a, j)− T̃(ji)(ηt) ≡ Ña
(ji)(ηt) = Ñ b

(ji)(νt) ≡ u(b, i)− u(b, j)− T̃(ji)(νt).
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By Lemma 5.36, T̃(ji) is differentiable in the direction (lk). Since this equation holds for all t ∈ (0, 1),
we can differentiate this identity with respect to t at t̄,

dT̃(ji)(ηt̄)

dt
=
dT̃(ji)(ν t̄)

dt
. (139)

A change in t at t̄ raises ηt(k) and lowers ηt(l) each by η(k) + η(l) and leaves ηt(j) unchanged for
all j 6= k, l. The chain rule then implies,

dT(ji)(ηt̄)

dt
= T̃(ji)(lk)(η) [η(k) + η(l)] (140)

Combining (139) and (140) and setting t = t̄ yields,

T̃(ji)(lk)(η) [η(k) + η(l)] = T̃(ji)(lk)(ν) [ν(k) + ν(l)] .

Since,
ν(k) + ν(l)

η(k) + η(l)
=
t̄ [ν(k) + ν(l)]

t̄ [η(k) + η(l)]
=
ν(k)

η(k)

we have
η(k)T̃(ji)(lk)(η) = ν(k)T̃(ji)(lk)(ν). (141)

Equation (141) must hold for all η and ν in Γkl(α), therefore γ(k)T̃(ji)(lk)(γ) is constant across
γ ∈ Γ̃. Note that by Lemma 5.7, this constant is independent of the states i, j, k, and l, although
at this point it may depend on the dimension J . Since the additive separability of T̃ implies
T̃(ji)(lk) = 0 for distinct states i, j, k, and l. The interesting cases involve overlap. Taking i = k.

γ(i)T̃(ji)(li)(γ) = κJ . (142)

for some constant κJ .

We look for the general form of T̃(ji) that solves (142). We know from Lemma 5.28 that,

T̃(ji)(γ) = f(γ(i))− f(γ(j)).

Hence
γ(i)f ′(γ(i)) = κJ

The solution to this differential equation is

f(γ(i)) = κJ ln γ(i) + ς

for some constant of integration ς. It follows that

T̃(ji)(γ) = κJ ln γ(i)− κJ ln γ(j). (143)

Note that we can rule out the dependence of ς on γ(m) for m 6= i as f(γ(i)) depends only on γ(i).

The general solution to (143) is

T̃ (γ) = κJγ(i)[ln(γ(i))− 1] + κJγ(j)[ln(γ(j))− 1] +G(γ(i) + γ(j), {γ(k)}k 6=i,j).
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Here G combines constants of integration with the potential for a shift between γ(i) and γ(j) to
offset each other. Lemma 5.7 states that T̃ is symmetric. Hence,

T̃ (γ) =
∑
j

κJγ(j)[ln(γ(j))− 1] +G

∑
j

γ(j)

 .

As
∑

j γ(j) = 1 and T̃ is defined only to an affi ne transformation,

T̃ (γ) = κJ
∑
j

γ(j) ln(γ(j)). (144)

This completes the proof of (138).

For the second part of the proof, the first key observation is that, given J ≥ 4, all optimal
strategies are precisely as if κJ applied to all posteriors γ ∈ Γ with |Ω(γ)| = L ≤ J . Note that
we replace T̃ with T from this point forward in the proof since this function is designed to apply
to boundary as well as to interior posteriors. What we require then is that cost cannot be strictly
lower than this formula implies,

T (γ) ≥ κJ
L∑
l=1

γ(l) ln γ(l). (145)

To see that this is suffi cient, suppose that this has been established and replace the costs of all
such posteriors with precisely the lower bound. Note that in this case one can apply the standard
necessary and suffi cient conditions for optimal choices to conclude that, even with this lower bound
imposed it is never optimal to select any such posteriors. The equal likelihood ratio necessary
conditions for λ ∈ Λ(µ,A) to be optimal in the Shannon model with general cost parameter κJ > 0
in Caplin et al. [2016]) which asserts that, for λ ∈ Λ(µ,A) to be an optimal strategy requires, that
for all chosen actions a, b ∈ A(λ),

γaλ(j)

exp(u(a, j)/κJ+1)
=

γbλ(j)

exp(u(b, j)/κJ + 1)
all j. (146)

Note that this is inconsistent with there being any posterior with γaλ(j) = 0, since we know that
µ(j) > 0, so that by Bayes’rule there must be some strictly positive values γbλ(j) > 0 for some chosen
action, hence all must be strictly positive for (146) to hold. Hence replacement of κJ

∑L
l=1 γ(l) ln γ(l)

when some of the ex ante possible states are ruled out cannot make strategies with such posteriors
optimal: hence there is no loss from the view point of optimization and hence data observed in the
CIR in applying this cost function.

