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A Mathematical Appendix: Proofs of Lemmas and

Theorems

A.1 Proof of Lemma L-1:

Proof. Using the setup of (B.1) and (B.2), it is easy to see that the independence relationship

(εV , εY ) ⊥⊥ εZ implies the exclusion restriction (V , Y (t)) ⊥⊥ Z of Equation (6). Moreover,

εY ⊥⊥ εZ |εV implies the matching (conditional independence) property Y (t) ⊥⊥ T |V of

Equation (7). The independence relationship, V ⊥⊥ Z, implies that fS(V ) ⊥⊥ Z, hence

S ⊥⊥ Z, as stated in item (ii) of the lemma. Equation (11), i.e., T = gT (S, Z), implies that

T is deterministic conditional on S and Z. Thus, Y ⊥⊥ T |(S, Z) holds as stated in item (iii)

of the lemma.

From (V , Y (t)) ⊥⊥ Z and the fact that S = fS(V ), we obtain (S, Y (t)) ⊥⊥ Z. We can

apply the Weak Union Property of conditional independence relationships of the Graphoid

axioms to obtain Y (t) ⊥⊥ Z|S.1 But T only depends on Z when conditioned on S (Equa-

tion (11)), thus we have that Y (t) ⊥⊥ fT (Z,S)|S which is equivalent to Y (t) ⊥⊥ T |S as

stated in item (i) of the lemma.

Independence relationship Y (t) ⊥⊥ Z|S implies that Y (t) ⊥⊥ (fT (Z,S), Z)|S also holds.

This relation is equivalent to Y (t) ⊥⊥ (T, Z)|S. By Weak Union and Decomposition we have

that Y (t) ⊥⊥ Z|(S, T ) holds. In particular, Y (t) ⊥⊥ Z|(S, T = t) holds for all t ∈ supp(T ).

From representation (4):

1The Graphoid axioms are a set of conditional independence relations first presented by Dawid (1979):

Symmetry: X ⊥⊥ Y |Z ⇒ Y ⊥⊥ X|Z.
Decomposition: X ⊥⊥ (W,Y )|Z ⇒ X ⊥⊥ Y |Z.

Weak Union: X ⊥⊥ (W,Y )|Z ⇒ X ⊥⊥W |(Y,Z).

Contraction: X ⊥⊥ Y |Z and X ⊥⊥W |(Y, Z)⇒ X ⊥⊥ (W,Y )|Z.
Intersection: X ⊥⊥W |(Y, Z) and X ⊥⊥ Y |(W,Z)⇒ X ⊥⊥ (W,Y )|Z.

Redundancy: X ⊥⊥ Y |X.

The intersection relation is only valid for strictly positive probability distributions.
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(
Y (t) ⊥⊥ Z|(S, T = t)

)
⇒
( ∑
t′∈supp(T )

Y (t′) · 1[T = t′] ⊥⊥ Z|(S, T = t)

)

⇒
(
Y ⊥⊥ Z|(S, T = t)

)
∀ t ∈ supp(T ),

which proves item (iv) of the lemma.

A.2 Proof of Theorem T-1:

Proof. We make no assumption about the functional form of fY in the outcome equation

Y = fY (T,V , εY ) in (2) except E(|Y |) < ∞. Without loss of generality, the outcome

equation can be replaced by Y = κ(fY (T,V , εY )). To prove the theorem, it suffices to show

that the following relationship holds for the expectation of Y.

E(Y · 1[T = t]|Z) =
∑

s∈supp(S)

E(Y · 1[T = t]|Z,S = s) P(S = s|Z)

=
∑

s∈supp(S)

P(T = t|Z,S = s)E(Y |T = t, Z,S = s) P(S = s|Z)

=
∑

s∈supp(S)

1[T = t|Z,S = s]E(Y |T = t,S = s) P(S = s)

=
∑

s∈supp(S)

1[T = t|Z,S = s]E(Y (t)|S = s) P(S = s).

The first equality comes from the law of iterated expectations. The second equality comes

from Bayes’ theorem. The first term of the third equality comes from the fact the T is

deterministic conditioned on Z and S. The second term in the expression comes from Y ⊥⊥

Z|(S, T ), a consequence of Lemma L-1. The third term comes from S ⊥⊥ Z as established

in Lemma L-1. The fourth equality comes from conditional independence Y (t) ⊥⊥ T |S of

Lemma L-1, which implies that E(Y |T = t,S = s) = E(Y (t)|S = s).
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A.3 Proof of Theorem T-2:

Restrictions on the response matrixR generate identification of mean counterfactuals defined

on strata. We rely on Lemma L-2—stated below—to prove Theorem T-2. Lemma L-2 states

the general solution for a system of linear equations. We refer to Magnus and Neudecker

(1999) for a general discussion of linear systems.

Lemma L-2. A general solution for x in the system of linear equations represented by

b = Bx⇒ x is given by:

b = Bx⇒ x = B+b+ (I −B+B)λ (A.1)

where λ is an arbitrary real-valued |b|-dimension vector, I is an identity matrix of the same

dimension and B+ is the Moore-Penrose Pseudoinverse of matrix B.

Proof. In this proof we use the definition of the Moore-Penrose Pseudoinverse B+ and the

fact that the matrix B+ is unique for a real-valued matrix B. Matrix B+ has the following

properties: (1) BB+B = B; (2) B+BB+ = B+; (3) B+B = (B+B)′; and (4) BB+ =

(BB+)′. Properties (2)–(3) imply that Q = B+B is an orthogonal projection operator, so

Q2 = Q and Q′ = Q :

Q2 = B+BB+B = B+B = Q due to property (2)

Q′ = (B+B)′ = B+B = Q due to property (3).

Any vector x can be decomposed by a orthogonal Q projection as: x = Qx+ (I −Q)x. In

our case, we have that x = B+Bx + (I −B+B)x. If vector x is a solution to the system
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b = Bx, then it must be that:

Bx = b⇒ x = B+b+ (I −B+B)x

Moreover b = Bx⇒ b = B
(
B+b+B(I −B+B)x

)
But: B(I −B+B) = 0 due to property (4) of B+

Thus : B(I −B+B)λ = 0 for any real valued λ

⇒ b = B
(
B+b+ (I −B+B)λ

)
∴ x̃ = B+b+ (I −B+B)λ is also a solution as b = Bx̃ holds.

Thus x̃ = B+b+Kλ such that K = (I −B+B) is a general solution.

We now use Lemma L-2 to prove Theorem T-2.

Proof of T-2:

Proof. We apply the general solution for the matrix form of a system of linear equations to

Equation (19) in the text. This generates PS = B+
T PZ +KTλ. By hypothesis ξ′KT = 0,

and thus ξ′PS = ξ′B+
T PZ , which makes ξ′PS identified. We can apply the same rationale

to Equation (20) which identifies ξ′LS. By the same token, applying this analysis to (18),

QS(t) = B+
TQZ(t) +Ktλ. Thus ζ ′Kt = 0 implies that ζ ′QS(t) = ζ ′B+

TQZ(t) is identified.

A.4 Bounds for Response-Type Probabilities and Counterfactual

Outcomes

Lemma L-3 below uses linear Equations (18)–(19) and Lemma L-2 to generate simple bounds

for response-type probabilities and counterfactual outcomes:
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Lemma L-3. For the IV model (1)–(3), bounds for response-type probabilities PS given a
response matrix R are given by:

PS ∈

[
max

(
0NS

,B+
T PZ + min

λ∈RNS

(
KTλ

))
,min

(
ιNS

,B+
T PZ + max

λ∈RNS

(
KTλ

))]
, (A.2a)

where λ is an arbitrary real-valued vector of dimension NS. Bounds on λ come from the fact
that PS is a vector with probabilities defined on the unit simplex. Bounds for the expectation
of outcomes by strata are given by:(

B+
t QZ(t) + min

ξ∈RNS

(
Ktξ

))
≤ QS(t) ≤

(
B+
t QZ(t) + max

ξ∈RNS

(
Ktξ

))
.2 (A.2b)

where ξ is an arbitrary real-valued vector of dimension NS.

Proof. Equations (A.2a) and (A.2b) follow directly from the application of the general linear

solution (A.1) of Lemma L-2 to the system of linear equations of Equations (19) and (18)

respectively. The admissible ranges of λ in Equation (A.2a) comes from using the fact that

PS are probabilities.

A.5 Proof of Corollary C-1:

Proof. According to T-2, Vectors PS and LS are point-identified if and only if ξ′KT = 0 for

any ξ′. Thus it must be the case that KT = 0. Since KT = (INS
−B+

TBT ), KT = 0 if and

only if INS
= B+

TBT which holds if and only if rank(BT ) = NS, that is, BT has full column-

rank. From Theorem T-2, PS is identified from B+
T PZ if and only if rank(BT ) = NS. The

second equation follows from the same rationale. Kt = 0 if and only if rank(Bt) = NS.

According to Theorem T-2, if Kt = 0, then QS(t) = B+
t QZ(t), and thereby E(κ(Y (t)))

2These bounds are not sharp because we do not use the full distribution of the data generating process
in constructing them.
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can be expressed as:

E(κ(Y (t))) =

NS∑
n=1

E(κ(Y (t))|S = sn)P (S = sn)

= ι′NS
QS(t),

= ι′NS
B+
t QZ(t),

where ιNS
is a NS-dimensional vector of 1s.

A.6 Proof of Theorem T-3

We first establish a series of lemmas and then turn to the main proof.3

A.6.1 Lemma L-4

Lemma L-4. Every sub-matrix of a lonesum matrix is lonesum.

Proof. Suppose that there is a binary matrix B whose sub-matrix B̃ is not lonesum. Thus

B̃ cannot be uniquely recovered by its row and column sums. This fact is not altered if all

elements in B other than B̃ were known. In particular, B cannot be lonesum.

A.6.2 Lemma L-5

Lemma L-5. If a binary matrix is lonesum, then no 2× 2 sub-matrix takes the form of the

prohibited patterns (52), that is, 1 0

0 1

 , nor

 0 1

1 0

 .
Proof. We first prove that the prohibited patterns are not lonesum. Consider a matrix 2×2

binary matrix B whose column-sums and row-sums are equal to 1. Matrix B can be equal

to either B1 or B2 (defined below). Indeed the column-sums and row-sums of both B1 and

3Lemmas L-4–L-8 provide simple proofs of the properties of binary matrices used in this paper. For an
extensive discussion of binary matrices, see Brualdi (1980); Brualdi and Ryser (1991); Ryser (1957); Sachnov
and Tarakanov (2002).
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B2 are equal to 1.

B1 =

 1 0

0 1

 , and B2 =

 0 1

1 0

 .
As a consequence, any 2 × 2 binary matrix B whose column-sums and row-sums are equal

to 1 cannot be uniquely identified based only on its column and row sums, i.e., B is not

lonesum. In particular, B1 and B2 are not lonesum. But B1 and B2 exhibit the prohibited

pattern (52). Thus the prohibited patterns B1 and B2 are not lonesum.

Now according to Lemma L-4, all sub-matrices of a lonesum matrix are also lonesum.

But B1 and B2 are not lonesum. Thus no 2 × 2 sub-matrix of a lonesum matrix can be

equal to either of the prohibited patterns B1 or B2.

A.6.3 Lemma L-6

Lemma L-6. If no 2× 2 sub-matrix of a binary matrix B takes the form of the prohibited

patterns (52) then B is equivalent to its maximal.

Proof. The proof of the Lemma is done by proving its contrapositive form, that is, if B is

not equivalent to its maximal, then prohibited patterns (52) must arise. Without loss of

generality, let the columns of B be ordered in decreasing column sum. Suppose B is not

maximal. Then there must exist a row i whose element of the jth column is 0 followed by

the element 1 in column j + 1. But the jth column sum is greater or equal than the column

sum of j + 1. Thus, there must exist at least one row i′ whose jth column is 1 followed by

the element 0 in column j + 1. This generates the prohibited pattern of Lemma L-5.

A.6.4 Lemma L-7

Lemma L-7. If a binary matrix B is equivalent to its maximal, then its maximal can be

generated by reordering its columns in decreasing column sum.
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Proof. The maximal of B is a matrix whose rows present a sequence of elements 1 followed

by elements 0. Thereby the maximal of B has decreasing column sums. Thus, it suffices

to prove that matrix B̃, generated by permuting the B-columns in decreasing column sum,

is unique. Suppose it is not, then there must exist two distinct columns, say B[·, j] and

B[·, j′] of same column sum. Then it must be the case that there exist two rows i, i′ such

that B[i, j] = 1,B[i, j′] = 0 and B[i′, j] = 0,B[i′, j′] = 1. This is the prohibited pattern.

Thus, there is no column permutation in which both rows i and i′ are formed by a sequence

of elements 1 followed by a sequence of elements 0.

A.6.5 Lemma L-8

Lemma L-8. If binary matrix B is equivalent to its maximal, then B is lonesum.

Proof. Let matrix B̃ be generated by permuting the B-columns in decreasing column sum.

By lemma L-7, B̃ is the maximal of B and is uniquely determined by its row sums. But

B̃ was generated using the column sums of B. Thus B is uniquely determined by its row

sums and column sums and thereby B is lonesum.

Remark A.1. The cyclical property of Lemmas L-5–L-8 implies that the following state-

ments are equivalent: (1) B is lonesum; (2) B has no 2× 2 sub-matrix with the prohibited

patterns (52); (3) B is equivalent to its maximal. This fact is exploited in the next lemma.

A.6.6 Lemma L-9

Lemma L-9. Let there be a binary matrix B where B[i, j]; i ∈ {1, . . . , Nr}, j ∈ {1, . . . , Nc}.

If B is lonesum then items 1 and 2 below hold.

1. For any j, j′ ∈ {1, . . . , Nc}, we have that:

B[i, j] ≤ B[i, j′] for all i ∈ {1, . . . , Nr} or B[i, j] ≥ B[i, j′] for all i ∈ {1, . . . , Nr}.

2. For any i, i′ ∈ {1, . . . , Nr}, we have that:

B[i, j] ≤ B[i′, j] for all j ∈ {1, . . . , Nc} or B[i, j] ≥ B[i′, j] for all j ∈ {1, . . . , Nc}.
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Proof. We use proof by contradiction.

Suppose that Condition 1 does not hold. The negation of Condition 1 is that: For some

j, j′ ∈ {1, . . . , Nc}, there exists some i, i′ ∈ {1, . . . , Nr} such that B[i, j] > B[i, j′] and

B[i′, j] < B[i′, j′]. Thus it must be the case that B[i, j] = B[i′, j′] = 1 and B[i, j′] =

B[i′, j] = 0. Thus the 2×2 sub-matrix of B generated by rows i, i′ and columns j, j′ is given

by:  B[i, j] B[i, j′]

B[i′, j] B[i′, j′]

 =

 1 0

0 1

 ,

which is a prohibited pattern and, according to Lemma L-5, B cannot be lonesum.

The proof of Condition 2 follows the same rationale of the proof of Condition 1. Suppose

that Condition 2 does not hold. The negation of Condition 2 states that: For some i, i′ ∈

{1, . . . , Nr}, there exists some j, j′ ∈ {1, . . . , Nc} such that B[i, j] > B[i′, j] and B[i, j′] <

B[i′, j′].

Thus it must be the case that B[i, j] = B[i′, j′] = 1 and B[i, j′] = B[i′, j] = 0, which

generates a prohibited pattern (see Item 1).

A.6.7 Lemma L-10

Lemma L-10. Consider a lonesum binary matrixB. Let B̃ be matrix generated by ordering

the rows of B in increasing row-sum and ordering the columns of B in decreasing column-

sum. Then B̃ is lower triangular and:

1. Any row in B̃ that has both elements 1 and 0 must be a sequence of elements 1 followed

by a sequence of elements 0.

2. Any column of B̃ that has both elements 1 and 0 must be a sequence of elements 0

followed by a sequence of elements 1.

Proof. B is lonesum, then by Remark A.1, B is equivalent to its maximal. The maximal

of B consists of the matrix B̃ of the same dimension as B whose rows share the same sum
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of the rows in B and those rows consist of a sequence of elements 1 followed by a sequence

of elements 0. Moreover, B̃ can be obtained by ordering the columns of B in decreasing

column-sum. Note also that if B is lonesum, its transpose, that is, B′ is also lonesum and

the maximal of B′ can be obtained by ordering the columns of B′ in decreasing order. A

consequence of this fact is that if the rows of B is ordered in increasing row-sum, then each

column consists of sequence of elements 0 followed by a sequence of elements 1.

A.6.8 Lemma L-11

Lemma L-11. Let a binary matrix B̃ be lower triangular, that is,

1. Any row in B̃ that has both elements 1 and 0 must be a sequence of elements 1 followed

by a sequence of elements 0.

2. Any column of B̃ that has both elements 1 and 0 must be a sequence of elements 0

followed by a sequence of elements 1.

Also, let r(i) =
∑Nc

j=1 B̃[i, j] (row-sum) and c(j) =
∑Nr

i=1 B̃[i, j] (column-sum) where i ∈

{1, . . . , Nr} and j ∈ {1, . . . , Nc}. If B̃ has strictly positive column and row sums, then it

must be the case that:

B̃[i, j] = 0⇔
( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
> r(i)

B̃[i, j] = 1⇔
( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤ r(i)

Proof. For any given row i, there is a j̃ ∈ {1, . . . , Nc} such that r(i) = j̃. By the lower

triangular property of B̃, we must have that:

c(1) ≥ · · · ≥ c(j̃ − 1) ≥ c(j̃) > c(j̃ + 1) ≥ . . . ≥ c(Nc).

Thus we can write r(i) as:

r(i) = j̃ =
Nc∑
j′=1

1

[
c(j̃) ≤ c(j′)

]
, (A.3)
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and it must be case that the Inequalities (A.4)–(A.5) below hold:

r(i) = j̃ <
Nc∑
j′=1

1

[
c(j) ≤ c(j′)

]
, for all j such that j > j̃. (A.4)

r(i) = j̃ ≥
Nc∑
j′=1

1

[
c(j) ≤ c(j′)

]
, for all j such that j ≤ j̃. (A.5)

Thus we have that:

B̃[i, j] = 0⇔ j > j̃ ⇔
Nc∑
j′=1

1

[
c(j) ≤ c(j′)

]
> r(i) = j̃,

where the first implication comes from the row property of the lower triangular matrix B̃

and the definition of j̃. The second implication arises from Inequality (A.4).

Also:

B̃[i, j] = 1⇔ j ≤ j̃ ⇔
Nc∑
j′=1

1

[
c(j) ≤ c(j′)

]
≤ r(i) = j̃,

where the first implication comes from the row property of the lower triangular matrix B̃

and the definition of j̃. The second implication arises from Inequality (A.5).

A.6.9 Lemma L-12

Lemma L-12 gives a formula that characterizes each element B[i, j] of a lonemsum matrix

in terms of its row-sum
∑Nc

j′=1B[i, j′] and the column-sum
∑Nr

i′=1B[i′, j′]; i′ ∈ {1, · · · , Nr},

j′ ∈ {1, . . . , Nc}.

Lemma L-12. If a binary matrix B is lonesum with strictly positive row and column sums,

then each element B[i, j]; i ∈ {1, . . . , Nr}, j ∈ {1, . . . , Nc} can be expressed as:

B[i, j] = 1

[ ( Nc∑
j′=1

1

[ Nr∑
i′=1

B[i′, j] ≤
Nr∑
i′=1

B[i′, j′]

])
︸ ︷︷ ︸

Number of columns whose sum is bigger than column-sum of B[·, j]

≤
( Nc∑
j′=1

B[i, j′]

)
︸ ︷︷ ︸
row-sum of Bt[i, ·]

]
. (A.6)

Proof. Let B̃ be matrix generated by ordering the rows of B in increasing row-sum and

ordering the columns of B in decreasing column-sum. Thus by Lemma L-10, B̃ is lower
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triangular such that:

1. Any row in B̃ that has both elements 1 and 0 must be a sequence of elements 1 followed

by a sequence of elements 0.

2. Any column of B̃ that has both elements 1 and 0 must be a sequence of elements 0

followed by a sequence of elements 1.

Thus by Lemma L-11, it must the the case that the following inequalities hold:

B̃[i, j] = 0⇔
( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
> r(i)

B̃[i, j] = 1⇔
( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤ r(i)

Therefore we can express B̃[i, j] by the following expression:

B̃[i, j] = 1

[( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤
(
r(i)

)]
(A.7)

Equation (A.7) only depends on the column and row sums of B̃. But any row-permutation

of B̃ does not change its column sum. Moreover, any column-permutation of B̃ does not

change its row sum. Thus Equation (A.7) also holds for any row or column permutation of

B̃. In other words, Equation (A.7) holds for any matrix that is equivalent to B̃. In particular,

Equation (A.7) holds for B̃. The proof is completed by acknowledging that (A.7) is the same

as Equation (A.6).

A.6.10 Lemma L-13

Lemma L-13. Let B be a binary matrix where B[i, j]; i ∈ {1, . . . , Nr}, j ∈ {1, . . . , Nc} and

σ1, . . . , σNc be a sequence of strictly positive numbers. If B is lonesum then:

1

[( Nc∑
j′=1

1

[ Nr∑
i′=1

B[i′, j] ≤
Nr∑
i′=1

B[i′, j′]

])
≤
( Nc∑
j′=1

B[i, j′]

)]

= 1

[( Nc∑
j′=1

σj′ · 1
[ Nr∑
i′=1

B[i′, j] ≤
Nr∑
i′=1

B[i′, j′]

])
≤
( Nc∑
j′=1

σj′ ·B[i, j′]

)]
. (A.8)
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for any (i, j) ∈ {1, . . . , Nr} × {1, . . . , Nc}.

Proof. By Lemma L-9, we have that for any columns j, j′{1, . . . , Nc}, B[i′, j] ≤ B[i′, j′]

or B[i′, j] ≥ B[i′, j′] for all rows i′ ∈ {1, . . . , Nr}. As a shorthand notation, let c(j) =∑Nr

i=1B[i, j] be the column sum. In this notation, Equation (A.8) can be rewritten as:

1

[( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

B[i, j′]

)]
= 1

[( Nc∑
j′=1

σj′1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

σj′B[i, j′]

)]
.

We want to prove that:

1

[( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

B[i, j′]

)]
= 1⇒

1

[( Nc∑
j′=1

σj′1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

σj′B[i, j′]

)]
= 1

and 1

[( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

B[i, j′]

)]
= 0⇒

1

[( Nc∑
j′=1

σj′1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

σj′B[i, j′]

)]
= 0.

Consider the first case:

1

[( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

B[i, j′]

)]
= 1⇒ B[i, j] = 1 by Lemma L-12.

Then, 1

[
c(j) ≤ c(j′)

]
= 1⇒ B[i′, j] ≤ B[i′, j′] ∀ i′ ∈ {1, . . . , Nr}.

But, B[i, j] = 1 therefore it must be that B[i, j′] = 1.

Thus, 1

[
c(j) ≤ c(j′)

]
= 1⇒ B[i, j′] = 1.

⇒1

[
c(j) ≤ c(j′)

]
≤ B[i, j′] ∀ j′ ∈ {1, . . . , Nc}.

⇒σj′1
[
c(j) ≤ c(j′)

]
≤ σj′B[i, j′] ∀ j′ ∈ {1, . . . , Nc}.

⇒1

[
Nc∑
j′=1

σj′1

[
c(j) ≤ c(j′)

]
≤

Nc∑
j′=1

σj′B[i, j′]

]
= 1.
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Consider the second case:

1

[( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
≤
( Nc∑
j′=1

B[i, j′]

)]
= 0⇒ B[i, j] = 0 by Lemma L-12

But if B[i, j′] = 1 and B[i, j] = 0 then B[i′, j] ≤ B[i′, j′] ∀ i′ ∈ {1, . . . , Nr}

Thus, B[i, j′] = 1⇒ 1

[
c(j) ≤ c(j′)

]
= 1

⇒1

[
c(j) ≤ c(j′)

]
≥ B[i, j′] ∀ j′ ∈ {1, . . . , Nc}

⇒σj′1
[
c(j) ≤ c(j′)

]
≥ σj′B[i, j′] ∀ j′ ∈ {1, . . . , Nc}

But

( Nc∑
j′=1

1

[
c(j) ≤ c(j′)

])
>

( Nc∑
j′=1

B[i, j′]

)

So ∃ j′ such that 1

[
c(j) ≤ c(j′)

]
> B[i, j′]

⇒
Nc∑
j′=1

σj′1

[
c(j) ≤ c(j′)

]
>

Nc∑
j′=1

σj′B[i, j′]

⇒1

[
Nc∑
j′=1

σj′1

[
c(j) ≤ c(j′)

]
≤

Nc∑
j′=1

σj′B[i, j′]

]
= 0

A.6.11 Lemma L-14

Lemma L-14. Suppose B is a binary matrix where B[i, j]; i ∈ {1, . . . , Nr}, j ∈ {1, . . . , Nc}.

Define a sequence of strictly positive numbers ζ1, . . . , ζNr . If B is lonesum, then:

1

[ Nr∑
i′=1

B[i′, j] ≤
Nr∑
i′=1

B[i′, j′]

]
= 1

[ Nr∑
i′=1

ζi′B[i′, j] ≤
Nr∑
i′=1

ζi′B[i′, j′]

]
. (A.9)

Proof. By Lemma L-9, we have that for any columns j, j′ ∈ {1, . . . , Nc}, B[i′, j] ≤ B[i′, j′]
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or B[i′, j] ≥ B[i′, j′] for all rows i′ ∈ {1, . . . , Nr}. Thus:

Suppose 1

[ Nr∑
i′=1

B[i′, j] ≤
Nr∑
i′=1

B[i′, j′]

]
= 1

⇒B[i′, j] ≤ B[i′, j′] for all i′ ∈ {1, . . . , Nc},

⇒ζi′B[i′, j] ≤ ζi′B[i′, j′] for all i′ ∈ {1, . . . , Nc},

⇒1

[ Nr∑
i′=1

ζi′B[i′, j] ≤
Nr∑
i′=1

ζi′B[i′, j′]

]
= 1.

Now suppose 1

[ Nr∑
i′=1

B[i′, j] ≤
Nr∑
i′=1

B[i′, j′]

]
= 0

⇒B[i′, j] ≥ B[i′, j′] for all i′ ∈ {1, . . . , Nc} and ∃i;B[i, j] > B[i, j′]

⇒ζi′B[i′, j] ≥ ζi′B[i′, j′] for all i′ ∈ {1, . . . , Nc} and ∃i; ζiB[i, j] > ζiB[i, j′]

⇒1

[ Nr∑
i′=1

ζi′B[i′, j] ≤
Nr∑
i′=1

ζi′B[i′, j′]

]
= 0.

A.6.12 Proof of Theorem T-3

Proof. The equivalence proof of Theorem T-3 must show that items (i)–(iv) cyclically imply

each other. We use Lemmas L-4–L-14 to do so. We divide the proof into a few steps:

1. The first step explores the lonesum properties of the binary matrices Bt generated by

the response matrix R. We use Lemmas L-5–L-8 to show that (i) ⇔ (ii).

2. We use Lemma L-9 to prove (i) ⇒ (iii) ⇒ (ii).

3. We use Lemmas L-12–L-14 to prove (i) ⇒ (iv).

4. The last step of our proof is to show that (iv) ⇒ (ii).

The proof strategy can be represented by the following graph:
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Figure A.1: Schematics of the Proof of Theorem T-3

(i)

(ii)

(iv) (iii)

(i) ⇔ (ii): The direct implication is a consequence of Lemma L-5. If each Bt is lonesum,

then no 2 × 2 sub-matrix of Bt takes the form of the forbidden patterns (52). This means

that no 2× 2 sub-matrix of Bt takes the form: 1 0

0 1

 , nor

 0 1

1 0

 .
But Bt = 1[R = t]. Thus no 2× 2 sub-matrix of R takes the forms:

 t t′

t′′ t

 or

 t′ t

t t′′

 ,where t′ 6= t and t′′ 6= t. (A.10)

The reverse implication is a consequence of the equivalence between lonesum matrices and

the forbidden patterns that was proved by the cyclical implication of the Lemmas L-5⇒ L-6

⇒ L-8 ⇒ L-5. Specifically, if (A.10) holds, then no 2× 2 sub-matrices of Bt; t ∈ supp(T )

takes the form of the forbidden patterns (52). Thus each Bt; t ∈ supp(T ) is lonesum.

(i) ⇒ (iii) ⇒ (ii) : If each Bt; t ∈ supp(T ) is lonesum, then, according to Lemma L-9,

any two row-indexes i, i′ of Bt must satisfy:

Bt[i, j] ≤ Bt[i
′, j] or Bt[i, j] ≥ Bt[i

′, j] for all column-indexes j. (A.11)
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ButBt = 1[R = t]. Rewriting Equation (A.11) in terms of the response matrixR generates:

(
1[T = t]|Z = zi,S = sj

)
≤
(
1[T = t]|Z = zi′ ,S = sj

)
or (A.12)(

1[T = t]|Z = zi,S = sj
)
≥
(
1[T = t]|Z = zi′ ,S = sj

)
occurs (A.13)

for ∀ sj ∈ supp(S) and any zi, zi′ ∈ supp(Z).

Since S is a balancing score for V , for every v ∈ supp(V ), there exists a unique sj ∈ supp(S)

such that fS(v) = sj (see Section 3.1). Thereby, for any zi ∈ supp(Z) and t ∈ supp(T ) we

have that:

(
1[T = t]|Z = zi,V = v

)
=
(
1[T = t]|Z = zi,S = fS(v)

)
=
(
1[T = t]|Z = zi,S = sj

)
= Bt[i, j].

(A.14)

Using Equation (A.14) in (A.12) and (A.13) allows us to write that for any zi, zi′ ∈ supp(Z)

it must be the case that:

(
1[T = t]|Z = zi,V = v

)
≤
(
1[T = t]|Z = zi′ ,V = v

)
for all values v ∈ supp(V ), (A.15)

or
(
1[T = t]|Z = zi,V = v

)
≥
(
1[T = t]|Z = zi′ ,V = v

))
for all values v ∈ supp(V ). (A.16)

For each agent ω ∈ Ω, that is a unique value v ∈ supp(V ) such that Vω = v. Therefore

we can express the indicator function for the choice conditional on V and Z, that is, 1[T =

t|V = v, Z = z], as the indicator function of the counterfactual choice 1[Tω(z) = t] for

Vω = v. Thus we can restate Equations (A.15)–(A.16) as (A.17)–(A.18) below.

1[Tω(zi) = t] ≤ 1[Tω(zi′) = t] for all ω ∈ Ω, (A.17)

or

or 1[Tω(zi) = t] ≥ 1[Tω(zi′) = t] for all ω ∈ Ω. (A.18)

Now suppose that for z, z′ ∈ supp(Z) and t, t′ ∈ supp(T ) such that t 6= t′, there exists

some ω ∈ Ω such that Tω(z′) = t′ and Tω(z) = t. Thus as the instrument changes from

20



z′ to z, agent ω is induced to choose t. If (A.17)–(A.18) hold, then it cannot be the case

that there exists an agent w′ ∈ Ω that is induced to choose t as the instrument change

from z to z′. In other words, it cannot be the case that Tω′(z) = t′′ and Tω′(z) = t, such

that t 6= t′′ ∈ supp(T ). Let ω be associated with response-type s and ω′ with s′. Thus the

following pattern cannot occur:

 (
T |Z = z,S = s

) (
T |Z = z,S = s′

)
(
T |Z = z′,S = s

) (
T |Z = z′,S = s′

)
 =

 t t′′

t′ t

 ,where t′ 6= t and t′′ 6= t. (A.19)

Equation (A.19) implies item (ii).

(i) ⇒ (iv): If Bt; t ∈ supp(T ) is lonesum, then, by Lemma L-12, each element of Bt[i, j]

can be expressed as:

Bt[i, j] = 1

[( NS∑
j′=1

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
≤
( NS∑
j′=1

Bt[i, j
′]

)]
for all t ∈ supp(T ).

(A.20)

But P(S = sj) > 0 for all j ∈ {1, . . . , NS}. Thus by Lemma L-13, the following equality

also holds:

1

[( NS∑
j′=1

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
≤
[ NS∑
j′=1

Bt[i, j
′]

]
=

= 1

[( NS∑
j′=1

P (S = sj′) · 1
[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
≤
( NS∑
j′=1

P (S = sj′) ·Bt[i, j
′]

)]
. (A.21)

Since P(Z = zi) > 0 for all i ∈ {1, . . . , NZ}, by Lemma L-14, the following equality also

holds:

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

]
= 1

[ NZ∑
i′=1

P(Z = zi′)Bt[i
′, j] ≤

NZ∑
i′=1

P(Z = zi′)Bt[i
′, j′]

]
. (A.22)
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Note that Equations (15) and (17) can be represented in terms of Bt as:

P(T = t|Z = zi) =

NS∑
j=1

P(S = sj)Bt[i, j], (A.23)

P(T = t|S = sj) =

NZ∑
i=1

P(Z = zi)Bt[i, j]. (A.24)

If we substitute Equation (A.24) into (A.22), we obtain:

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

]
= 1

[
P(T = t|S = sj) ≤ P(T = t|S = sj′)

]
. (A.25)

If we substitute Equation (A.23) into (A.21), we can rewrite (A.20) as:

Bt[i, j] = 1

[ NS∑
j′=1

P(S = sj′) · 1
[

P(T = t|S = sj) ≤ P(T = t|S = sj′)
]
≤ P(T = t|Z = zi)

]
.

(A.26)

Thus if we define:

τ(zi, t) = P(T = t|Z = zi)

ϕ(sj , t) = −
NS∑
j′=1

P(S = sj′) · 1
[

P(T = t|S = sj) ≤ P(T = t|S = sj′)
]
,

and use the fact that Bt[i, j] = 1[T = t|Z = zi,S = sj], we can rewrite Equation (A.26)

as:

1[T = t|Z = zi,S = sj ] = 1
[
ϕ(sj , t) + τ(zi, t) ≥ 0

]
. (A.27)

Item (iv) of T-3 is obtained using the fact that S is a balancing score for V .

(iv) ⇒ (ii): It suffices to show that if Equation (A.27) characterizes choice, then the

prohibited pattern of condition (iii) cannot arise. Select an arbitrary 2× 2 sub-matrix of the
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response matrix:

R =

 (T |S = s, Z = z) (T |S = s′, Z = z)

(T |S = s, Z = z′) (T |S = s′, Z = z′)



=


argmax
t∈supp(T )

(
ϕ(s, t) + τ(z, t)

)
argmax
t∈supp(T )

(
ϕ(s′, t) + τ(z, t)

)
argmax
t∈supp(T )

(
ϕ(s, t) + τ(z′, t)

)
argmax
t∈supp(T )

(
ϕ(s′, t) + τ(z′, t)

)
 . (A.28)

In this notation, we must prove that if 1[T = t|S = s, Z = z] = 1[T = t|S = s′, Z = z′] = 1

then it must be the case the case that 1[T = t|S = s, Z = z′] = 1 or 1[T = t|S = s′, Z =

z] = 1.

1[T = t|S = s, Z = z] = 1⇒ ϕ(s, t) + τ(z, t) ≥ 0 and ϕ(s, t′) + τ(z, t′) < 0 ∀ t′ ∈ supp(T ) \ {t}

1[T = t|S = s′, Z = z′] = 1⇒ ϕ(s′, t) + τ(z′, t) ≥ 0 and ϕ(s′, t′) + τ(z′, t′) < 0 ∀ t′ ∈ supp(T ) \ {t}

⇒ϕ(s, t) + τ(z′, t) ≥ 0 or ϕ(s′, t′) + τ(z, t) ≥ 0

⇒1[T = t|S = s, Z = z′] = 1 or 1[T = t|S = s′, Z = z] = 1.4

A.7 Proof of Theorem T-4

Proof. It suffices to show that the assumptions of Theorem T-4 imply any of the conditions

of the Equivalence Theorem T-3. We show that the separability of Theorem T-4 implies

condition (iii) of Theorem T-3. S is a balancing score for V , thus for any v ∈ supp(V ) there

is a unique s ∈ supp(S) such that s = fS(v). Without loss of generality, we can rewrite the

separability condition of Theorem T-4 as:

u(s, t) + h(z, t) =

(
Ψ(t, z, s)− max

t′∈supp(T )\{t}
Ψ(t′, z, s)

)
∀ v ∈ supp(V ), z ∈ supp(Z), s ∈ supp(S).

4To see this, suppose that ϕ(s, t) + τ(z′, t) < 0 and ϕ(s′, t) + τ(z, t) < 0, then ϕ(s, t) + τ(z, t) +ϕ(s′, t) +
τ(z′, t) < 0, which contradicts the hypothesis.
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Let s ∈ supp(S), z ∈ supp(Z) and t ∈ supp(T ) such that t = argmaxt′∈supp(T ) u(s, t′) +

h(z, t′). Then it must be the case that t = argmaxt′∈supp(T ) Ψ(t, z, s). Thus, assuming no ties

in utility outcomes, Ψ(t, z, s) > Ψ(t′, z, s)∀t′ ∈ supp(T )\{t} and therefore u(s, t)+h(z, t) > 0

and u(s, t′) + h(z, t′) ≤ 0 ∀ t′ ∈ supp(T ) \ {t}. Thus we obtain:

t = argmaxt′∈supp(T ) u(s, t′) + h(z, t′)⇔ u(s, t) + h(z, t) > 0. (A.29)

Now for condition (iii) of T-3 to hold, we need to prove the following statement:

Let s, s′ ∈ supp(S), z, z′ ∈ supp(Z), and t ∈ supp(T ).

If t = argmaxt′∈supp(T ) u(s, t′) + h(z, t′) and t = argmaxt′∈supp(T ) u(s′, t′) + h(z′, t′), (A.30)

then t = argmaxt′∈supp(T ) u(s, t′) + h(z′, t′) or t = argmaxt′∈supp(T ) u(s′, t′) + h(z, t′). (A.31)

But, according to Equation (A.29), Equation (A.30) implies that u(s, t) + h(z, t) > 0 and

u(s′, t) + h(z′, t) > 0. This implies that u(s, t) + h(z′, t) > 0 or u(s′, t) + h(z, t) > 0 or both.

Therefore, according to Equation (A.29), it must be the case that:

t = argmaxt′∈supp(T ) u(s, t′) + h(z′, t′) or t = argmaxt′∈supp(T ) u(s′, t′) + h(z, t′)

as desired.

A.8 Proof of Theorem T-5

The proof of Theorem T-5 is based on Lemma L-15 stated below.

A.8.1 Lemma L-15

Lemma L-15. Binary matrix B is lonesum⇔ ι′c

((
B′(ιrι

′
c−B)

)
�
(
B′(ιrι

′
c−B)

)′)
ιc = 0,

where ιc and ιr are vectors of elements 1 of column and row dimension of B respectively.

Proof. From Remark A.1, B is lonesum if and only if no 2 × 2 sub-matrix is equal to the

prohibited patterns (52). Each row i of any two columns j, j′ of B, say (B[i, j] , B[i, j′])
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must be of the following four types {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. But B[i, j] · (1−B[i, j′]) =

1 if and only if (B[i, j] , B[i, j′]) = (1, 0) and (1 − B[i, j]) · B[i, j′] = 1 if and only if

(B[i, j] , B[i, j′]) = (0, 1). This fact is illustrated in the table below:

Row Any Columns j, j′ (B[i, j] , B[i, j′]) = (1, 0) (B[i, j] , B[i, j′]) = (0, 1)

Type B[i, j] B[i, j′] B[i, j] · (1−B[i, j′]) (1−B[i, j]) ·B[i, j′]

Type 1 0 0 0 0

Type 2 0 1 0 1

Type 3 1 0 1 0

Type 4 1 1 0 0

Thus the vector multiplication ξ(0,1)(j, j
′) =

(
ιc −B[·, j]

)
·B[·, j′] gives the number of rows

equal to (0, 1) in the sub-matrix of B that consists of columns j and j′. In the same fashion,

ξ(1,0)(j, j
′) =

(
ιc−B[·, j′]

)
·B[·, j] gives the number of rows equal to (1, 0) in the sub-matrix

of B that consists of columns j and j′. If ξ(1,0)(j, j
′) > 0 and ξ(0,1)(j, j

′) > 0 then there exists

at least one (0, 1)-row and at least one (1, 0)-row in the sub-matrix of B that consists of

columns j and j′. This would show the presence of a prohibited pattern in B. Thus, B is

lonesum if and only if ξ(0,1)(j, j
′) · ξ(1,0)(j, j

′) = 0 for all pairs (j, j′) ∈ {1, . . . , c}× {1, . . . , c}.