We now demonstrate the validity of (145). Suppose to the contrary that there exists some γ ∈ Γ
with |Ω(γ)| = L < J such that the opposite holds,

T (γ) = κJ
L∑
l=1

γ(l) ln γ(l)− δ, (147)

for δ > 0. Note that there is no loss of generality in supposing that L = (J − 1), since there must
be some highest number of states L̄ < J for which this is true, which implies that (145) held for
all L̄+ 1 yet not for L̄, so that the comparison below works at least as well for L̄+ 1 relative to L̄,
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as it does for J relative to L̄. It then simplifies to set L̄ = J − 1. We show that this contradicts
completeness, since it is cheaper and cannot lower expected utility to rule out an ex ante possible
state state than to leave minimal ignorance.

Consider a particular posterior γ̄ of this form such that (147) holds with difference δ̄ > 0.
Without loss of generality, suppose that the prior possible state that is impossible state in this
posterior is state 1, γ̄(1) = 0. In this case we can express costs in simple form,

T (γ̄) = κJ
J∑
j=2

γ̄(j) ln γ̄(j)− δ̄. (148)

We now define a second posterior η̄ that permutes γ̄ by reversing the posteriors associated with
states 1 and 2,

η̄(j) =


γ̄(2) if j = 1;

0 if j = 2;
γ̄(j) if j ≥ 3.

By the Symmetry of Costs Lemma, we know that T (γ̄) = T (η̄).

We now define µ̄ to be the average posterior,

µ̄ =
γ̄ + η̄

2
=

{
γ̄(2)

2 if j = 1, 2;
γ̄(j) if j ≥ 3.

.

and consider the parameterized families of posteriors γ̄α, η̄α ∈ Γ(ē) on α ∈ [0, 1] by:

γ̄α(j) =


αγ̄(2) if j = 1;

(1− α)γ̄(2) if j = 2
γ̄(j) if j ≥ 3.

and η̄α(j) =


(1− α)γ̄(2) if j = 1;

αγ̄(2) if j = 2
γ̄(j) if j ≥ 3.

(149)

By construction, for all α ∈ [0, 1] the simple average of the posteriors γ̄α, η̄α is precisely µ̄,

1

2
[γ̄α(j) + η̄α(j)] =

{
γ̄(2)

2 if j = 1, 2
γ̄(j) if j ≥ 3.

Given that the data has a PS representation, theorem 3 implies that Axiom A4 (Completeness)
holds. Hence we know that, for any α > 0, there exists action set {aα, bα} such that decision
problem (µ̄, {aα, bα}) ∈ D has data P ∈ C (µ̄, {aα, bα}) that assigns equal likelihood 1

2 to each
of γ̄α, η̄α. Since this is a CIR, there exists an optimal strategy λα ∈ Λ̂ (µ̄, {aα, bα}) with the
corresponding property,

Qλα (γ̄α) = Qλα (η̄α) =
1

2
.

We show now that if κJ < κJ+1, this cannot hold for small enough α > 0. The proof involves
demonstrating that alternative strategy λ′ that assigns equal likelihood to posteriors γ̄ and η̄

Qλα (γ̄) = Qλα (η̄) =
1

2
,

strictly dominates in this limit.
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That such a strategy produces no lower expected utility follows directly from the fact that the
posterior distribution in λα is a garbling of λ′, so that λ′ is Blackwell more informative than λα.
With regard to the costs, note that, for any α ∈ (0,1), the relevant parameter in the Shannon
function is κJ > 0, since both possible posteriors have all prior possible states still possible,

|Ω (γ̄α)| = |Ω (η̄α)| = J.