Stated otherwise,

B is lonesum ⇔
c∑
j=1

c∑
j′=1

ξ(1,0)(j, j
′) · ξ(0,1)(j, j

′) = 0. (A.32)

The lemma is obtained by rewriting Equation (A.32) in matrix form.

A.8.2 Proof of Theorem T-5

Proof. We first prove that if each binary matrix Bt; t ∈ supp(T ) is lonesum then M is also

lonesum. According to Lemma L-5, it suffices to show that the prohibited patterns (52)

cannot arise in any 2 × 2 submatrix in M . Recall that the from definition (57), we have
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that:

For each tj ∈ supp(T ) = {t1, . . . , tNT
},

let Mtj = [1NZ ,NS
, · · · , 1NZ ,NS︸ ︷︷ ︸

j − 1 times

,Btj ,0NZ ,NS
, · · · , 0NZ ,NS︸ ︷︷ ︸

NT − j times

],

then M = [M ′
t1 , . . . , M

′
tNT

]′,

Let a generic 2× 2 sub-matrix of M above be represented in by matrix (A.33):

 b11 b12

b21 b22

 (A.33)

We investigate all possible configurations that matrix (A.33) may take:

1. If all elements b11, b12, b21, b22 of matrix (A.33) belong to some Bt then the prohibited

pattern does not arise because each Bt is lonesum.

2. If none of the elements b11, b12, b21, b22 of matrix (A.33) belong to any of the binary

matrices in Bt, then matrix (A.33) takes one of the four possibilities below:

 b11 b12

b21 b22

 ∈

 0 0

0 0

 ,

 1 0

1 0

 ,

 0 0

1 1

 ,

 1 1

1 1


 .

3. If b11, b12 of matrix (A.33) belong to some Bt but b21, b22 do not belong to any of

the Bt; t ∈ supp(T ), then it must be the case that b21 = b22 = 1, which prevents

the prohibited pattern from arising. On the other hand, if b21, b22 belong to some Bt

but b11, b12 do not, then it must be the case that b11 = b12 = 0, which prevents the

prohibited pattern.

4. If b11, b21 of matrix (A.33) belongs to some Bt but b12, b22 do not belong to any of

the Bt; t ∈ supp(T ), then it must be the case that b12 = b22 = 0, which prevents

the prohibited pattern from arising. On the other hand, if b12, b22 belong to some Bt
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but b11, b21 do not, then it must be the case that b11 = b21 = 1, which prevents the

prohibited pattern.

5. If b11 or b21 of matrix (A.33) belongs to one or two matrices Bt; t ∈ supp(T ) and b12, b21

do not belong to any of the matrices Bt; t ∈ supp(T ), then it must be the case that

b12 = 0 and b21 = 1, which prevents the prohibited pattern from arising.

There are no other possibilities besides the ones listed above. Thus we can conclude that no

2×2 submatrix in M takes the prohibited pattern (52) and, by Lemma L-5, M is lonesum.

According to Lemma L-15 M is lonesum if and only if ι′c

( (
M ′(ιrι

′
c −M )

)
�
(
M ′(ιrι

′
c −

M )
)′)

ιc = 0, where ιc and ιr are vectors of elements 1 of column and row dimension of M

respectively, which completes the proof.

A.9 Proof of Theorem T-6

We generate the expressions that identify P (S ∈ Σt(i)) and E(κ(Y (t))|S ∈ Σt(i)). Those

parameters can be rewritten in the following matrix form using the notation of Section 4:

P (S ∈ Σt(i)) = bt(i)PS (A.34)

and E(κ(Y (t))|S ∈ Σt(i)) =
bt(i)QS(t)

bt(i)PS
(A.35)

Thus the theorem requires us to identify the terms bt(i)PS and bt(i)QS(t). In other words, we

aim to show that the terms bt(i)PS and bt(i)QS(t) can be expressed in terms of observables.

To do so, we can rely on Equations (18)–(19) and the generalized solution of linear system

described in Lemma L-2:

PZ(t) = BtPS ⇒ bt(i)PS = bt(i)

(
B+
t PZ(t) + (I −B+

t Bt)λP

)
, (A.36)

QZ(t) = BtQS(t)⇒ bt(i)QS(t) = bt(i)

(
B+
t QZ(t) + (I −B+

t Bt)λQ

)
; (A.37)

where λQ,λP are arbitrary real valued vectors of NS dimension. Equation (A.36) shows that

bt(i)PS can be expressed by the sum of two terms:
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1. Term bt(i)B
+
t PZ(t) which can be determined by the data and is identified.

2. Term bt(i)(I −B+
t Bt)λP is a source of non-identification as λP is unknown and can

take any value in RNS .

Thus a necessary and sufficient condition for bt(i)PS to be identified is that bt(i)(I−B+
t Bt)

be equal to a vector of zeros. The same requirement applies to the identification of bt(i)QS(t).

Thus, to prove the theorem, it suffices to demonstrate that bt(i)(I −B+
t Bt) = 0. Otherwise

stated, we need to show that bt(i)B
+
t Bt = bt(i). We prove this condition in several steps.

We first prove two lemmas that are useful to prove that bt(i)B
+
t Bt = bt(i).

Lemma L-16. Let Bt be the binary matrix associated with a response matrix R for which

unordered monotonicity A-3 holds. If vectors Bt[·, s] and Bt[·, s′] associated with response

types s, s′ ∈ supp(S) have the same sum, then these vectors must be identical.

Proof. Suppose Bt[·, s] and Bt[·, s′] have the same sum but are not identical. Then there

must be at least two row indexes j, j′ such that Bt[j, s] = 1, Bt[j, s
′] = 0 and Bt[j

′, s] =

0, Bt[j
′, s′] = 1. Then the 2 × 2 sub-matrix generated by rows j, j′ and columns s, s′ of

Bt constitute a prohibited pattern of Remark 6.3 and therefore Bt is not lonesum, which

contradicts unordered monotonicity A-3 according to Item (i) of Theorem T-3.

Remark A.2. Lemma L-16 can be equivalently stated as: if unordered monotonicity A-3

holds and s, s′ ∈ Σt(i), then Bt[·, s] = Bt[·, s′].

Now recall that Σt(i); i ∈ {1, . . . , NZ} is the set of response types s ∈ supp(S) whose

sum of the associated vector Bt[·, s] is n. According to L-16, each response type s ∈ Σt(i)

has the same binary vector Bt[·, s] in Bt.

Let Ct(i) = Bt[·, s]; s ∈ Σt(i) denote this vector. We now define two matrices that are

useful for our analysis. Let Ct = [Ct(1), . . . ,Ct(nZ)] be the matrix that consists of all unique

non-zero vectors in Bt. Thus, columns in matrix Ct have different sums that may range from

1 to NZ . As a consequence, Ct has at most NZ columns and its row dimension is also NZ .
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Moreover, Bt is lonesum which implies that Ct is also lonesum. Thus Ct is equivalent to a

maximal matrix under permutation of its columns and rows. This implies that Ct has full

column rank, thereby C ′tCt has full rank and the inverse (C ′tCt)
−1 exists.

Let Dt be the matrix that stacks the non-zeros row-vectors bt(1), . . . , bt(NZ), namely

Dt = [bt(1)′, . . . , bt(NZ)′]′. Dt has NS columns and has at most NZ rows. The sum of each

column in Dt is equal to one or zero. The sum of each row in Dt is equal or bigger than

one and its rows are orthogonal, that is bt(i) · bt(i′) = 0 for any i, i′ ∈ {1, . . . , NZ}. As a

consequence, Dt has full row-rank and thereby the inverse (D′tDt)
−1 exists.

Remark A.3. The binary matrix Bt can be conveniently decomposed by the matrix multi-

plication Bt = Ct ·Dt.

The example below illustrates the decomposition.

Example E-1. Consider binary matrix Bta of Table 7 that is associated with choice ta of the

response matrix R in Table 3. The decomposition Bta = Cta ·Dta is given by:

Bta =


1 1 1 0 0 0 0

1 1 1 1 0 1 0

1 0 0 0 0 0 0

⇒ Bta = Cta ·Dta ,

where Cta =
[
Cta(1),Cta(2),Cta(3)

]
=


0 1 1

1 1 1

0 0 1

 ,

and Dta =


bta(1)

bta(2)

bta(3)

 =


0 0 0 1 0 1 0

0 1 1 0 0 0 0

1 0 0 0 0 0 0

 .

The next lemma expresses the pseudo-inverse matrix B+
t in terms of Ct and Dt.

Lemma L-17. Let Bt be the binary matrix associated with a response matrix R for which

unordered monotonicity A-3 holds. Then the Moore-Penrose pseudoinverse B+
t is given by:

B+
t = D′t

(
DtD

′
t)
−1(C ′tCt)

−1C ′t.
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Proof. Matrix B+ is defined by four properties: (1) BB+B = B; (2) B+BB+ = B+; (3)

B+B is symmetric and (4) BB+ is symmetric. Matrix B+ is also unique. Thus it suffices to

show that B+
t = D′t

(
DtD

′
t)
−1(C ′tCt)

−1C ′t, where Bt = CtDt satisfies the properties above.

(1) Bt ·B+
t ·Bt =CtDt ·D′t

(
DtD

′
t)
−1(C ′tCt)

−1C ′t ·CtDt

=CtDt = Bt

(2) B+
t ·Bt ·B+

t =D′t
(
DtD

′
t)
−1(C ′tCt)

−1C ′t ·CtDt ·D′t
(
DtD

′
t)
−1(C ′tCt)

−1C ′t

=D′t
(
DtD

′
t)
−1(C ′tCt)

−1C ′t = B+
t

(3) B+
t ·Bt =D′t

(
DtD

′
t)
−1(C ′tCt)

−1C ′t ·CtDt

=D′t
(
DtD

′
t)
−1Dt which is symmetric

(4) Bt ·B+
t =CtDt ·D′t

(
DtD

′
t)
−1(C ′tCt)

−1Ct

=Ct(C
′
tCt)

−1Ct which is symmetric.

We are now equipped to prove Theorem T-6 and show that bt(i)B
+
t Bt = bt(i).

Proof. First note that bt(i) consists of a row in the matrix Dt thus bt(i) can be expressed in

terms of matrix Dt as bt(i) = eDt, where e is a vector that has the element 1 in the position

that the row bt(i) takes in the matrix Dt and zeros in the remaining elements. Thus we have

to show that eDtB
+
t Bt = eDt. We prove the more general statement that DtB

+
t Bt = Dt.

Dt ·B+
t ·Bt = Dt ·D′t

(
DtD

′
t)
−1(C ′tCt)

−1C ′t ·CtDt = Dt, (A.38)

where the first equality in (A.38) relies on the result of Lemma L-17 and Remark A.3.

Equation (A.38) implies that bt(i)B
+
t Bt = bt(i), The fact that bt(i)B

+
t Bt = bt(i) implies

that bt(i)PS and bt(i)QS(t) can be identified by:

bt(i)PS = bt(i)B
+
t PZ(t), (A.39)

bt(i)QS(t) = bt(i)B
+
t QZ(t). (A.40)

We now use the equations above to express Equations (A.34)–(A.35) of the beginning of this
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proof as identified quantities:

P (S ∈ Σt(i)) = bt(i)PS = bt(i)B
+
t PZ(t), by (A.39)

and E(κ(Y (t))|S ∈ Σt(i)) =
bt(i)QS(t)

bt(i)PS
=

bt(i)B
+
t QZ(t)

bt(i)B
+
t PZ(t)

, by (A.39) and (A.40).

A.10 Applying Theorem T-6 to Response Matrix of Table 3

Table 3 presents the following response matrix:

R =


ta ta ta tb tb tc tc

ta ta ta ta tb ta tc

ta tb tc tb tb tc tc


According to Theorem T-6, we have that:

E(Y (ta)|S ∈ {s4, s6}) = E(Y (ta)|S ∈ Σta(1)) =
bta(1)B+

t QZ(ta)

bta(1)B+
t PZ(ta)

; bta(1) = [0, 0, 0, 1, 0, 1, 0],

(A.41)

E(Y (ta)|S ∈ {s2, s3}) = E(Y (ta)|S ∈ Σta(2)) =
bta(2)B+

t QZ(ta)

bta(2)B+
t PZ(ta)

; bta(2) = [0, 1, 1, 0, 0, 0, 0],

(A.42)

E(Y (ta)|S = s1) = E(Y (ta)|S ∈ Σta(3)) =
bta(3)B+

t QZ(ta)

bta(3)B+
t PZ(ta)

; bta(3) = [1, 0, 0, 0, 0, 0, 0].

(A.43)

The observed parameters are:

QZ(ta) = [E(Y · 1[T = t1]|Z = zno), E(Y · 1[T = t1]|Z = za), E(Y · 1[T = t1]|Z = zbc)], (A.44)

PZ(ta) = [E(1[T = t1]|Z = zno), E(1[T = t1]|Z = za), E(1[T = t1]|Z = zbc)]. (A.45)
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The binary matrix Bta = 1[R = t1] is played in Table 7. This binary matrix generates the

following generalized inverse matrix:

Bta =


1 1 1 0 0 0 0

1 1 1 1 0 1 0

1 0 0 0 0 0 0

⇒ B+
ta =



0 0 1

1/2 0 −1/2

1/2 0 −1/2

−1/2 1/2 0

0 0 0

−1/2 1/2 0

0 0 0



.

Matrix B+
ta multiplied by bta(i); i = 1, 2, 3 is given by:

bta(1) ·B+
ta = [−1, 1, 0],

bta(2) ·B+
ta = [1, 0,−1],

bta(3) ·B+
ta = [0, 0, 1].

MatrixB+
ta applied to equations (A.41)–(A.43) generates the following identifying equations:

E(Y (ta)|S ∈ {s4, s6}) =
E(Y · 1[T = ta]|Z = za)− E(Y · 1[T = ta]|Z = zno)

P (T = ta|Z = za)− P (T = ta|Z = zno)
,

E(Y (ta)|S ∈ {s2, s3}) =
E(Y · 1[T = ta]|Z = zno)− E(Y · 1[T = ta]|Z = zbc)

P (T = ta|Z = zno)− P (T = ta|Z = zbc)
,

E(Y (ta)|S = s1) =
E(Y · 1[T = ta]|Z = zbc)

P (T = ta|Z = zbc))
.

A.11 Proof of Corollary C-2

Proof. The set of t-Always-takers is denoted by Σt(NZ) and consists of a single response

type in R whose elements are all t. From Theorem T-6, P (S ∈ Σt(NZ)) = bt(NZ)B+
t PZ(t).
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The response-type set t-Switchers is given by t-Switchers ∈ ∪NZ−1
i=1 Σt(i), thus:

P (S ∈ ∪NZ−1
i=1 Σt(i)) =

NZ−1∑
i=1

P (S = Σt(i))

=

NZ−1∑
i=1

bt(i)B
+
t PZ(t) by Theorem T-6

=

(
NZ−1∑
i=1

bt(i)

)
B+
t PZ(t).

The response variable support supp(S) can be partitioned as:

supp(S) = t-Always-takers ∪ t-Switchers ∪ t-Never-takers. Thus:

1 = P (S ∈ supp(S))

= P (S ∈ t-Always-takers ∪ t-Switchers ∪ t-Never-takers)

= P (S ∈ t-Always-takers) + P (S ∈ t-Switchers) + P (S ∈ t-Never-takers).

A.12 Proof of Corollary C-3

Proof. The equation for E(Y (t)|t-Always-takers) is a direct application of Theorem T-6 to

the response-type set t-Always-takers = Σt(NZ).Applying Theorem T-6 to E(Y (t)|t-Switchers)

we obtain:

E(Y (t)|t-Switchers) =

NZ−1∑
i=1

E(Y (t)|S ∈ Σt(i)) ·
P (S ∈ Σt(i))

P (S ∈ ∪NZ−1
i=1 Σt(i))

E(Y (t)|t-Switchers) =

NZ−1∑
i=1

(
bt(i)B

+
t QZ(t)

bt(i)B
+
t PZ(t)

)
bt(i)B

+
t PZ(t)(∑NZ−1

i=1 bt(i)
)
B+
t PZ(t)

=

NZ−1∑
i=1

bt(i)B
+
t QZ(t)(∑NZ−1

i=1 bt(i)
)
B+
t PZ(t)

=

(∑NZ−1
i=1 bt(i)

)
B+
t QZ(t)(∑NZ−1

i=1 bt(i)
)
B+
t PZ(t)

.
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A.13 Proof of Theorem T-7

Proof. Let the support of T be {t1, . . . , tNT
} and the support of Z be supp(Z) = {z1, . . . , zNZ

}.

Let the response matrix be given by R, which has NZ rows. Indicator matrix Bt = 1[R =

t]; t ∈ supp(T ) has the same row and column dimensions of R. Its elements are equal to 1

if the associated element in R is t and 0 otherwise.

Indicator Matrix BT is generated by stacking matrices Bt; t ∈ supp(T ), that is:

BT =


Bt1

...

BtNT

 .

Thus BT consists of NT binary sub-matrices Bt, each of them having NZ rows. Our goal is

to determine the maximum of rank(BT ) in terms of NZ and NT . The rank of BT is given

by the number of linearly independent rows or columns in BT . Thus, rank(BT ) must be less

or equal than its row dimension, that is, NTNZ . We can reduce this number further.

First, consider the case where P (T = t|Z = z) > 0 for all z ∈ supp(Z) and t ∈ supp(T ).

Thus, each possible value t ∈ supp(T ) of the treatment choice must appear at least once in

each row of R

We investigate the sub-matrix of BT generated by the first row of each matrix Bt for

t ∈ {t1, . . . , tNT
}, namely:



Bt1 [1, ·]

Bt2 [1, ·]
...

BtNT
[1, ·]


. (A.46)

Sub-matrix (A.46) is generated from the first row of R, that is R[1, ·]. Each element of

the row R[1, ·] takes a value in {t1, . . . , tNT
}. Thus, each column of sub-matrix (A.46) has

one and only one element that is equal to 1 while all other elements are zero. Thus, since
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each treatment value in {t1, . . . , tNT
} appears at least once in row R[1, ·], then the sub-

matrix (A.46) has NT linearly independent rows. Moreover, we have that the sum of each

column in sub-matrix (A.46) is one, thus:

[1 , . . . , 1] =

NT∑
j=1

Btj [1, ·]. (A.47)

Note that Equation (A.47) would also hold even if some rows of sub-matrix (A.46) were all

zeros. However, all zero rows are ruled out by the assumption P (T = t|Z = z) > 0.

Now consider the sub-matrix of BT , generated by the second row of each matrix Bt for

t ∈ {t1, . . . , tNT
} :



Bt1 [2, ·]

Bt2 [2, ·]
...

BtNT
[2, ·]


. (A.48)

Sub-matrix (A.48) is generated by NT linearly independent rows since each value of the

treatment choice, i.e. {t1, . . . , tNT
}, appears at least once in the second row of R. Moreover,

we also have that

[1 , . . . , 1] =

NT∑
j=1

Btj [2, ·]. (A.49)

Equation (A.49) would hold even if some rows of sub-matrix (A.48) were all zeros.

We can use Equation (A.47) to express, for example, the last row of sub-matrix (A.48) as a

linear combination of rows in sub-matrix (A.46) and the remaining rows of sub-matrix (A.48):
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[1 , . . . , 1] =

NT∑
j=1

Btj [2, ·]

⇒ BtNT
[2, ·] = [1 , . . . , 1]−

NT−1∑
j=1

Btj [2, ·]

⇒ BtNT
[2, ·] =

NT∑
j=1

Btj [1, ·]−
NT−1∑
j=1

Btj [2, ·]. (A.50)

We can iterate this approach for each ith row of {Bt1 , . . . ,BtNT
}. We can then express

the ith row of BtNT
, such that i > 1, as a linear combination of the first rows Bt[1, ·]; t ∈

{t1, . . . , tNT
} and the ith rows of {Bt1 , . . . ,BtNT−1

}. Thus there are NZ − 1 rows in BtNT

that are not linearly independent of the remaining rows of BT . As a consequence, the

number of linearly independent rows in BT is at most NZNT − (NZ − 1) and therefore

rank(BT ) ≤ NZNT − (NZ − 1) = 1 +NZ(NT − 1).

Now suppose that P (T = t1|Z = z) = 0 for some z ∈ supp(Z). Equation (A.47) still

holds. But these rows are linearly dependent, thereby we have that:

rank(BT ) ≤ 1 +NZ(NT − 1)−
NZ∑
i=1

1[P (T = t1|Z = zi) = 0]

.

Now suppose that P (T = tj̃|Z = z2) = 0 for some j̃ ∈ {1, . . . , NT}. We must have that

P (T = tj′ |Z = z2) > 0 for some j′ ∈ {1, . . . , NT} Therefore we can rewrite Equation (A.50)

associated with the second rows of each Bt; t ∈ supp(T ) as:

⇒ Btj′ [2, ·] =

NT∑
j=1

Btj [1, ·]−
∑

j∈{1,...,NT }\{j′}

Btj [2, ·],

=

NT∑
j=1

Btj [1, ·]−
∑

j∈{1,...,NT }\{j′ ,̃i}

Btj [2, ·].

But Bt̃i
[2, ·] is a row of zeros and is linearly dependent. Therefore it reduces the maximum

rank of rank(BT ). We can apply this analysis for all z ∈ {z2, . . . , zNZ
} and for all rows of
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zeros in Bt; t ∈ supp(T ). This generates the following restriction:

rank(BT ) ≤ 1 +NZ(NT − 1)−
NT∑
j=1

NZ∑
i=1

1[P (T = tj|Z = zi) = 0]

.

A.14 Additional Identification Results for Strata Probabilities

In this appendix, we present additional results on identification that do not appear in the

main text of the paper.

One desirable property of a monotone response matrix is that it consists of all potential

response types that are consistent with a monotone property. We term matrix R complete

if R is an unordered monotone response matrix such that the inclusion of any additional

response type to R would violate monotonicity. As demonstrated in Appendix D, the selec-

tion of possible response types is not unique. A range of possible complete response types

exist for any given NZ and NT . Completeness does not necessarily imply that the number

of response types is 1 + (NT − 1)NZ . The number of response types in complete response

matrices may be bigger. The next theorem demonstrates how to exploit this completeness

criteria to identify response-type probabilities.

Theorem T-8. Consider the IV model (1)–(3), where Z takes values in {z1 . . . , zNT
} and

T takes values in {t1, . . . , tNT
}. Let R be a complete unordered monotone response matrix

and let z ∈ supp(Z) and t ∈ supp(T ) such that P (T = t′|Z = z) ≥ P (T = t′|Z = z′) for
z′ ∈ supp(Z) \ {z} and t′ ∈ supp(T ) \ {t} then:

Response-type probabilities P (S = s) for all s ∈ supp(S) are identified,

and the response-matrix R has the following properties:

1. R is uniquely determined.

2. R consists of 1 + (NT − 1)NZ response types.

3. R generates BT such that rank(BT ) = 1 + (NT − 1)NZ.

Proof. Our proof exploits the properties of complete matrices. To do so, it is helpful to define

some useful notation. We denote the set of possible response types by Φ, which consists of
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all NNZ
T possible NZ-dimensional response-type vectors defined as:

Φ = {[τ1, . . . , τNZ
]′ with elements τi such that τi ∈ {t1, . . . , tNT

} for all i ∈ {1, . . . , NZ}}. (A.51)

The support of the response variable S is a subset of Φ and can be represented as supp(S) =

{s ∈ Φ;P (S = s) > 0}. Φ represents all possible response types. S are the ones generated

the data. Example E-2 illustrates set Φ for the case of binary instruments with binary

treatment choices.

Example E-2. Let treatment choice T take only binary values in supp(T ) = {t0, t1}. Z ∈

{z0, z1} so the cardinality of the support of Z is NZ = | supp(Z)| = 2. Then set Φ is defined

by:

Φ = {[τ1, τ2]′ with elements τi such that τi ∈ {t0, t1} for i ∈ {1, 2}}.

Elements of the set Φ are the 2-dimensional vectors [τ1, τ2]′, such that τ1, the first element

of the vector, can take one of the only two (scalar) values, t1 or t0. The second element of

the vector [τ1, τ2]′ is τ2, which also takes one of the only two (scalar) values, t1 or t0. Thus,

we can enumerate the elements of set Φ as following:

Φ =


 t0

t0

 ,

 t0

t1

 ,

 t1

t0

 ,

 t1

t1


 .

We can associate the first element (first row) of each vector in Φ to the counterfactual choice

of an agent ω when the instrument is set to z0, that is, Tω(z0), and the second element (second

row) of each vector in Φ to the counterfactual choice of an agent ω when the instrument is

set to z1, that is, Tω(z1). If we assume the standard LATE monotonicity relationship that

1[T (z1) = t1] ≥ 1[T (z0) = t1], we can generate the support of the response variable S as a
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subset of set Φ that eliminates the response type [t1 , t0]′, that is:

supp(S) =


 t0

t0

 ,

 t0

t1

 ,

 t1

t1


 ⊂ Φ.

A.14.1 Definition of Complete Response Matrices

The response matrix R consists of the matrix that includes all of the response types in

supp(S). Response matrix R is complete if:

1. Response matrix R is unordered monotone;

2. The matrix R̃ = [R, s] is not an unordered monotone response for each s ∈ Φ\supp(S).

We term a response type s ∈ Φ admissible relative to an unordered monotone response R

if:

1. Response type s is not in R, that is, s /∈ supp(S);

2. The matrix R̃ = [R , s] is still an unordered monotone response.

Thus, a response matrix R is complete if no response type s in Φ \ supp(S) is admissible.

A.14.2 Number of Treatment Values is Each Row of the Response Matrix

Let r(i, t) be the number of elements t in the ith row of R. Thus the number r(i, t) can

be obtained by the sum of the binary element in the ith row of matrix Bt across columns

j ∈ {1, . . . , NS} :

r(i, t) =

NS∑
j=1

Bt[i, j],

where Bt denotes the indicator matrix Bt = 1[R = t].

We use m(t) to denote the row-index i in R whose number of elements t is maximum,

that is:

m(t) = argmax
i∈{1,...,NZ}

r(i, t). (A.52)
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Thus, m(t) ∈ {1, . . . , NZ} for all t ∈ supp(T ) and more than one treatment can have its

maximum sum at the same row, i.e., m(t) = m(t′); t, t′ ∈ supp(T ). Nevertheless, it cannot

be that all treatment values t ∈ supp(T ) have their maximum sum at the same row in R

(see Lemma L-20 below).

Let s(i) denotes the treatment status in the ith row of a response type s ∈ Φ.

A.14.3 Overview of the Properties of Unordered Monotone and Complete Ma-

trices

In order to prove T-8 below, we rely on properties of unordered monotone responses and

also complete response matrices. Specifically, Lemmas L-18–L-21 investigate properties

of unordered monotone response matrices while Lemmas L-22–L-24 focus on properties of

unordered monotone response matrices that are complete. We list the associated Lemmas

and their consequences to facilitate the understanding of the theorem.

• Properties of unordered monotone response matrices:

1. Lemma L-18 connects the row-sums of treatment values with the possible values

that elements of unordered monotone response matrices can take.

2. Lemma L-19 states a property of response types of unordered monotone response

matrices when the same row gives the maximum sum of treatment values for more

than one treatment status.

3. Lemma L-20 states a condition of row-sums of treatment values across response

types.

4. Lemma L-21 is an auxiliary lemma used in the main proof.

• Properties of complete unordered monotone response matrices:

1. Lemma L-22 states that if R is complete then R must have NT response types

whose elements within a response type are the same for each value t in the support

of T .
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2. Lemma L-23 characterizes the non-zero binary vectors in Bt; t ∈ supp(T ) for

complete response matrices R.

3. Lemma L-24 states that the non-zero binary vectors in each Bt; t ∈ supp(T ) have

full rank if R is complete.

A.14.4 Comments of the use of Lemmas and our Main Proof

Our main proof is constructive and relies on each of the Lemmas L-18–L-21. Lemma L-

22 is used as a starting point in the construction of the response matrix that complies

with the assumptions of Theorem T-8. The most important property of complete matrices

exploited in our main proof is stated in Lemma L-23. Namely if R is complete then each

Bt; t ∈ supp(T ) must have NZ distinct non-zero binary vectors.

We use Lemma L-19 to characterize an essential property of unordered monotone re-

sponse matrices. The purpose of Lemma L-21 is used to justify a simplified notation that

facilitates our exposition of the proof. Lemma L-24 gives a rank condition of complete

matrices. We use this condition to generate the rank condition of Corollary C-1, which

identifies response-type probabilities.

Lemma L-18 is a restriction of unordered response matrices within response types.

Lemma L-20 is a restriction of unordered response matrices across response types. Both re-

strictions are useful tools for proofs based on contradictions. Lemma L-18 and Lemma L-20

are used throughout our analysis.

A.14.5 Lemma L-18

Lemmas L-18–L-20 describe useful properties of unordered monotone response matrices

that are helpful in proving the main theorem.

Lemma L-18. If response matrix R is unordered monotone, and s is a response type that

belongs to R, and if s(i) = t, and r(i′, t) ≥ r(i, t), then s(i′) = t for all i′ ∈ {1, . . . , NZ}. In

particular, if s(i) = t, for some i ∈ {1, . . . , NZ} then s(m(t)) = t.
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Proof. Suppose that s(i) = t, r(i′, t) ≥ r(i, t) but s(i′) 6= t. Then there must be a column j

in Bt such that Bt[i, j] = 0 and Bt[i
′, j] = 1. Let j′ be the column that represents response

type s, that is, s = R[·, j′]. But s(i) = t, implies that Bt[i, j
′] = 1 and s(i′) 6= t implies

that Bt[i
′, j′] = 0. Now consider the 2× 2 sub-matrix in R defined by rows i, i′ and columns

j, j′ :  Bt[i, j
′] Bt[i, j]

Bt[i
′, j′] Bt[i

′, j]

 =

 1 0

0 1

 ,

which takes the forbidden patterns of Equation (52). Therefore Bt cannot be lonesum.

As a consequence, R cannot be an unordered monotone response, which contradicts the

statement of the lemma. In particular, if s(i) = t, for some i ∈ {1, . . . , NZ} then s(m(t)) = t

because m(t) is the row-index that provides the maximum sum of elements t among all

r(i′, t); i′ ∈ {1, . . . , NZ}.

A.14.6 Lemma L-19

Lemma L-19. If response matrix R is unordered monotone and m(t) = m(t′) for some

t, t′ ∈ supp(T ) such that t 6= t′, then no response type can take both values t and t′. Namely,

there is no column j ∈ {1, . . . , NS} such that R[i, j] = t and R[i′, j] = t′ for any two rows

i, i′ ∈ {1, . . . , NZ}.

Proof. Suppose there exists a column j ∈ {1, . . . , NS} such that R[i, j] = t and R[i′, j] = t′

for some rows i, i′ ∈ {1, . . . , NZ}. Then, by Lemma L-18, we must have that R[m(t), j] = t

and R[m(t′), j] = t′, which is impossible since by hypothesis m(t′) = m(t).

A.14.7 Lemma L-20

Lemma L-20. If response matrix R is unordered monotone then for any two rows i, i′ ∈

{1, . . . , NZ}, it cannot be the case that r(i′, t) ≥ r(i, t) for all t ∈ supp(T ). In particular, it

cannot be that case that m(t) is equal to some i ∈ {1, . . . , NZ} for all t ∈ supp(T ).
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Proof. R is a response matrix, so columns and rows must differ in at least one element.

According to Lemma L-18, if r(i′, t) ≥ r(i, t) and s(i) = t, then s(i′) = t. But the number

of elements in a row is NS. Thus if r(i′, t) ≥ r(i, t) for all t ∈ supp(T ), it must be the case

that r(i′, t) = r(i, t) for all t ∈ supp(T ). But for the rows to differ, it must be the case that

exists some columns j, j′ ∈ {1, . . . , NS} such that

 Bt[i, j
′] Bt[i, j]

Bt[i
′, j′] Bt[i

′, j]

 =

 1 0

0 1

 ,

for at least one treatment t ∈ supp(T ), which characterizes the forbidden pattern of Equa-

tion (52) and violates the assumed monotonicity of R.

A.14.8 Lemma L-21

Lemma L-21. Let R be an unordered monotone response matrix, such that supp(T ) =

{t1, t2, . . . , tNT
} and supp(Z) = {z1, z2, . . . , zNZ

}. Let the first row of R be the row where

the sum of elements t1 is maximum, that is, m(t1) = 1. Also let the last row of R be

the row that generates that the largest row-sum of treatment values t2, . . . , tNT
, that is,

m(t2) = m(t3) = . . . = m(tNT
) = NZ . Then the last row of R is also the row that generates

the minimum sum of elements t1.

Proof. Suppose not. So it must be the case that the row-index that gives the minimum

row-sum of elements t1 is i such that i < NZ . Thus we have that r(i, t1) ≤ r(NZ , t1). Now

take the sub-matrix of R generated by rows i and NZ which is also an unordered monotone

matrix. But in this case we would have that r(NZ , t) would take the maximum value for all

t ∈ supp(T ), which is impossible due to Lemma L-20.

A.14.9 Lemma L-22

Lemmas L-22–L-24 describe useful properties of unordered monotone response matrices

that are complete.
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Lemma L-22. If an an unordered monotone response matrix R is complete then each

NZ-dimensional vector of elements t ∈ supp(T ), that is ιNZ
· t belongs to R.

Proof. According to condition (iii) of Theorem T-3, R is an unordered response if and only

if the following forbidden 2× 2 sub-matrices do not belong to R :

 t t′

t′′ t

 or

 t′ t

t t′′

 ,where t′ 6= t and t′′ 6= t.

Treatment status varies within vectors of both forbidden sub-matrices. But the treatment

status does not vary in response type ιNZ
· t. Thus if R is an unordered response matrix

and ιNZ
· t does not belong to R, then ιNZ

· t is admissible. But R is complete and does not

allow any further admissible response types. Thereby it must be the case that ιNZ
· t already

belongs to R.

A.14.10 Lemma L-23

Recall that Σ(t) is the set of non-zero vectors inBt ofR. We can state the following property

of Σ(t) for complete matrices:

Lemma L-23. Let R be a complete unordered monotone response matrix. Then each set

Σ(t); t ∈ supp(T ) has NZ distinct non-zero binary vectors of dimension NZ . Moreover, let

Ct be the matrix generated by the binary vectors in Σ(t). Then Ct is a lonesum matrix that

is equivalent to a NZ-dimensional square lower triangular matrix. In particular, each set

Σ(t); t ∈ supp(T ) has NZ distinct non-zero binary vectors of dimension NZ whose column-

sum is 1, 2, . . . , NZ .

Proof. Without loss of generality, suppose that the rows {1, . . . , NZ} of R are ordered in

increasing values of the sum of the treatment statuses t in supp(T ), that is,

r(1, t) ≤ r(2, t) ≤ . . . ≤ r(NZ , t). (A.53)
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Response matrix R is unordered monotone, so Bt is lonesum. According to Lemma L-4,

any selection of vectors in Bt is lonesum. In particular, Ct is the selection of all unique

non-zeros vectors in Bt. Therefore, Ct is lonesum.

According to Lemma L-18, for any s ∈ supp(S), if r(i′, t) ≥ r(i, t) and s(i) = t, then

s(i′) = t. This implies that if r(i′, t) ≥ r(i, t),

Bt[i, j] = 1⇒ Bt[i
′, j] = 1 for any j ∈ {1, . . . , NS}. (A.54)

ButCt is a sub-matrix ofBt, thus implication A.54 also holds for elements in that submatrix.

Moreover, under the ranking of row-sums (A.53), Ct is a lower triangular matrix.

To finish the lemma we need to prove that if R is complete, then Ct has NZ binary

vectors. Suppose not. Specifically, suppose that the binary vector that takes values 1 for

rows-indexes equal to or greater than i and zero otherwise does not belong to Ct. This

condition on Ct translates to the following assertion on response matrix R :

For row-index i ∈ {1, . . . , NZ}, there is no response type s of R that satisfies: (A.55)

(1) s(i) = t, and (2) s(i′) = t for all i′ > i, and (3) s(i′) 6= t for all i′ < i.

Our goal is to show that the condition in (A.55) cannot occur when R is complete. Indeed,

if R is complete then it has to be the case that the response type described in (A.55) is not

admissible. Then it must be the case that response type s defined in (A.55) generates the

forbidden pattern (52). But s cannot generate a forbidden pattern in Bt. Indeed s(i) = t

and s(i′) = t for all i′ > i, in accordance with Lemma L-18.

So it must be the case that the inclusion of a response type s generates a forbidden

pattern for each treatment t′ that differs from t. In particular the response type s that takes

value s(i′) = t′ for i′ < i and s(i′′) = t for i′′ ≥ i is not admissible. Thus, there must exist a
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column j such that the following forbidden pattern occurs:

 1[R[i′, j] = t′] 1[s(i′) = t′]

1[R[i′′, j] = t′] 1[s(i′′) = t′]

 =

 0 1

1 0

 . (A.56)

But, according to Lemma L-22, if R is complete, then treatment t′ must appear at least

once in each row. In particular, t′ must appear at row i′. Thus there must be a column j′

such that R[i′, j′] = t′. But R is a monotone response, so Bt′ is lonesum and therefore we

must have that:  1[R[i′, j] = t′] 1[R[i′, j′] = t′]

1[R[i′′, j] = t′] 1[R[i′′, j′] = t′]

 =

 0 1

1 1

 , (A.57)

where we apply L-22 to get the upper righthand element and L-18 to get the lower righthand

element.

Equation (A.57) implies that r(i′, t′) < r(i, t′). This condition holds for each t′ ∈

supp(T )\{t}. But we also have that r(i′, t) ≤ r(i, t). Thus the ith row-sum is less than equal

than ith row-sum for all treatment statuses. This condition is impossible due to Lemma L-

20.

Lemma L-22 is a particular consequence of Lemma L-23 above. Nevertheless, we have

stated and proved Lemma L-22 because it is used in Lemma L-23. Indeed, Lemma L-22

allows us to use the fact that if R is complete then each treatment choice t ∈ supp(T ) must

appear at least once in each row of response matrix R.

A.14.11 Lemma L-24

Lemma L-24. Let R be a complete unordered monotone response matrix. Then it follows

that rank(Bt) = NZ for all t ∈ supp(T ).

Proof. By L-23, Ct is equivalent to a lower triangular NZ × NZ squared matrix whose

column sums are 1, 2, · · · , NZ . Thus, Ct must have full rank, that is, rank(Ct) = NZ . Since
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Bt includes the columns of Ct, then rank(Bt) ≥ rank(Ct) = NZ . But the row-dimension of

Bt is NZ and thereby rank(Bt) ≤ NZ . Therefore rank(Bt) = NZ .

A.14.12 The Proof of Theorem T-8

Proof. We employ the notation used throughout this paper, which defines the support

of treatment choice T and instrumental variable Z as supp(T ) = {t1, t2, . . . , tNT
} and

supp(Z) = {z1, z2, . . . , zNZ
}. The theorem assumes that there is z ∈ supp(Z) such that

P (T = t′|Z = z) ≥ P (T = t′|Z = z′) for z′ ∈ supp(Z) \ {z}. But R is unordered monotone.