Given that the posteriors are permutations of one another, the corresponding Shannon costs are
simple to compute as,

K(µ̄, Qλα) = κJ

∑
j

γ̄(j) ln γ̄(j) + αγ̄(2) ln (αγ̄(2)) + (1− α)γ̄(2) ln [(1− α)γ̄(2)]

 (150)

By construction, equation (148) and the symmetry of costs shows that the corresponding computa-
tion for λ′ has cost strictly δ̄ > 0 below what it would be according to the corresponding Shannon
cost,

K(µ̄, Qλ′) = κJ

∑
j

γ̄(j) ln γ̄(j) + γ̄(2) ln (γ̄(2))

− δ̄. (151)

Subtraction of (151) from (150) reveals that the costs of λα are strictly higher than those of λ′

provided,
δ̄ > αγ̄(2) ln (αγ̄(2)) + (1− α)γ̄(2) ln [(1− α)γ̄(2)]− γ̄(2) ln (γ̄(2)) . (152)

Note that the LHS of (152) is a fixed strictly positive constant independent of α. With regard to
the RHS, note that in the limit as α ↓ 0 it approaches zero, since,

lim
α↓0

(1− α)γ̄(2) ln [(1− α)γ̄(2)] = γ̄(2)(2) ln [γ̄(2)] ;

lim
α↓0

[αγ̄(2) ln (αγ̄(2))] = 0.

For α > 0 but suffi ciently small we conclude that,

K(µ̄, Qλ′) < K(µ̄, Qλα),

contradicting optimality of strategy λ(α) and thereby establishing (145).

We know now that the applicable cost function for working out all optimal strategies and
hence all observed data for priors involving J ≥ 4 possible states the Shannon cost function with
parameter κJ as defined for posteriors γ with |Ω(γ)| = J in equation (144). The final part of the
proof uses IUC (A1) to iterate down in dimension. To be precise, define KJ to be the Shannon cost
function with parameter κJ for J ≥ 4 as defined on all posteriors with that state space or below,

KJ(γ) ≡ κJ
∑

j∈Ω(γ)

γ(j) ln γ(j), all γ ∈ Γ with |Ω(γ)| ≤ J. (153)

The precise result we establish is that, given any decision problem (µ,A) ∈ D with a prior of
cardinality one lower, |Ω(µ)| = J − 1,

P ∈ C(µ,A) iff ∃λ ∈ Λ̂(µ,A|KJ) such that Pλ = P . (154)
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Note that establishing this completes the proof of the theorem, since it directly implies that κJ =
κJ−1 for J ≥ 4, where the Shannon form was already established, and that the Shannon form and
the corresponding parameter apply also to J = 3, then iteratively to J = 2, completing the logic.

Consider first P ∈ C(µ,A) where |Ω(µ)| = J − 1 and label the states in Ω(µ) by 2 ≤ j ≤ J .
Consider now an additional state, j = 1, that in payoff terms is a replica of state j = 2,

u(a, 1) = u(a, 2) all a ∈ A;

and the prior µ′ that divides up the µ(1) equally between states j = 1, 2,

µ′(j) =

{
µ(1)

2 if j = 1, 2;
µ(j) if j ≥ 3.

By construction (µ,A) is a basic version of (µ′, A), (µ,A) ∈ B(µ′, A). Hence by IUC we know
that data set P ′ that agrees with P in all states and repeats in state j = 1 what P specifies in state
j = 1,

P ′(a|j) =

{
P (a|2) if j = 1;
P (a|j) if j ≥ 2;

satisfies P ′ ∈ C(µ,A). Consider any chosen action a ∈ A(P ′) and define the corresponding revealed
posterior γ̄aP ′ . Since this is a CIR, we know that ∃λ

′ = (Q′, q′) ∈ Λ̂(µ′, A|KJ) such that Pλ = P ′

and with this posterior possible, and action a chosen deterministically at this posterior (by FIO),

Q′(γ̄aP ′) > 0 and q′(a|γ̄aP ′) = 1.

Applying this to all chosen actions and noting that the strategy is optimal, we know that it satisfies
the full bank of necessary and suffi cient conditions for an optimal strategy. Specifically, given
a, b ∈ A(P ′) we therefore know that the ILR equality holds:

γ̄aP ′(j)

exp(u(a, j)/κJ)
=

γ̄bP ′(j)

exp(u(b, j)/κJ)
all j; (155)

together with the corresponding inequality: given a ∈ A(P ′) and c ∈ A,

J∑
j=1

[
γ̄aP ′(j)

exp(u(a, j)/κJ)

]
exp(u(c, j)/κJ) ≤ 1. (156)

Note that the revealed posteriors defined by data set P on chosen actions a ∈ A(P ′) = A(P )
are readily derived from those associated with data set P ′ by application of Bayes’rule,

γ̄aP =


0 if j = 1;

γ̄aP ′(1) + γ̄aP ′(2) if j = 2;
γa
λJ−1(j) if j ≥ 3.