Thus, the row in R associated with the value z of instrumental variable Z is also the row

that gives the maximum sum of elements t′. But P (T = t′|Z = z) ≥ P (T = t′|Z = z′) for

all t′ ∈ supp(T ) \ {t}. Thus we have that m(t′) = m(t′′) for all t′, t′′ ∈ supp(T ) \ {t}. By

Lemma L-20, it must be the case that m(t) 6= m(t′).

Without loss of generality, we introduce the following useful notation:

(a) m(t2) = m(t3) = . . . = m(tNT
) = NZ ;

(b) m(t1) = 1;

(c) r(1, t1) ≥ r(2, t1) ≥ . . . ≥ r(NZ , t1).

Item (a) specifies that the value z of the instrumental variable Z stated in the premise of the

theorem is placed as the last row of R. Item (a) complies with the theorem’s assumption,

stating that the last row has the maximum sum of treatment status t2, . . . , tNT
. Item (b)

states that the treatment choice t1 is the one that does not takes the maximum sum in row

NZ , in compliance with Lemma L-20. Instead t1 has its maximum sum at the first row of

R. Item (c) states that the rows of R are ordered by decreasing sum of elements t1. For this

to happen, it is necessary that the last row of R must be the row whose sum of elements t1

is minimum, which holds according to Lemma L-21. This specification facilitates the proof

of our claim and is assumed without loss of generality.

Our proof is constructive and is based on the following steps:
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1. Lemma L-22 implies that the vector ιNZ
· t1 belongs to R. Our count of response types

in R is now 1.

2. Lemma L-22 also implies that the vector ιNZ
· t, t ∈ {t2, . . . , tNT

} must also belong to

R. Our count of response types in R is now 1 + (NT − 1).

3. According to Lemma L-19, there is no response type s in R that takes two values

of treatment choices in {t2, . . . , tNZ
}. Thus any response type that takes more than

one value of treatment choices in supp(T ) must take only two values, one being t1 and

another being some t′ ∈ {t2, . . . , tNZ
}.

4. According to Lemma L-18, and the previous remark, if a response type of an unordered

response matrix R takes more than one value of the treatment choice, then it must be

the case that the response type is of the type described below:

s = [t1 , t1 , . . . , t1 , t
′, . . . , t′]′ where t′ ∈ {t2, . . . , tNT

}

.

5. But according to Lemma L-23, each Σ(t′); t′ ∈ {t2, . . . , tNT
} has NZ distinct non-zero

binary vectors of dimension NZ whose column sum is 1, 2, . . . , NZ . In particular, each

Σ(t′); t′ ∈ {t2, . . . , tNT
} must have a binary vector ξ ∈ Σ(t′); t′ ∈ {t2, . . . , tNT

} whose

sum is 1. According to item 3 above, the response type that generates this binary

vector must be:

s = [t1 , t1 , . . . , t1, t
′]′ where t′ ∈ {t2, . . . , tNT

}

. This adds NT − 1 additional response types to R. Our total count is 1 + 2 · (NT − 1).

6. Each Σ(t′); t′ ∈ {t2, . . . , tNT
} must have a binary vector ξ ∈ Σ(t′); t′ ∈ {t2, . . . , tNT

}

whose column sum is 2. According to item 3 above, the response type that generates

this binary vector must be:

s = [t1 , t1 , . . . , t1, t
′, t′]′ where t′ ∈ {t2, . . . , tNT

}
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. This adds NT − 1 additional response types to R. Our total count is 1 + 3(NT − 1).

7. If we iterate the process we have that the total number of response types in R is

NS = 1 +NZ(NT − 1). In addition, we have that Σ(t1) is the square upper triangular

binary matrix as required by Lemma L-23.

8. R is complete as it exhausts all possible response types of the the type described in

item 3 above.

It remains to prove the rank of BT is equal to 1 + NZ(NT − 1). Binary matrix BT is

defined by stacked Bt matrices such that t ∈ {t1, . . . , tNZ
}. That is,

BT = [B′t1 , B
′
t2
, . . . , B′tNT

].′

Consider the sub-matrix of BT defined by

B̃ =


Bt2

...

BtNT

 . (A.58)

But each response type s ∈ supp(S) of R is one of the types:

s = [t , t , . . . , t]′; t ∈ {t1, . . . , tNT
},

or s = [t1 , t1 , . . . , t1 , t
′, . . . , t′]′ where t′ ∈ {t2, . . . , tNT

}.

Thus, by Lemma L-19, if Bt′ [i, j] = 1 for some column j ∈ {1, . . . , NS} and for some

t′ ∈ {t2, . . . , tNT
}, then we have that Bt′′ [i

′, j] = 0 for any t′′ ∈ {t2, . . . , tNT
} such that t′′ 6= t′

and for any i′ ∈ {1, . . . , NZ}. Thus rank(B̃) =
∑NT

k=2 rank(Btk). But by Lemma L-24, the

column rank of each Bt is equal to NZ . Thereby rank(B̃) = (NT − 1)NZ . Now the column

in B̃ associated with the response type ιNZ
· t1 is zero. Thus rank(BT ) ≥ 1 + rank(B̃) =

1 + (NT − 1)NZ . But, according to Theorem T-7 in the main paper, the rank of a matrix
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BT cannot be bigger than 1 + (NT − 1)NZ . Thus, rank(BT ) = 1 + (NT − 1)NZ . But

1 + (NT − 1)NZ is also the number of columns in R, so according to Corollary C-1, the

response-type probabilities are identified.

A.15 An Alternative Form for T-8

Alternative conditions can be used to identify PS. We state one set of conditions as Theo-

rem T-8′.

Theorem T-8. ′(Alt. Version of T-8) Let R be a complete unordered monotone response

matrix such that each value z ∈ {z1, . . . , zN} maximizes the propensity score P (T = t|Z = z)

for a single treatment choice t ∈ {t1, . . . , tN}. Now let t, t̃ ∈ supp(T ) and z′, z′′, z′′′ ∈ supp(T )

such that:

P (T = t|Z = z′) ≥ P (T = t|Z = z′′) and

P (T = t̃|Z = z′′′) ≥ P (T = t̃|Z = z′′)

⇒ P (T = t̃|Z = z′) ≥ P (T = t̃|Z = z′′).

Then we have that response-type probabilities P (S = s) for all s ∈ supp(S) are identified

and the response-matrix R has the following properties:

1. R is uniquely determined.

2. R consists of 1 + (NT − 1) ·NZ response types.

3. R is such that rank(BT ) is also equal to 1 + (NT − 1) ·NZ .

Proof. See Heckman and Pinto (2015).

A.16 Another Alternative Form of T-8

Theorem T-8. ′′(Alt. Version of T-8) Consider the the IV model (1)–(3) where Z takes

values in {z1 . . . , zNT
} and T takes values in {t1, . . . , tNT

}. Assume the following conditions:
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(i) Response matrix R is unordered monotone.

(ii) 1 > P (T = t|Z = z) > 0 for all z ∈ supp(Z), t ∈ supp(T ).

(iii) NS = 1 + (NT − 1)NZ .

(iv) Response matrix R is complete, i.e., the inclusion of any additional response type to

R would violate monotonicity.

If these four conditions hold, then response-type probabilities P (S = s); s ∈ supp(S) are

identified.

Proof. See Heckman and Pinto (2015).

The condition requiring uniform directions of response to choices outside of t to variation

in instruments is quite strong. The general lesson is that additional restrictions beyond the

standard IV conditions and monotonicity A-3 are required to identify PS but not for mean

counterfactuals.

A.17 Additional Identification Results for Counterfactual Out-

comes (T-9,C-5)

Let T ⊂ supp(T ) be a subset of treatment choice values. We use E(Y (T )|S = s) to denote

the weighted average of counterfactual outcomes E(Y (t)|S = s) across t ∈ T :

E(Y (T )|S = s) =
∑
t∈T

E(Y (t)|S = s)
P (T = t|S = s)

P (T ∈ T |S = s)
, (A.59)

where P (T ∈ T |S = s) =
∑
t∈T

P (T = t|S = s). (A.60)

A subset of particular interest is t̄ = suppT \ {t}, which stands for the set of all treatment

choices except t. T ∈ t̄ stands for the event of not choosing t. Let S ⊂ suppS be a subset of

response types. We use E(Y (T )|S ∈ S ) to denote the weighted average of E(Y (T )|S = s)
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across the response types s ∈ S :

E(Y (T )|S ∈ S ) =
∑
s∈S

E(Y (T )|S = s)
P (S = s)

P (S ∈ S )
(A.61)

Response-type subsets of interest are t-Switchers for which Σt(i); i ∈ {1, . . . , NZ}. Under this

notation, we state the following identification result:

Theorem T-9. Consider the the IV model (1)–(3) in which unordered monotonicity A-3
holds. Let t ∈ supp(T ) and i ∈ {1, . . . , NZ − 1} such that if Σt(i) ∩ Σt′(i

′) 6= ∅, for some
t′ ∈ supp(T ) \ t and i′ ∈ {1, . . . , NZ − 1}, then Σt′(i

′) ⊂ Σt(i). Under these conditions,
E(Y (t)− Y (t̄)|S ∈ Σt(i)) is identified by:

E(Y (t)− Y (t̄)|S ∈ Σt(i)) =
bt(i)B

+
t QZ(t)

bt(i)B
+
t PZ(t)

−
bt(i)

∑
t′∈t̄
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄
(
B+
t′ PZ(t′)

)
�
(
B′t′PrZ

)
where PrZ = [P (Z = z1), . . . , P (Z = zNZ

)]′.

Proof. See Section A.18 in this Appendix.

Theorem T-9 considers a response-type set Σt(i) such that n ∈ {1, . . . , NZ − 1}. This

implies that Σt(i) is partition set of t-Switchers and each response type in Σt(i) must contain

choice t but also choices other than t. T-9 elicits a coarse property of the set Σt(i). If a set

Σt′(i
′) for t′ 6= t shares any of the response types in Σt(i) then Σt(i) must contain Σt′(i

′). The

set Σta(2) of the response matrix in Table 3 provides an example of this condition because

Σta(2) = Σtb(1) ∪ Σtc(1) where Σta(2) = {s2, s3}, Σtb(1) = {s2}, and Σtc(1) = {s3}. T-9

renders the following expression (see Appendix A.19 for derivation):

E(Y (ta)|ta ∈ Σta (2)) =
E(Y · 1[T = ta]|Z = zno)− E(Y · 1[T = ta]|Z = zbc)

P (T = ta|Z = zno)− P (T = ta|Z = zbc)
,

E(Y (t̄a)|S ∈ Σta (2)) =((
E(Y · 1[T = tc]|Z = zbc)− E(Y · 1[T = tc]|Z = zno)

)
+
(
E(Y · 1[T = tb]|Z = zbc)− E(Y · 1[T = tb]|Z = zno)

)(
P (T = tc|Z = zbc)− P (T = tc|Z = zno)

)
+
(
P (T = tb|Z = zbc)− P (T = tb|Z = zno)

) )

also equivalent to E(Y (t̄a)|S ∈ Σta (2)) =

(
E(Y · 1[T 6= ta]|Z = zbc)− E(Y · 1[T 6= ta]|Z = zno)

)(
P (T 6= ta|Z = zbc)− P (T 6= ta|Z = zno)

) .

Corollary C-5 simply extends T-9 to each partition set Σt(i) of t-Switchers.

Corollary C-5. Consider the the IV model (1)–(3) in which unordered monotonicity A-3
holds. Let t ∈ supp(T ) such that for any t′ ∈ supp(T ) \ t, and for any i′ ∈ {1, . . . , NZ − 1}
there exists i ∈ {0, 1, . . . , NZ − 1} such that Σt′(i

′) ⊂ Σt(i), then E(Y (t)− Y (t̄)|t-Switchers)
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is identified by the following equation:5

E(Y (t)− Y (t̄)|t-Switchers) =

NZ−1∑
i=1

(
bt(i)B

+
t QZ(t)

bt(i)B
+
t PZ(t)

−
bt(i)

∑
t′∈t̄

(
B+

t′QZ(t′)
)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄

(
B+

t′PZ(t′)
)
�
(
B′t′PrZ

) ) ζn,
where ζn =

bt(i)B
+
t PZ(t)(∑NZ−1

i=1 bt(i)
)
B+

t PZ(t)
.

Proof. See Section A.20 in this Appendix.

See Appendix A.21 for calculations of E(Y (ta)− Y (t̄a)|ta-Switchers) associated with the

response matrix R of Table 3.

A.18 Proof of Theorem T-9

The expression in Theorem T-9 can be disaggregated into two components given in Equa-

tions (A.62) and (A.63):

E(Y (t)|S ∈ Σt(i)) =
bt(i)B

+
t QZ(t)

bt(i)B
+
t PZ(t)

, (A.62)

E(Y (t̄)|S ∈ Σt(i)) =
bt(i)

∑
t′∈t̄
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄
(
B+
t′PZ(t′)

)
�
(
B′t′PrZ

) . (A.63)

Theorem T-6 identifies E(Y (t)|S ∈ Σt(i)) of Equation (A.62). Thus it suffices to demon-

strate that E(Y (t̄)|S ∈ Σt(i)) can be expressed as described in Equation (A.63).

We now revisit Equations (A.59)–(A.61) that define E(Y (t̄)|S ∈ Σt(i)) as:

E(Y (t̄)|S ∈ Σt(i)) =
∑
s∈Σt(i)

E(Y (t̄)|S = s)
P (S = s)

P (S ∈ Σt(i))
(A.64)

where E(Y (t̄)|S = s) =
∑
t′∈t̄

E(Y (t′)|S = s)
P (T = t′|S = s)

P (T ∈ t̄|S = s)
and t̄ ≡ supp(T ) \ {t}.

(A.65)

Equations (A.64)–(A.65) can be concatenated into the following equation:

E(Y (t̄)|S ∈ Σt(i)) =

∑
s∈Σt(i)

(∑
t′∈t̄E(Y (t′)|S = s)P (T=t′|S=s)

P (T∈t̄|S=s)

)
P (S = s)

P (S ∈ Σt(i))
. (A.66)

5Here we adopt κ(Y ) = Y, therefore QZ(t) is given by: QZ(t) = [E(Y |T = t, Z = z1), . . . , E(Y |T =
t, Z = zNZ

)]′ � PZ(t).
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Thus, to prove the theorem, it suffices to show that the following equation holds:

∑
s∈Σt(i)

∑
t′∈t̄E(Y (t′)|S = s)P (T = t′|S = s)P (S = s)

P (S ∈ Σt(i))P (T ∈ t̄|S = s)
=

[
bt(i)

∑
t′∈t̄
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄
(
B+
t′ PZ(t′)

)
�
(
B′t′PrZ

) ].
(A.67)

The proof is divided in five steps. We first prove four lemmas (L-25–L-28) that will then

be used to demonstrate Equation (A.67).

Lemma L-25 below investigates probabilities P (T = t|S = s); s ∈ Σt(i) :

Lemma L-25. Consider the IV model (1)–(3) in which unordered monotonicity A-3 holds.

Let t ∈ supp(T ) and s, s′ ∈ supp(S) such that s, s′ ∈ Σt(i) for some i ∈ {1, . . . , NZ − 1},

then the following equalities for probabilities P (T = t|S = s); s ∈ Σt(i) hold:

P (T = t|S = s) = P (T = t|S = s′) for any s, s′ ∈ Σt(i) (A.68)

P (T = t|S = s) = P (T = t|S ∈ Σt(i)) for all s ∈ Σt(i) (A.69)

P (T = t|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)
(
B+
t PZ(t)

)
�
(
B′tPrZ

)
, (A.70)

where � means the Hadamard (element-wise) multiplication and PrZ and bt(i) are previ-

ously defined notations: PrZ = [P (Z = z1), . . . , P (Z = zNZ
)]′ is the vector of instrumental

variable probabilities and bt(i) =
[
1[s1 ∈ Σt(i)], . . . , 1[sNS

∈ Σt(i)]
]

is the binary row-vector

that indicates if each s ∈ supp(S) belongs to Σt(i).

Proof. Probability P (T = t|S = s) can be written as:

P (T = t|S = s) =
∑

z∈supp(Z)

P (T = t|S = s, Z = z)P (Z = z|S = s),

P (T = t|S = s) =
∑

z∈supp(Z)

1[T = t|S = s, Z = z]P (Z = z),

⇒ P (T = t|S = s) = Bt[·, s]′PrZ . (A.71)

The second equality simply restates Equation (17) of the main paper. It uses the fact that
Z ⊥⊥ S as shown in L-1. The third equality (Equation (A.71)) relies on the definition of
Bt. In our notation Bt[·, s]′ means the transpose of the column-vector Bt[·, s] and Bt[·, s′]
means the column-vector of Bt associated with response type s′. Lemma L-16 states that
if unordered monotonicity A-3 holds and s, s′ ∈ Σt(i), then Bt[·, s] = Bt[·, s′] (see also
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Remark A.2). We combine Equation (A.71) (P (T = t|S = s) = Bt[·, s]′PrZ) and Lemma L-
16 to prove Equation (A.68) of the lemma:

P (T = t|S = s) = Bt[·, s]′PrZ = Bt[·, s′]′PrZ = P (T = t|S = s′).

Equation (A.68) implies Equation (A.69) as shown below:

P (T = t|S ∈ Σt(i)) =
∑

s′∈Σt(i)

P (T = t|S = s′)
P (S = s′)

P (S ∈ Σt(i))

= P (T = t|S = s)
∑

s′∈Σt(i)

P (S = s′)

P (S ∈ Σt(i))
for any s ∈ Σt(i).

= P (T = t|S = s).

Equation (A.70) comes from expressing P (T = t|S ∈ Σt(i)) in matrix notation and applying
the results just stated. From Theorem T-6 we have that P (S ∈ Σt(i)) is identified by:
P (S ∈ Σt(i)) = bt(i)B

+
t PZ(t). Note that bt(i) is a row-vector of dimension 1 × NS and

B+
t PZ(t) is a vector of dimension NS × 1. Let ξ represent the vector ξ = B+

t PZ(t). In this
notation, we can write P (T = t|S ∈ Σt(i)) · P (S ∈ Σt(i)) as:

P (S ∈ Σt(i)) · P (T = t|S ∈ Σt(i))

=
( ∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1]
)
· P (T = t|S ∈ Σt(i))

=
∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S ∈ Σt(i))

=
∑

s∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S ∈ Σt(i)) +
∑

s6∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S ∈ Σt(i))

=
∑

s∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S = s) +
∑

s 6∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S = s)

=
∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S = s)

=
∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1] ·
(
Bt[·, s]′PrZ

)
= bt(i)

(
ξ �

(
B′tPrZ

))
= bt(i)

(
B+

t PZ(t)
)
�
(
B′tPrZ

)
.

The first equality simply states P (S ∈ Σt(i)) as a summation. The second equality includes
the value P (T = t|S ∈ Σt(i)) inside the summation. The third equality splits the summation
into two terms according to the following partition of the support of S : Σt(i) and supp(S)\
Σt(i). The fourth equality replaces P (T = t|S ∈ Σt(i)) by P (T = t|S = s) in each term
of the sum. The reasons for the replacement differ in each term of the summation. The
replacement in the first term of the fourth equality is due to Equation (A.69) which states
that P (T = t|S = s) = P (T = t|S ∈ Σt(i)) for all s ∈ Σt(i). The replacement in the
second term of the fourth equality is due to the fact that bt(i)[1, s] = 0 for all s 6∈ Σt(i). The
fifth equality regroups the summation terms. The sixth equality uses the Equation (A.71)
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(P (T = t|S = s) = Bt[·, s]′PrZ .) The seventh equality expresses the summation in matrix
form. The eighth equality uses the definition of the vector ξ = B+

t PZ(t). Note that if
Σt(i) = ∅ then bt(i) is a row-vector of elements zero and P (T = t|S ∈ Σt(i)) = 0.

Our proof benefits from a convenient partition of the response-type set Σt(i) explored in

the lemma below.

Lemma L-26. Consider the IV model (1)–(3). Let t = supp(T )\{t} and i ∈ {0, 1, . . . , NZ},

then, for any t′ ∈ t̄ ≡ supp(T ) \ {t}, we can always partition the response-type set Σt(i) as:

Σt(i) = ∪NZ
i′=0

(
Σt(i) ∩ Σt′(i

′)
)
, and bt(i) =

NZ∑
i′=0

bt′(i
′)� bt(i). (A.72)

Moreover, if Σt(i) ∩ Σt′(i
′) 6= ∅ ⇒ Σt(i) ∩ Σt′(i

′) = Σt′(i
′) holds for some t′ ∈ t̄, (A.73)

then 1[Σt(i) ∩ Σt′(i
′) 6= ∅] · bt′(i′) = bt′(i

′)� bt(i). (A.74)

Proof. The partition in (A.72) uses the fact that ∪NZ

i′=0Σt′(i
′) is a partition of supp(S) for any

t′ ∈ supp(T ). The equation in (A.72) is a direct consequence of the definition of bt(i) which
is a binary row-vector that indicates is a response type belongs to set Σt(i). Property (A.73)
restates the theorem assumption. Suppose Σt(i) ∩ Σt′(i

′) 6= ∅, then, according to the As-
sumption (A.73), Σt(i) ∩ Σt′(i

′) = Σt′(i
′). This implies that if bt′(i

′)[1, s] = 1, then it must
be that bt(i)[1, s] = 1 for any s ∈ supp(S). Therefore bt′(i

′) � bt(i) = 1 · bt′(i′). Instead, if
Σt(i) ∩Σt′(i

′) = ∅, then bt′(i
′)� bt(i) is a row-vector of zero elements, which can be written

as bt′(i
′)� bt(i) = 0 · bt′(i′). Thus the equation 1[Σt(i) ∩ Σt′(i

′) 6= ∅] · bt′(i′) = bt′(i
′)� bt(i)

holds regardless if Σt(i) ∩ Σt′(i
′) is empty or not.

Lemma L-27 below investigates probabilities P (T ∈ t̄|S = s); s ∈ Σt(i). It can be

understood as a counterpart of Lemma L-25, which focuses on probabilities P (T = t|S =

s); s ∈ Σt(i).

Lemma L-27. Consider the IV model (1)–(3) in which unordered monotonicity A-3 holds.

Let t̄ = supp(T )\{t} and s, s′ ∈ supp(S) such that s, s′ ∈ Σt(i) for some i ∈ {1, . . . , NZ−1},

then the following equalities for probabilities P (T = t|S = s); s ∈ Σt(i) hold:

P (T ∈ t̄|S = s) = P (T ∈ t̄|S = s′) for any s, s′ ∈ Σt(i) (A.75)

P (T ∈ t̄|S = s) = P (T ∈ t̄|S ∈ Σt(i)) for all s ∈ Σt(i). (A.76)
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Moreover, if Σt(i) ∩ Σt′(i
′) 6= ∅ ⇒ Σt(i) ∩ Σt′(i

′) = Σt′(i
′) holds for all t′ ∈ t̄, and i′ ∈

{1, . . . , NZ},

then P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)
∑
t′∈t̄

(
B+
t′PZ(t′)

)
�
(
B′t′PrZ

)
. (A.77)

where �, PrZ and bt(i) follow our previous notation.

Proof. From Equation (A.75) comes from (A.68) of Lemma L-25:

P (T ∈ t̄|S = s) =
(

1− P (T = t|S = s)
)

=
(

1− P (T = t|S = s′)
)

= P (T ∈ t̄|S = s′) for all s, s′ ∈ Σt(i).

From Equation (A.76) comes from (A.69) of Lemma L-25:

P (T ∈ t̄|S ∈ Σt(i)) =
(

1− P (T = t|S ∈ Σt(i))
)

=
(

1− P (T = t|S = s)
)

= P (T ∈ t̄|S = s) for any s ∈ Σt(i).

We now rewrite probability P (T ∈ t̄|S ∈ Σt(i)) in (A.76) as:

P (T ∈ t̄|S ∈ Σt(i)) =
∑
t′∈t̄

P (T = t′|S ∈ Σt(i))

=
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]P (T = t′|S ∈ Σt(i) ∩ Σt′ (i

′))
P (S ∈ Σt(i) ∩ Σt′ (i

′))

P (S ∈ Σt(i))

=
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]P (T = t′|S ∈ Σt′ (i

′))
P (S ∈ Σt′ (i

′))

P (S ∈ Σt(i))

⇒ P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i)) =
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]P (T = t′|S ∈ Σt′ (i

′))P (S ∈ Σt′ (i
′))

=
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]bt′ (i′)

(
B+

t PZ(t)
)
�
(
B′tPrZ

)
.

=
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]bt′ (i′)

(B+
t′PZ(t′)

)
�
(
B′tPrZ

)

=
∑
t′∈t̄

NZ∑
i′=0

bt′ (i
′)� bt(i)

(B+
t′PZ(t′)

)
�
(
B′tPrZ

)
=
∑
t′∈t̄

bt(i)
(
B+

t′PZ(t′)
)
�
(
B′tPrZ

)
∴ P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)

∑
t′∈t̄

(
B+

t′PZ(t′)
)
�
(
B′tPrZ

)

The second equality applies the law of iterated expectations over the partition suggested
by Equation (A.70) of Lemma A.72. The equality introduces the binary indicator 1[Σt(i) ∩
Σt′(i

′) 6= ∅] that assures a summation within the response types in Σt(i). Nevertheless, if a
response-type set Σ is empty, that is Σ = ∅ then P (S ∈ Σ) = 0. The third equality uses the
assumption that Σt(i) ∩ Σt′(i

′) = Σt′(i
′) whenever Σt(i) ∩ Σt′(i

′) 6= ∅. The fourth equality
generates the term P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i)), which is our object of analysis as
stated in the lemma. The fifth equality applies the result of Equation (A.70) of Lemma L-
25, namely P (T = t′|S ∈ Σt′(i

′))P (S ∈ Σt′(i
′)) = bt′(i

′)(B+
t PZ(t)) � (B′tPrZ). The sixth

equality isolates the common term (B+
t PZ(t)) � (B′tPrZ) of the summation. The seventh

equality uses the result stated by Equation (A.74) of Lemma L-26, that is, 1[Σt(i)∩Σt′(i
′) 6=
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∅] · bt′(i′) = bt′(i
′)� bt(i). The eighth equality uses the result stated by Equation (A.72) of

Lemma L-26, that is, bt(i) =
∑NZ

i′=0 bt′(i
′)� bt(i). The eighth equality isolates the common

term bt(i).

Lemma L-28 shows the identification formula for E(Y (t) · 1[T = t]|S ∈ Σt(i)) that will

be useful in our final proof.

Lemma L-28. Consider the IV model (1)–(3) in which unordered monotonicity A-3 holds.

Let t ∈ supp(T ) and i ∈ {1, . . . , NZ} then:

E(Y (t) · 1[T = t]|S ∈ Σt(i)) = E(Y (t)|S ∈ Σt(i)) · P (T = t|S ∈ Σt(i)), (A.78)

and E(Y (t) · 1[T = t]|S ∈ Σt(i))P (S ∈ Σt(i)) is identified by:

E(Y (t) · 1[T = t]|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
. (A.79)

Proof. Equation (A.79) is demonstrated below:

E(Y (t) · 1[T = t]|S ∈ Σt(i)) =
∑

s∈Σt(i)

E(Y (t) · 1[T = t]|S = s)
P (S = s)

P (S ∈ Σt(i))

=
∑

s∈Σt(i)

E(Y (t)|S = s) · E(1[T = t]|S = s)
P (S = s)

P (S ∈ Σt(i))

=

∑
s∈Σt(i)

E(Y (t)|S = s) · P (T = t|S = s)P (S = s)

P (S ∈ Σt(i))

⇒ E(Y (t) · 1[T = t]|S ∈ Σt(i))P (S ∈ Σt(i) =
∑

s∈Σt(i)

(
E(Y (t)|S = s)P (S = s)

)
P (T = t|S = s)

= P (T = t|S ∈ Σt(i))
( ∑

s∈Σt(i)

E(Y (t)|S = s)P (S = s)
)
,

= P (T = t|S ∈ Σt(i))
(
E(Y (t)|S ∈ Σt(i)) · P (S ∈ Σt(i))

)
,

∴ E(Y (t) · 1[T = t]|S ∈ Σt(i)) = P (T = t|S ∈ Σt(i))E(Y (t)|S ∈ Σt(i)). (A.80)

The fifth equality comes from Equation (A.69) of Lemma L-25 which state that P (T =
t|S = s) = P (T = t|S ∈ Σt(i)) for all s ∈ Σt(i). The last equation eliminates the term
P (S ∈ Σt(i)) in both sides of the equation.

According to Theorem T-6, E(Y (t)|S ∈ Σt(i)) ·P (S ∈ Σt(i)) is identified by E(Y (t)|S ∈
Σt(i)) · P (S ∈ Σt(i)) = bt(i)B

+
t QZ(t). Note that bt(i) is a row-vector of dimension 1×NS

and B+
t QZ(t) is a vector of dimension NS×1. Let ξ represent the vector ξ = B+

t QZ(t). The
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remaining of the proof of this lemma follows the rationale of Lemma L-25:

E(Y (t) · 1[T = t]|S ∈ Σt(i))P (S ∈ Σt(i))

= P (T = t|S ∈ Σt(i))
(
E(Y (t)|S ∈ Σt(i))P (S ∈ Σt(i)

)
= P (T = t|S ∈ Σt(i))

(
bt(i)B

+
t QZ(t)

)
= P (T = t|S ∈ Σt(i))

( ∑
s∈supp(S)

bt(i)[1, s] · ξ[s, 1]
)

=
∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S ∈ Σt(i))

=
∑

s∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S ∈ Σt(i)) +
∑

s 6∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S ∈ Σt(i))

=
∑

s∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S = s) +
∑

s 6∈Σt(i)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S = s)

=
∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1] · P (T = t|S = s)

=
∑

s∈supp(S)

bt(i)[1, s] · ξ[s, 1] ·
(
Bt[·, s]′PrZ

)
= bt(i)

(
ξ �

(
B′tPrZ

))
= bt(i)

(
B+

t QZ(t)
)
�
(
B′tPrZ

)
.

The first equality applies the result in Equation (A.80). The second equality uses E(Y (t)|S ∈
Σt(i)) · P (S ∈ Σt(i)) = bt(i)B

+
t QZ(t) from Theorem T-6. The third equality transforms

bt(i)B
+
t QZ(t) into a summation where ξ = B+

t QZ(t). The fourth equality includes the value
P (T = t|S ∈ Σt(i)) inside the summation. The fifth equality splits the summation into two
terms according to the following partition of the support of S : Σt(i) and supp(S) \ Σt(i).
The sixth equality replaces P (T = t|S ∈ Σt(i)) by P (T = t|S = s) in each term of the
sum. The reasons for the replacement differ in each term of the summation. The replace-
ment in the first term of the fourth equality is due to Equation (A.69) which states that
P (T = t|S = s) = P (T = t|S ∈ Σt(i)) for all s ∈ Σt(i). The replacement in the second
term of the fourth equality is due to the fact that bt(i)[1, s] = 0 for all s 6∈ Σt(i). The sev-
enth equality regroups the summation terms. The sixth equality uses the Equation (A.71)
(P (T = t|S = s) = Bt[·, s]′PrZ .) The eighth equality expresses the summation into ma-
trix form. The ninth equality uses the definition of the vector ξ = B+

t QZ(t). Note that if
Σt(i) = ∅ then bt(i) is a row-vector of elements zero and P (T = t|S ∈ Σt(i)) = 0.
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Proof. We now return to Equation (A.67):

∑
s∈Σt(i)

∑
t′∈t̄E(Y (t′)|S = s)P (T = t′|S = s)P (S = s)

P (S ∈ Σt(i))P (T ∈ t̄|S = s)

=

∑
t′∈t̄
∑
s∈Σt(i)

(
E(Y (t′)|S = s)P (T = t′|S = s)

)
P (S = s)

P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i))

=

∑
t′∈t̄
∑
s∈Σt(i)

(
E(Y (t′) · 1[T = t′]|S = s)

)
P (S = s)

P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i))

=

∑
t′∈t̄E(Y (t′) · 1[T = t′]|S ∈ Σt(i))P (S ∈ Σt(i))

P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i))
. (A.81)

The first Equality uses Equation (A.76) of Lemma L-27 which states that P (T ∈ t̄|S = s) =
P (T ∈ t̄|S ∈ Σt(i)) for all s ∈ Σt(i). The second equality uses the conditional independence
Y (t) ⊥⊥ T |S from Lemma L-1. The denominator of (A.81) is given by Equation (A.77) of
Lemma L-27 which states that:

P (T ∈ t̄|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)
∑
t′∈t̄

(
B+
t′PZ(t′)

)
�
(
B′t′PrZ

)
.

This is the expected expression. To prove the theorem, it remains to derive the expression
for the numerator of (A.81):

∑
t′∈t̄

E(Y (t′) · 1[T = t′]|S ∈ Σt(i))

P (S ∈ Σt(i))

=

∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]E(Y (t′) · 1[T = t′]|S ∈ Σt(i) ∩ Σt′ (i

′))
P (S ∈ Σt(i) ∩ Σt′ (i

′))

P (S ∈ Σt(i))

P (S ∈ Σt(i))

=
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]E(Y (t′) · 1[T = t′]|S ∈ Σt′ (i

′))P (S ∈ Σt′ (i
′))

=
∑
t′∈t̄

NZ∑
i′=0

1[Σt(i) ∩ Σt′ (i
′) 6= ∅]bt′ (i′)

(B+
t QZ(t)

)
�
(
B′tPrZ

)
.

=
∑
t′∈t̄

NZ∑
i′=0

bt′ (i
′)� bt(i)

(B+
t′PZ(t′)

)
�
(
B′tPrZ

)
=
∑
t′∈t̄

bt(i)
(
B+

t′QZ(t′)
)
�
(
B′tPrZ

)
∴
∑
t′∈t̄

E(Y (t′) · 1[T = t′]|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)
∑
t′∈t̄

(
B+

t′QZ(t′)
)
�
(
B′tPrZ

)
.

The proof follows the rationale of Lemma L-27. The first equality applies Partition (A.72)
of L-26. The second equality eliminates P (S ∈ Σt(i)) and uses Property (A.73) of L-
26. The third equality applies Equation A.79 of L-28 which states that E(Y (t) · 1[T =
t]|S ∈ Σt(i))P (S ∈ Σt(i)) = bt(i)

(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
. The fourth equality applies

Equation (A.74) of Lemma L-26 while the fifth equality applies Equation (A.72) of L-26.
The last equation isolates the common term bt(i).
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A.19 Derivation of the Equations for the Example of Theorem T-9

Theorem T-9 generates the following formulas for E(Y (ta)|S ∈ Σta(2)) and E(Y (t̄a)|S ∈

Σta(2)) for the response matrix R of Table 3:

E(Y (ta)|S ∈ Σta(2)) = E(Y (ta)|S ∈ {s2, s3}) =
bta(2)B+

taQZ(ta)

bta(2)B+
t PZ(ta)

(A.82)

E(Y (t̄a)|S ∈ Σta(2)) = E(Y ({tb, tc})|S ∈ {s2, s3}) =

=
bta(2)

(
B+
tb
QZ(tb)

)
�
(
B′tbPrZ

)
+ bta(2)

(
B+
tcQZ(tc)

)
�
(
B′tcPrZ

)
bta(2)

(
B+
tb
PZ(tb)

)
�
(
B′tbPrZ

)
+ bta(2)

(
B+
tcPZ(tc)

)
�
(
B′tcPrZ

) .
(A.83)

where PrZ = [P (Z = zno), P (Z = za), P (Z = zbc)]
′.

The components of Equation (A.82) that can be estimated from observed data are:

PZ(ta) = [P (T = ta|Z = zno), P (T = ta|Z = za), P (T = ta|Z = zbc)]
′;

QZ(ta) = [E(Y · 1[T = ta]|Z = zno), E(Y · 1[T = ta]|Z = za), E(Y · 1[T = ta]|Z = zbc)]
′.

The components of (A.82) that depend on the response matrix are:

bta(2) = [0, 1, 1, 0, 0, 0, 0];

Bta =


1 1 1 0 0 0 0

1 1 1 1 0 1 0

1 0 0 0 0 0 0

⇒ B+
ta =



0 0 1

1/2 0 −1/2

1/2 0 −1/2

−1/2 1/2 0

0 0 0

−1/2 1/2 0

0 0 0



.
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Equation (A.82) renders the following expressions:

bta(2)B+
taQZ(ta) = E(Y · 1[T = ta]|Z = zno)− E(Y · 1[T = ta]|Z = zbc),

bta(2)B+
t PZ(ta) = P (T = ta|Z = zno)− P (T = ta|Z = zbc), (A.84)

∴ E(Y (ta)|ta ∈ Σta(2)) =
E(Y · 1[T = ta]|Z = zno)− E(Y · 1[T = ta]|Z = zbc)

P (T = ta|Z = zno)− P (T = ta|Z = zbc)
. (A.85)

We now examine Equation (A.83). We first target the terms bta(2)
(
B+
tb
QZ(tb)

)
�
(
B′tbPrZ

)
and bta(2)

(
B+
tb
PZ(tb)

)
�
(
B′tbPrZ

)
. The components of these terms that can be estimated

from observed data are:

PZ(tb) = [P (T = tb|Z = zno), P (T = tb|Z = za), P (T = tb|Z = zbc)]
′;

QZ(tb) = [E(Y · 1[T = tb]|Z = zno), E(Y · 1[T = tb]|Z = za), E(Y · 1[T = tb]|Z = zbc)]
′;

PrZ = [P (Z = zno), P (Z = za), P (Z = zbc)].

The components of these terms that depend on the response matrix are:

Btb =


0 0 0 1 1 0 0

0 0 0 0 1 0 0

0 1 0 1 1 0 0

⇒ B+
tb

=



0 0 0

−1 0 1

0 0 0

1 −1 0

0 1 0

0 0 0

0 0 0



, B′tbPrZ =



0

P (Z = zbc)

0

P (Z = zno) + P (Z = zbc)

1

0

0



.

The examined terms render the following expressions:

bta(2)
(
B+

tb
QZ(tb)

)
�
(
B′tbPrZ

)
=
(
E(Y · 1[T = tb]|Z = zbc)− E(Y · 1[T = tb]|Z = zno)

)
P (Z = zbc),

bta(2)
(
B+

tb
PZ(tb)

)
�
(
B′tbPrZ

)
=
(
P (T = tb|Z = zbc)− P (T = tb|Z = zno)

)
P (Z = zbc).
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Next, we target the terms bta(2)
(
B+
tb
QZ(tb)

)
�
(
B′tbPrZ

)
and bta(2)

(
B+
tb
PZ(tb)

)
�
(
B′tbPrZ

)
.

The components of the terms that can be estimated from observed data are:

PZ(tb) = [P (T = tb|Z = zno), P (T = tb|Z = za), P (T = tb|Z = zbc)]
′;

QZ(tb) = [E(Y · 1[T = tb]|Z = zno), E(Y · 1[T = tb]|Z = za), E(Y · 1[T = tb]|Z = zbc)]
′;

PrZ = [P (Z = zno), P (Z = za), P (Z = zbc)].

The components of these terms that depend on the response matrix are:

Btc =


0 0 0 0 0 1 1

0 0 0 0 0 0 1

0 0 1 0 0 1 1

⇒ B+
tc =



0 0 0

0 0 0

−1 0 1

0 0 0

0 0 0

1 −1 0

0 1 0



, B′tcPrZ =



0

0

P (Z = zbc)

0

0

P (Z = zno)

1



.

The examined terms generate the following expressions:

bta(2)
(
B+

tcQZ(tc)
)
�
(
B′tcPrZ

)
=
(
E(Y · 1[T = tc]|Z = zbc)− E(Y · 1[T = tc]|Z = zno)

)
P (Z = zbc),

bta(2)
(
B+

tcPZ(tc)
)
�
(
B′tcPrZ

)
=
(
P (T = tc|Z = zbc)− P (T = tc|Z = zno)

)
P (Z = zbc).