Now consider the strategy λ = (Qλ, qλ) ∈ Λ(µ,A) designed to precisely mirror λ′ = (Q′, q′) ∈
Λ̂(µ′, A|KJ),

Qλ(γ̄aP ) = Q′(γ̄aP ′) and qλ(a|γ̄aP ) = q′(a|γ̄aP ′).
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Note by construction that Pλ = P . Note also that validity of (155) and (156) survives this
amalgamation,

a, b ∈ A(P ) =⇒ γ̄aP (j)

exp(u(a, j)/κJ)
=

γ̄bP (j)

exp(u(b, j)/κJ)
all j;

a ∈ A(P ), c ∈ A =⇒
J∑
j=1

[
γ̄aP (j)

exp(u(a, j)/κJ)

]
exp(u(c, j)/κJ) ≤ 1.

Hence this strategy satisfies the necessary and suffi cient conditions for λ ∈ Λ̂(µ,A|KJ) as required.

The final step in the proof is to show the converse implication: given λ = (Qλ, qλ) ∈ Λ̂(µ,A|KJ),
the corresponding data satisfies Pλ ∈ C(µ,A). We work again with the necessary and suffi cient
conditions (155) and (156) that characterize such optimal strategies: given a, b ∈ A(λ):

a, b ∈ A(λ) =⇒ γaλ(j)

exp(u(a, j)/κJ)
=

γbλ(j)

exp(u(b, j)/κJ)
all j ≥ 2;

a ∈ A(λ), c ∈ A =⇒
J∑
j=2

[
γaλ(j)

exp(u(a, j)/κJ)

]
exp(u(c, j)/κJ) ≤ 1.

We define the additional state j = 1 and the corresponding prior µ′ precisely as above. We then
derive strategy λ′ = (Q′, q′) ∈ Λ(µ′, A) from λ = (Qλ, qλ) ∈ Λ(µ,A) by reversing the process above.
Given a ∈ A(λ) we first define corresponding posteriors,

γaλ′ =

{
γaλ(2)

2 if j = 1, 2;
γaλ(j) if j ≥ 3.

We then define the strategy λ′ = (Q′, q′) ∈ Λ(µ′, A) by

Q′(γaλ′) = Qλ(γaλ) and qλ(a|γaλ′) = q′(a|γaλ).

To round out the proof, we note first that this strategy satisfies the full conditions (155) and
(156) characterizing optimal strategies for the Shannon model. Hence we conclude that λ′ =
(Q′, q′) ∈ Λ̂(µ′, A|KJ). Hence, since this is a CIR, we conclude that Pλ′ ∈ C(µ,A′). Finally, we
apply IUC, which shows that the corresponding data satisfies Pλ ∈ C(µ,A). This completes the
proof.

Corollary 3: Data set C ∈ C has a Shannon representation if and only if it satisfies A1 through
A9.

Proof. Suppose first that C ∈ C satisfies A1 through A9. By theorem 4 suffi ciency we know
that, since C satisfies A2 through A9, it has a UPS representation. At this point theorem 1
suffi ciency applies, whereby, since C ∈ C has a UPS representation and satisfies A1, it has a
Shannon representation.

To complete the proof, we show that having a Shannon representation implies satisfaction of
A1 through A9. Theorem 1 necessity shows directly that if C ∈ C has a Shannon representation it
satisfies A1. To prove that A2 through A9 are implied, we show that any C ∈ C that has Shannon
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representation is regular, C ∈ CR. This will complete the proof, since by theorem 4 necessity, we
know that, since C ∈ CR has a Shannon representation, it also has a UPS representation, hence
satisfies A2 through A9.

To establish that any C ∈ C that has Shannon representation is regular, C ∈ CR, consider
µ1 ∈ Γ and Q ∈ ∆(Γ(µ1)) with Γ (Q) ⊂ ΓC(µ1) and

∑
γ∈Γ(µ2)

γQ(γ) = µ2. It is implied directly

from the invariant likelihood ratio characterization of optimal strategies that, given prior µ1 ∈ Γ,
the set of observed posteriors associated with a Shannon representation is precisely the interior
set of posteiors, ΓC(µ1) = Γ̃(µ1). Hence given Q ∈ ∆(Γ(µ1)) with Γ (Q) ⊂ ΓC(µ1), we know that
Ω(γ) = Ω(µ1) all γ ∈ Γ(Q). Hence the same applies to their weighted average,∑

γ∈Γ(µ2)

γQ(γ) = µ2.

Given that Ω(µ2) = Ω(µ1), we know that ΓC(µ2) = Γ̃(µ2). Overall,

Γ (Q) ⊂ ΓC(µ1) = Γ̃(µ1) = Γ̃(µ2),

establishing regularity, C ∈ CR, and completing the proof of the corollary.
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