Combining the terms we have that:

E(Y (t̄a)|S ∈ Σta (2)) =(
E(Y · 1[T = tc]|Z = zbc)− E(Y · 1[T = tc]|Z = zno)

)
+
(
E(Y · 1[T = tb]|Z = zbc)− E(Y · 1[T = tb]|Z = zno)

)(
P (T = tc|Z = zbc)− P (T = tc|Z = zno)

)
+
(
P (T = tb|Z = zbc)− P (T = tb|Z = zno)

) ,

which can be also written as:

E(Y (t̄a)|S ∈ Σta(2)) =

(
E(Y · 1[T 6= ta]|Z = zbc)− E(Y · 1[T 6= ta]|Z = zno)

)(
P (T 6= ta|Z = zbc)− P (T 6= ta|Z = zno)

) ,

63



A.20 Proof of Corollary C-5

Proof. Corollary C-3 states that:

E(Y (t)|t-Switchers) =

(∑NZ−1
i=1 bt(i)

)
B+
t QZ(t)(∑NZ−1

i=1 bt(i)
)
B+
taPZ(t)

.

Thus it suffices to prove that

E(Y (t̄)|t-Switchers) =
bt(i)

∑
t′∈t̄
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄
(
B+
t′PZ(t′)

)
�
(
B′t′PrZ

) .
We use Theorem T-9 to express E(Y (t̄)|t-Switchers) as:

E(Y (t̄)|t-Switchers) = E(Y (t̄)|S ∈ ∪NZ−1
i=1 Σt(i))

=

NZ−1∑
i=1

E(Y (t̄)|S ∈ Σt(i))
P (S ∈ Σt(i))

P (S ∈ ∪NZ−1
i=1 Σt(i))

=

NZ−1∑
i=1

bt(i)
∑

t′∈t̄
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄
(
B+
t′PZ(t′)

)
�
(
B′t′PrZ

) · bt(i)B
+
t PZ(t)(∑NZ−1

i=1 bt(i)
)
B+
t PZ(t)

.

The third equality uses the equation for P (S ∈ t-Switchers) of Corollary C-2 and the

expression for P (S ∈ Σt(i)) of Theorem T-6.

A.21 Derivation of Equations for Example of Corollary C-5

Corollary (C-5) states that E(Y (t)|t-Switchers) and E(Y (t̄)|t-Switchers) can be identified

by:

E(Y (t)|t-Switchers) =

(∑NZ−1
i=1 bt(i)

)
B+
t QZ(t)(∑NZ−1

i=1 bt(i)
)
B+
t PZ(t)

, (A.86)

E(Y (t̄)|t-Switchers) =

NZ−1∑
i=1

(
bt(i)

∑
t′∈t̄
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bt(i)

∑
t′∈t̄
(
B+
t′ PZ(t′)

)
�
(
B′t′PrZ

)). (A.87)
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The parameter E(Y (ta)|ta-Switchers) is associated with the response matrix R of Table 3

is computed in Example 7.1 . Thus we focus on Equation (A.87) for ta-Switchers. Namely:

E(Y (t̄a)|ta-Switchers) =

∑2
i=1

(
bta (i)

(
B+

tb
QZ(tb)

)
�
(
B′tb

PrZ

)
+
(
B+

tc
QZ(tc)

)
�
(
B′tcPrZ

)
bta (i)

(
B+

tb
PZ(tb)

)
�
(
B′tb

PrZ

)
+
(
B+

tc
PZ(tc)

)
�
(
B′tcPrZ

) )(∑2
i=1 bta(i)

)
B+
t PZ(ta)

. (A.88)

The denominator of Equation (A.88) is examined in Example 7.1 and is given by:

P (S ∈ ta-Switchers) =
( 2∑
i=1

bta(i)
)
B+
t PZ(ta) = P (T = ta|Z = za)− P (T = ta|Z = zbc). (A.89)

(
B+

tb
QZ(tb)

)
�
(
B′tbPrZ

)
=



0

E(Y · 1[T = tb]|Z = zbc)− E(Y · 1[T = tb]|Z = zno)

0

E(Y · 1[T = tb]|Z = zno)− E(Y · 1[T = tb]|Z = za)

E(Y · 1[T = tb]|Z = za)

0

0


�



0

P (Z = zbc)

0

P (Z = zno) + P (Z = zbc)

1

0

0


.

(
B+

tc
QZ(tc)

)
�
(
B′tcPrZ

)
=



0

0

E(Y · 1[T = tc]|Z = zbc)− E(Y · 1[T = tc]|Z = zno)

0

0

E(Y · 1[T = tc]|Z = zno)− E(Y · 1[T = tb]|Z = zb)

E(Y · 1[T = tc]|Z = zno)


�



0

0

P (Z = zbc)

0

0

P (Z = zno)

1


.

(
B+

tb
PZ(tb)

)
�
(
B′tbPrZ

)
=



0

P (T = tb|Z = zbc)− P (T = tb|Z = zno)

0

P (T = tb|Z = zno)− P (T = tb|Z = za)

P (T = tb|Z = za)

0

0


�



0

P (Z = zbc)

0

P (Z = zno) + P (Z = zbc)

1

0

0


.
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(
B+

tc
PZ(tc)

)
�
(
B′tcPrZ

)
=



0

0

P (T = tc|Z = zbc)− P (T = tc|Z = zno)

0

0

P (T = tc|Z = zno)− P (T = tb|Z = zb)

P (T = tc|Z = zno)


�



0

0

P (Z = zbc)

0

0

P (Z = zno)

1


.

Also, we have that bta(1) = [0, 0, 0, 1, 0, 1, 0]′ and bta(2) = [0, 1, 1, 0, 0, 0, 0]′, thus:

bta(1)
∑

t∈{tb,tc}
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bta(1)

∑
t∈{tb,tc}

(
B+
t′ PZ(t′)

)
�
(
B′t′PrZ

) = (
E(Y · 1[T = tb]|Z = zno)− E(Y · 1[T = tb]|Z = za)

)(
P (Z = zno) + P (Z = zbc)

)
+
(
E(Y · 1[T = tc]|Z = zno)− E(Y · 1[T = tb]|Z = zb)

)
P (Z = zno)


 (

P (T = tb|Z = zno)− P (T = tb|Z = za)
)(
P (Z = zno) + P (Z = zbc)

)
+
(
P (T = tc|Z = zno)− P (T = tb|Z = zb)

)
P (Z = zno)


(A.90)

bta(2)
∑

t∈{tb,tc}
(
B+
t′QZ(t′)

)
�
(
B′t′PrZ

)
bta(2)

∑
t∈{tb,tc}

(
B+
t′ PZ(t′)

)
�
(
B′t′PrZ

) = (
E(Y · 1[T = tb]|Z = zbc)− E(Y · 1[T = tb]|Z = zno)

)
P (Z = zbc)

+
(
E(Y · 1[T = tc]|Z = zbc)− E(Y · 1[T = tc]|Z = zno)

)
P (Z = zbc)


 (

P (T = tb|Z = zbc)− P (T = tb|Z = zno)
)
P (Z = zbc)

+
(
P (T = tc|Z = zbc)− P (T = tc|Z = zno)

)
P (Z = zbc)


(A.91)

Parameter E(Y (t̄a)|ta-Switchers) is given by the sum of the expressions in (A.90) and (A.91)

divided by the probability in (A.89).
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B Directed Graphs for IV and Strata

This section presents IV model (1)–(6) as a directed acyclic graph and introduces strata into

this framework. The IV model defined in (1)–(3) can be equivalently restated as:

T = fT (Z,V ), Y = fY (T,V , εY ), V = fV (εV ), Z = fZ(εZ), (B.1)

where

(εY , εV , εZ) are mutually independent error terms. (B.2)

Equations (B.1) specify the causal directions of the IV model (1)–(3). Instrument Z

affects T but does not directly affect Y . Z affects Y only through its effect on T .

Causal relationships are indicated by directed arrows. Unobserved variables are repre-

sented by circles. Squares represent observed variables. This leads to the Directed Acyclic

Graph B.1.

Figure B.1: DAG for the Standard Choice Model with Instrumental Variables

V

YTZ

εV

εZ εY

This figure represents the confounding model with instrumental variables as a DAG. Arrows represent direct causal relations.

Circles represent unobserved variables. Squares represent observed variables.

It is standard (but sometimes confusing) not to depict the error terms (εZ , εT , εY , εV )

which, in Figure B.1, are represented as circles with arrows pointing to their associated

variables, and we follow this convention in Figure B.2:
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Figure B.2: A Causal Model with Instrumental Variables

V

YTZ

This figure represents the confounding model with instrumental variables as a DAG. Arrows represent direct causal relations.

Circles represent unobserved variables and the ε are kept implicit. Squares represent observed variables.

We note that strata add no new information not already present in the DAG of Figure B.2.

See Figure B.3.

Figure B.3: IV Model with Response Vector S

VS

YTZ

Notes: This figure represents the confounding model with instrumental variables and response vector S as a DAG. Arrows

represent direct causal relations. Circles represent unobserved variables and the ε are kept implicit. Squares represent observed

variables.

Strata are just representations of the model that give a coarser summary of the influence of

V on T that is useful as a control function.
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C Examples of the Benefits of Using Indicator Func-

tions for the General Unordered Model

This section6 provides a simple example that clarifies the ideas discussed in the main paper.

Let Tω ∈ {1, 2, 3} be the choice made by agent ω. Let Zω ∈ {z0, z1} be an instrumental

variable. Yω is the observed outcome. Yω(t, z) denotes the counterfactual outcome when Tω

is fixed at t ∈ {1, 2, 3} and Zω is fixed at z ∈ {z0, z1}. Tω(z) is the counterfactual choice

when the instrument is fixed at z ∈ {z0, z1}. Exclusion restrictions require that Yω(t, z0) =

Yω(t, z1) ≡ Yω(t). Independence relation
(
Y (t), T (z)

)
⊥⊥ Z ; z ∈ {z0, z1}, t ∈ {1, 2, 3} is a

version of random assignment.

If choices are ordered, one can invoke Ordered Monotonicity: Tω(z1) ≥ Tω(z0) for all ω.

Under it, E(Y |Z = z1)− E(Y |Z = z0) identifies:

E(Y |Z = z1)− E(Y |Z = z0)

=
2∑
t=1

3∑
t′=t+1

E(Y (t′)− Y (t)|T (z1) = t′, T (z0) = t)P (T (z1) = t′, T (z0) = t). (C.1)

This is the gain (over all possible outcomes) arising from a change in the instrument from

Z = z0 to Z = z1.

Proof. Ordered Monotonicity, that is, Tω(z1) ≥ Tω(z0) for all ω, generates the following

response matrix:

s1 s2 s3 s4 s5 s6

R =

 1 2 3 1 1 2

1 2 3 2 3 3

 values for T (z0)

values for T (z1)
· (C.2)

6This sub-appendix was motivated by the comments of Elie Tamer.
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From Equation (14) of Theorem T-1, we have the following relationships:

E(Y · 1[T = 1]|Z = z0) = E(Y (1)|S = s1)P (S = s1) + E(Y (1)|S = s4)P (S = s4)

+ E(Y (1)|S = s5)P (S = s5)

E(Y · 1[T = 2]|Z = z0) = E(Y (2)|S = s2)P (S = s2) + E(Y (2)|S = s6)P (S = s6)

E(Y · 1[T = 3]|Z = z0) = E(Y (3)|S = s3)P (S = s3)

Also

E(Y · 1[T = 1]|Z = z1) = E(Y (1)|S = s1)P (S = s1)

E(Y · 1[T = 2]|Z = z1) = E(Y (2)|S = s2)P (S = s2) + E(Y (2)|S = s4)P (S = s4)

E(Y · 1[T = 3]|Z = z1) = E(Y (3)|S = s3)P (S = s3) + E(Y (3)|S = s5)P (S = s5)

+ E(Y (3)|S = s6)P (S = s6)

But we can express E(Y |Z = z) as E(Y |Z = z) =
∑3

t=1E(Y · 1[T = t]|Z = z), thus:

E(Y |Z = z1)− E(Y |Z = z0) =

3∑
t=1

E(Y · 1[T = t]|Z = z1)− E(Y · 1[T = t]|Z = z0),

where

E(Y · 1[T = 1]|Z = z1)− E(Y · 1[T = 1]|Z = z0) = −
(
E(Y (1)|S = s4)P (S = s4) + E(Y (1)|S = s5)P (S = s5)

)
E(Y · 1[T = 2]|Z = z1)− E(Y · 1[T = 2]|Z = z0) = E(Y (2)|S = s4)P (S = s4)− E(Y (2)|S = s6)P (S = s6)

E(Y · 1[T = 3]|Z = z1)− E(Y · 1[T = 3]|Z = z0) = E(Y (3)|S = s5)P (S = s5) + E(Y (3)|S = s6)P (S = s6)

The summation of all the terms above generates Equation (C.1):

E(Y |Z = z1)− E(Y |Z = z0) =

2∑
t=1

3∑
t′=t+1

E(Y (t′)− Y (t)|T (z1) = t′, T (z0) = t)P (T (z1) = t′, T (z0) = t).

Our analysis requires no order on T . Our analysis is based on 1[Tω(z) = t], which takes

value 1 if Tω(z) = t and zero otherwise. If choices are not ordered, economic theory can be

used to justify monotonicity relationships based on indicator functions generated by Tω(z)

and not the Tω(z). Using this notation, an example of monotonicity expressed in terms of

indicator functions is the order 1[Tω(z1) = t] ≥ 1[Tω(z0) = t]; t ∈ {1, 3}, assumed to hold for
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all ω. For this case, E(Y |Z = z1)− E(Y |Z = z0) identifies:

E(Y |Z = z1)− E(Y |Z = z0)

=
∑
t∈{1,3}

E(Y (t)− Y (2)|T (z1) = t, T (z0) = 2)P (T (z1) = t, T (z0) = 2). (C.3)

Proof. Suppose instead that the following monotonicity relation holds:

1[Tω(z1) = t] ≥ 1[Tω(z0) = t]; t ∈ {1, 3} for all ω.

In this case, the associated response matrix is given by:

s1 s2 s3 s4 s5

R =

 1 2 3 2 2

1 2 3 1 3

 values for T (z0)

values for T (z1)
· (C.4)

According to Equation (14) of Theorem T-1, we have the following relations:

E(Y · 1[T = 1]|Z = z0) = E(Y (1)|S = s1)P (S = s1)

E(Y · 1[T = 2]|Z = z0) = E(Y (2)|S = s2)P (S = s2) + E(Y (2)|S = s4)P (S = s4) + E(Y (2)|S = s5)P (S = s5)

E(Y · 1[T = 3]|Z = z0) = E(Y (3)|S = s3)P (S = s3)

Also E(Y · 1[T = 1]|Z = z1) = E(Y (1)|S = s1)P (S = s1) + E(Y (1)|S = s4)P (S = s4)

E(Y · 1[T = 2]|Z = z1) = E(Y (2)|S = s2)P (S = s2)

E(Y · 1[T = 3]|Z = z1) = E(Y (3)|S = s3)P (S = s3) + E(Y (3)|S = s5)P (S = s5)

In the same fashion as previous analysis, we can express E(Y |Z = z) as E(Y |Z = z) =∑3
t=1 E(Y · 1[T = t]|Z = z), thus:

E(Y |Z = z1)− E(Y |Z = z0) =

3∑
t=1

E(Y · 1[T = t]|Z = z1)− E(Y · 1[T = t]|Z = z0),

where

E(Y · 1[T = 1]|Z = z1)− E(Y · 1[T = 1]|Z = z0) = E(Y (1)|S = s4)P (S = s4)

E(Y · 1[T = 2]|Z = z1)− E(Y · 1[T = 2]|Z = z0) = −
(
E(Y (2)|S = s4)P (S = s4) + E(Y (2)|S = s5)P (S = s5)

)
E(Y · 1[T = 3]|Z = z1)− E(Y · 1[T = 3]|Z = z0) = E(Y (3)|S = s5)P (S = s5)

The summation of all the terms above generates Equation (C.3):

E(Y |Z = z1)− E(Y |Z = z0) =
∑

t∈{1,3}

E(Y (t)− Y (2)|T (z1) = t, T (z0) = 2)P (T (z1) = t, T (z0) = 2).
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D Response Type Elimination due to Monotonic Re-

lationships and Choice Restrictions

Table D.1 presents the 27 response types of the multiple treatment model analyzed in Sec-

tion 5. Table D.1 considers the case where Z takes values in supp(Z) = {zno, za, zbc}, and

displays the restrictions on admissible strata imposed by the relationships presented at the

base of the table.
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Table D.1: Response Types and Elimination of Response Types for S when supp(Z) =
{zno, za, zbc} Under Restrictions (41)–(44)

Values Instrumental Variable Z takes Restriction Analysis
Response No Voucher Voucher for a Voucher for b or c Relation 1 Relation 2 Relation 3 Relation 4

Types T (zno) T (za) T (zbc)

1 ta ta ta X X X X
2 ta ta tb X X X X
3 ta ta tc X X X X
4 ta tb ta 7 7 X 7

5 ta tb tb 7 X X X
6 ta tb tc 7 X X X
7 ta tc ta 7 7 X 7

8 ta tc tb 7 X X X
9 ta tc tc 7 X X X
10 tb ta ta X X 7 X
11 tb ta tb X X X X
12 tb ta tc X X X X
13 tb tb ta X 7 7 7

14 tb tb tb X X X X
15 tb tb tc X X X X
16 tb tc ta X 7 7 7

17 tb tc tb X X X X
18 tb tc tc X X X X
19 tc ta ta X X 7 X
20 tc ta tb X X X X
21 tc ta tc X X X X
22 tc tb ta X 7 7 7

23 tc tb tb X X X X
24 tc tb tc X X X X
25 tc tc ta X 7 7 7

26 tc tc tb X X X X
27 tc tc tc X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno, za, zbc} and treatment status T ranges over {tno, ta, tbc}. The first column enumerates the 27 possible
response types. Columns 2 to 4 indicate the response types according to the vector of the values that [T (zno) , T (za) , T (zbc)]
takes. Columns 5 to 8 indicate whether the response type violates any of the following monotonicity relations:

Relationship 1 1[Tω(zno) = ta] ≤ 1[Tω(za) = ta]
Relationship 2 1[Tω(zbc) = ta] ≤ 1[Tω(za) = ta]
Relationship 3 1[Tω(zno) ∈ {b, c}] ≤ 1[Tω(zbc) ∈ {b, c}]
Relationship 4 1[Tω(za) ∈ {b, c}] ≤ 1[Tω(zbc) ∈ {b, c}]

A check mark sign indicates that the associated response type does not violate the relation. A cross sign indicates that the
associated response type violates the relation.
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The table shows which response types violate the monotonicity relationships in (41)–(44),

which are restated below for sake of clarity:

Relationship 1 1[Tω(zno) = ta] ≤ 1[Tω(za) = ta]

Relationship 2 1[Tω(zbc) = ta] ≤ 1[Tω(za) = ta]

Relationship 3 1[Tω(zno) ∈ {b, c}] ≤ 1[Tω(zbc) ∈ {b, c}]

Relationship 4 1[Tω(za) ∈ {b, c}] ≤ 1[Tω(zbc) ∈ {b, c}]

The elimination process described in Table D.1 generates the response matrixR of Table 1

in the text reproduced as Table D.2.

Table D.2: Response Matrix Generated by Monotonicity relationship (41)–(44)

Instrumental Counterfactual Response Types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13 s14 s15

No Voucher T (zno) ta ta ta tb tb tb tb tb tb tc tc tc tc tc tc
Voucher for a T (za) ta ta ta ta ta tb tb tc tc ta ta tb tb tc tc

Voucher for b or c T (zbc) ta tb tc tb tc tb tc tb tc tb tc tb tc tb tc

Table D.3 displays the response types that violate the following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(za) = ta

Choice Restriction 2 Chω(zno) = tb ⇒ Chω(za) 6= tc and Chω(zbc) 6= ta

Choice Restriction 3 Chω(zno) = tc ⇒ Chω(za) 6= tb and Chω(zbc) 6= ta

Choice Restriction 4 Chω(za) = tb ⇒ Chω(zno) = tb and Chω(zbc) 6= ta

Choice Restriction 5 Chω(za) = tc ⇒ Chω(zno) = tc and Chω(zbc) 6= ta

Choice Restriction 6 Chω(zbc) = ta ⇒ Chω(zno) = ta and Chω(za) = ta

The elimination process described in Table D.3 generates the response matrix R of Ta-

ble D.4 that has 11 response types.
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Table D.3: Restrictions on Response Vector S for supp(Z) = {zno, za, zbc} Under 6 Choice
Restrictions below

Values Instrumental Variable Z takes Restriction Analysis
Response No Voucher Voucher for a Voucher for b or c Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6

Types T (zno) T (za) T (zbc)

1 ta ta ta X X X X X X
2 ta ta tb X X X X X X
3 ta ta tc X X X X X X
4 ta tb ta 7 X X 7 X 7

5 ta tb tb 7 X X 7 X X
6 ta tb tc 7 X X 7 X X
7 ta tc ta 7 X X X 7 7

8 ta tc tb 7 X X X 7 X
9 ta tc tc 7 X X X 7 X
10 tb ta ta X 7 X X X 7

11 tb ta tb X X X X X X
12 tb ta tc X X X X X X
13 tb tb ta X 7 X 7 X 7

14 tb tb tb X X X X X X
15 tb tb tc X X X X X X
16 tb tc ta X 7 X X 7 7

17 tb tc tb X 7 X X 7 X
18 tb tc tc X 7 X X 7 X
19 tc ta ta X X 7 X X 7

20 tc ta tb X X X X X X
21 tc ta tc X X X X X X
22 tc tb ta X X 7 7 X 7

23 tc tb tb X X 7 7 X X
24 tc tb tc X X 7 7 X X
25 tc tc ta X X 7 X 7 7

26 tc tc tb X X X X X X
27 tc tc tc X X X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno, za, zbc} and treatment status T ranges over {ta, tb, tc}. The first column enumerates the 27 possible response
types. Columns 2 to 4 indicate the response types according to the vector of the values that [T (zno) , T (za) , T (zbc)] takes.
The remaining six columns indicate whether the response type violates any of the following choice restrictions respectively:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(za) = ta
Choice Restriction 2 Chω(zno) = tb ⇒ Chω(za) 6= tc and Chω(zbc) 6= ta
Choice Restriction 3 Chω(zno) = tc ⇒ Chω(za) 6= tb and Chω(zbc) 6= ta
Choice Restriction 4 Chω(za) = tb ⇒ Chω(zno) = tb and Chω(zbc) 6= ta
Choice Restriction 5 Chω(za) = tc ⇒ Chω(zno) = tc and Chω(zbc) 6= ta
Choice Restriction 6 Chω(zbc) = ta ⇒ Chω(zno) = ta and Chω(za) = ta

A check mark sign indicates that the associated response type does not violate the choice restriction. A cross sign indicates
that the associated response type violates the choice restriction.
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Table D.4 displays the response types arising from applying WARP (49) for the budget

sets (46)–(48):

Table D.4: Admissible Response Types under WARP (49)

Instrumental Count. Response Types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11

No Voucher T (zno) ta ta ta tb tb tb tb tc tc tc tc
Voucher for a T (za) ta ta ta ta ta tb tb ta ta tc tc

Voucher for b or c T (zbc) ta tb tc tb tc tb tc tb tc tb tc

Table D.5 illustrates the response types for the choice restrictions of Table 2 in the text:
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Table D.5: Elimination of Response Types for supp(Z) = {zno, za, zbc} and 7 Choice Restric-
tions

Values Instrumental Variable Z takes Restriction Analysis
Response No Voucher Voucher for a Voucher for b or c Res. 1 Res. 2 Res. 3 Res. 4 Res. 5 Res. 6 Res. 7

Types T (zno) T (za) T (zbc)

1 ta ta ta X X X X X X X
2 ta ta tb X X X X X X X
3 ta ta tc X X X X X X X
4 ta tb ta 7 X X 7 X 7 X
5 ta tb tb 7 X X 7 X X X
6 ta tb tc 7 X X 7 X X X
7 ta tc ta 7 X X X 7 7 X
8 ta tc tb 7 X X X 7 X X
9 ta tc tc 7 X X X 7 X X
10 tb ta ta X 7 X X X 7 7

11 tb ta tb X X X X X X X
12 tb ta tc X X X X X X 7

13 tb tb ta X 7 X 7 X 7 7

14 tb tb tb X X X X X X X
15 tb tb tc X X X X X X 7

16 tb tc ta X 7 X X 7 7 7

17 tb tc tb X 7 X X 7 X X
18 tb tc tc X 7 X X 7 X 7

19 tc ta ta X X 7 X X 7 7

20 tc ta tb X X X X X X 7

21 tc ta tc X X X X X X X
22 tc tb ta X X 7 7 X 7 7

23 tc tb tb X X 7 7 X X 7

24 tc tb tc X X 7 7 X X X
25 tc tc ta X X 7 X 7 7 7

26 tc tc tb X X X X X X 7

27 tc tc tc X X X X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno, za, zbc} and treatment status T ranges over {ta, tb, tc}. The first column enumerates the 27 possible response
types. Columns 2 to 4 indicate the response types according to the vector of the values that [T (zno) , T (za) , T (zbc)] takes.
The remaining seven columns indicate whether the response type violates any of the following choice restrictions respectively:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(za) = ta
Choice Restriction 2 Chω(zno) = tb ⇒ Chω(za) 6= tc and Chω(zbc) 6= ta
Choice Restriction 3 Chω(zno) = tc ⇒ Chω(za) 6= tb and Chω(zbc) 6= ta
Choice Restriction 4 Chω(za) = tb ⇒ Chω(zno) = tb and Chω(zbc) 6= ta
Choice Restriction 5 Chω(za) = tc ⇒ Chω(zno) = tc and Chω(zbc) 6= ta
Choice Restriction 6 Chω(zbc) = ta ⇒ Chω(zno) = ta = Chω(za) = ta
Choice Restriction 7 Chω(zno) 6= ta ⇒ Chω(zbc) = Chω(zno)

A check mark sign indicates that the associated response type does not violate the choice restriction. A cross sign indicates
that the associate response type violates the choice restriction.
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Table D.6 demonstrates the restrictions on admissible response types from the restrictions

imposed in Table 4 in the text.
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Table D.6: Elimination Response Types Under Unordered Monotonicity

Response Values Z takes Elimination of Response Types
Types T (zno) T (za) T (zbc) Rel. 1 Rel. 2 Rel. 3 Rel. 4 Rel. 5 Rel. 6 Rel. 7 Rel. 8 Rel. 9

1 ta ta ta X X X X X X X X X
2 ta ta tb X X X X X X X X X
3 ta ta tc X X X X X X X X X
4 ta tb ta 7 X 7 7 X 7 X X X
5 ta tb tb 7 X X 7 X X X X X
6 ta tb tc 7 X X 7 X 7 X X X
7 ta tc ta 7 X 7 X X X 7 X 7

8 ta tc tb 7 X X X X X 7 X 7

9 ta tc tc 7 X X X X X 7 X X
10 tb ta ta X 7 X X 7 X X X X
11 tb ta tb X X X X X X X X X
12 tb ta tc X X X X 7 X X X X
13 tb tb ta X 7 7 X 7 7 X X X
14 tb tb tb X X X X X X X X X
15 tb tb tc X X X X 7 7 X X X
16 tb tc ta X 7 7 X 7 X 7 X 7

17 tb tc tb X X X X X X 7 X 7

18 tb tc tc X X X X 7 X 7 X X
19 tc ta ta X 7 X X X X X 7 X
20 tc ta tb X X X X X X X 7 X
21 tc ta tc X X X X X X X X X
22 tc tb ta X 7 7 7 X 7 X 7 X
23 tc tb tb X X X 7 X X X 7 X
24 tc tb tc X X X 7 X 7 X X X
25 tc tc ta X 7 7 X X X X 7 7

26 tc tc tb X X X X X X X 7 7

27 tc tc tc X X X X X X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges
over, supp(Z) = {zno, za, zbc} and treatment status T ranges over supp(T ) = {ta, tb, tc}. The first column enumerates the 27
possible response types. Columns 2 to 4 presents the response types according to the vector of the values that
[Tω(zno) , Tω(za) , Tω(zbc)] takes. Columns 5 to 13 indicate whether the response type violates any of the following
monotonicity relations:

Monotonicity Relation 1 1[Tω(zno) = ta] ≤ 1[Tω(za) = ta]
Monotonicity Relation 2 1[Tω(zbc) = ta] ≤ 1[Tω(zno) = ta]
Monotonicity Relation 3 1[Tω(zbc) = ta] ≤ 1[Tω(za) = ta]
Monotonicity Relation 4 1[Tω(za) = tb] ≤ 1[Tω(zno) = tb]
Monotonicity Relation 5 1[Tω(zno) = tb] ≤ 1[Tω(zbc) = tb]
Monotonicity Relation 6 1[Tω(za) = tb] ≤ 1[Tω(zbc) = tb]
Monotonicity Relation 7 1[Tω(za) = tc] ≤ 1[Tω(zno) = tc]
Monotonicity Relation 8 1[Tω(zno) = tc] ≤ 1[Tω(zbc) = tc]
Monotonicity Relation 9 1[Tω(za) = tc] ≤ 1[Tω(zbc) = tc]

A check mark sign indicates that the associated response type does not violates the relation. A cross sign indicates that the
associated response type violates the relation.
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We present additional examples next.

D.1 Another Example of Choice Restrictions That Generate an

Unordered Monotonic Response

Suppose that Z takes values in supp(Z) = {zno, zb, zbc}. Following the rationale of Sec-

tion 5.2, assume the following budget relationships:

Budget Relationships for ta Λω(zno, ta) = Λω(zb, ta) = Λω(zbc, ta)

Budget Relationships for tb Λω(zno, tb) ⊂ Λω(zb, tb) = Λω(zbc, tb)

Budget Relationships for tc Λω(zno, tc) = Λω(zb, tc) ⊂ Λω(zbc, tc)

The budget set relationships above can be used as input to WARP (49), which generates

the following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(zb) 6= tc

Choice Restriction 2 Chω(zno) = tb ⇒ Chω(zb) = tb and Chω(zc) 6= ta

Choice Restriction 3 Chω(zno) = tc ⇒ Chω(zb) 6= ta and Chω(zc) 6= ta

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) = ta and Chω(zc) 6= tb

Choice Restriction 5 Chω(zb) = tb ⇒ Chω(zc) 6= ta

Choice Restriction 6 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc

Choice Restriction 7 Chω(zbc) = ta ⇒ Chω(za) = ta and Chω(zb) = ta

Choice Restriction 8 Chω(zbc) = tb ⇒ Chω(zb) = tb

The elimination process described below in Table D.7 generates the response matrix D.8:
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Table D.7: Restrictions on Response Vector S for supp(Z) = {zno, zb, zbc} Under Choice
Restrictions below

Values Instrumental Variable Z takes Choice Restriction Analysis
Response No Voucher Voucher for b Voucher b and c 1 2 3 4 5 6 7 8

Types T (zno) T (zb) T (zbc)

1 ta ta ta X X X X X X X X
2 ta ta tb X X X 7 X X X 7

3 ta ta tc X X X X X X X X
4 ta tb ta X X X X 7 X 7 X
5 ta tb tb X X X X X X X X
6 ta tb tc X X X X X X X X
7 ta tc ta 7 X X X X 7 7 X
8 ta tc tb 7 X X X X 7 X 7

9 ta tc tc 7 X X X X 7 X X
10 tb ta ta X 7 X 7 X X 7 X
11 tb ta tb X 7 X 7 X X X 7

12 tb ta tc X 7 X 7 X X X X
13 tb tb ta X 7 X X 7 X 7 X
14 tb tb tb X X X X X X X X
15 tb tb tc X X X X X X X X
16 tb tc ta X 7 X X X 7 7 X
17 tb tc tb X 7 X X X 7 X 7

18 tb tc tc X 7 X X X 7 X X
19 tc ta ta X X 7 7 X X 7 X
20 tc ta tb X X 7 7 X X X 7

21 tc ta tc X X 7 7 X X X X
22 tc tb ta X X 7 X 7 X 7 X
23 tc tb tb X X X X X X X X
24 tc tb tc X X X X X X X X
25 tc tc ta X X 7 X X 7 7 X
26 tc tc tb X X X X X 7 X 7

27 tc tc tc X X X X X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno, zb, zbc} and treatment status T ranges over {ta, tb, tc}. The first column enumerates the 27 possible response
types. Columns 2 to 4 indicate the response types according to the vector of the values that [T (zno) , T (zb) , T (zbc)] takes.
The remaining eight columns indicate whether the response type violates any of the following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(zb) 6= tc
Choice Restriction 2 Chω(zno) = tb ⇒ Chω(zb) = tb and Chω(zc) 6= ta
Choice Restriction 3 Chω(zno) = tc ⇒ Chω(zb) 6= ta and Chω(zc) 6= ta
Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) = ta and Chω(zc) 6= tb
Choice Restriction 5 Chω(zb) = tb ⇒ Chω(zc) 6= ta
Choice Restriction 6 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc
Choice Restriction 7 Chω(zbc) = ta ⇒ Chω(za) = ta and Chω(zb) = ta
Choice Restriction 8 Chω(zbc) = tb ⇒ Chω(zb) = tb

A check mark sign indicates that the associated response type does not violate the choice restriction. A cross sign indicates
that the associated response type violates the choice restriction.
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Table D.8: Response Types Generated by WARP only for supp(Z) = {zno, zb, zbc}.

Instrumental Count. Response Types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7 s8 s9

No Voucher T (zno) ta ta ta ta tb tb tc tc tc
Voucher for b T (zb) ta ta tb tb tb tb tb tb tc

Voucher for b or c T (zbc) ta tc tb tc tb tc tb tc tc

If we also assume neutral income effects, we can eliminate response types s7 and s8 above

and obtain the response matrix of Table 5 of the main paper, presented here as D.9:

Table D.9: Response Types Generated by WARP and Neutral Income Effects for supp(Z) =
{zno, zb, zbc}.

Instrumental Count. Response Types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7

No Voucher T (zno) ta ta ta ta tb tc tc
Voucher for car b T (zb) ta ta tb tb tb tb tc

Voucher for car b or c T (zbc) ta tc tb tc tb tc tc

D.2 An Example Where Choice Restrictions Fail to Generate

Identification

Choice restrictions do not always generate response matrices that achieve identification.

Table D.10 presents a response matrix generated by the reveled preference analysis when Z

takes values in supp(Z) = {zno, zb, zc}. The generated response matrix is not consistent with

unordered monotonicity A-3 and the rank of its associated binary matrix BT is equal to 7,

which is less that the number of response types, i.e., 8. Thus, response-type probabilities
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are not identified (Corollary C-1).

Table D.10: Response Types Generated by WARP and Normal Choices for supp(Z) =
{zno, zb, zc}.

Instrumental Count. Response Types of S

Variables Choices s1 s2 s3 s4 s5 s6 s7 s8

No Voucher T (zno) ta ta ta ta tb tb tc tc

Voucher for car b T (zb) ta ta tb tb tb tb tb tc

Voucher for car c T (zc) ta tc ta tc tb tc tc tc

As another example, suppose Z takes values in supp(Z) = {zno, zb, zc}. Following the

same rationale of Section 5.2, we assume the following budget relations:

Budget Relationships for ta Λω(zno, ta) = Λω(zb, ta) = Λω(zc, ta)

Budget Relationships for tb Λω(zno, tb) = Λω(zc, tb) ⊂ Λω(zb, tb)

Budget Relationships for tc Λω(zno, tc) = Λω(zb, tc) ⊂ Λω(zc, tc)

The budget set relations above can be used as input to WARP (49), which generates the

following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(zb) 6= tc and Chω(zc) 6= tb

Choice Restriction 2 Chω(zno) = tb ⇒ Chω(zb) = tb and Chω(zc) 6= ta

Choice Restriction 3 Chω(zno) = tc ⇒ Chω(zb) 6= ta and Chω(zc) = tc

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) = ta and Chω(zc) 6= tb

Choice Restriction 5 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc

Choice Restriction 6 Chω(zc) = ta ⇒ Chω(za) = ta and Chω(zb) 6= tc

Choice Restriction 7 Chω(zc) = tb ⇒ Chω(za) = tb and Chω(zb) = tb
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The elimination process described in Table D.11 generates the response matrix of Ta-

ble D.10, also presented below as D.12:
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Table D.11: Restrictions on Response Vector S for supp(Z) = {zno, zb, zc} Under Choice
Restrictions below

Values Instrumental Variable Z takes Choice Restriction Analysis
Response No Voucher Voucher for b Voucher c 1 2 3 4 5 6 7

Types T (zno) T (zb) T (zc)

1 ta ta ta X X X X X X X
2 ta ta tb 7 X X 7 X X 7

3 ta ta tc X X X X X X X
4 ta tb ta X X X X X X X
5 ta tb tb 7 X X X X X 7

6 ta tb tc X X X X X X X
7 ta tc ta 7 X X X 7 7 X
8 ta tc tb 7 X X X 7 X 7

9 ta tc tc 7 X X X 7 X X
10 tb ta ta X 7 X 7 X 7 X
11 tb ta tb X 7 X 7 X X 7

12 tb ta tc X 7 X 7 X X X
13 tb tb ta X 7 X X X 7 X
14 tb tb tb X X X X X X X
15 tb tb tc X X X X X X X
16 tb tc ta X 7 X X 7 7 X
17 tb tc tb X 7 X X 7 X 7

18 tb tc tc X 7 X X 7 X X
19 tc ta ta X X 7 7 X 7 X
20 tc ta tb X X 7 7 X X 7

21 tc ta tc X X 7 7 X X X
22 tc tb ta X X 7 X X 7 X
23 tc tb tb X X 7 X X X 7

24 tc tb tc X X X X X X X
25 tc tc ta X X 7 X 7 7 X
26 tc tc tb X X 7 X 7 X 7

27 tc tc tc X X X X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zno, zb, zc} and treatment status T ranges over {ta, tb, tc}. The first column enumerates the 27 possible response
types. Columns 2 to 4 indicate the response types according to the vector of the values that [T (zno) , T (zb) , T (zc)] takes.
The remaining seven columns indicate whether the response type violates any of the following choice restrictions:

Choice Restriction 1 Chω(zno) = ta ⇒ Chω(zb) 6= tc and Chω(zc) 6= tb
Choice Restriction 2 Chω(zno) = tb ⇒ Chω(zb) = tb and Chω(zc) 6= ta
Choice Restriction 3 Chω(zno) = tc ⇒ Chω(zb) 6= ta and Chω(zc) = tc
Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) = ta and Chω(zc) 6= tb
Choice Restriction 5 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc
Choice Restriction 6 Chω(zc) = ta ⇒ Chω(za) = ta and Chω(zb) 6= tc
Choice Restriction 7 Chω(zc) = tb ⇒ Chω(za) = tb and Chω(zb) = tb

A check mark sign indicates that the associated response type does not violate the choice restriction. A cross sign indicates
that the associated response type violates the choice restriction.
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Table D.12: Response Types Generated by WARP for supp(Z) = {zno, zb, zc}.

Instrumental Count. Response Types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7 s8

No Voucher T (zno) ta ta ta ta tb tb tc tc
Voucher for car b T (zb) ta ta tb tb tb tb tb tc
Voucher for car c T (zc) ta tc ta tc tb tc tc tc

D.3 An Example Without Unordered Monotonicity that Gener-

ates Identification

Assuming that Z takes values in supp(Z) = {zc, zb, zbc}. Following the same rationale of

Section 5.2, we assume the following budget relations:

Budget Relations for ta Λω(zc, ta) = Λω(zb, ta) = Λω(zbc, ta)

Budget Relations for tb Λω(zc, tb) ⊂ Λω(zb, tb) = Λω(zbc, tb)

Budget Relations for tc Λω(zb, tc) ⊂ Λω(zc, tc) = Λω(zbc, tc)

The budget set relations above can be used as input to WARP (49), which generates the
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following choice restrictions:

Choice Restriction 1 Chω(zc) = ta ⇒ Chω(zb) 6= tc and Chω(zc) 6= tc

Choice Restriction 2 Chω(zc) = tb ⇒ Chω(zb) = tb and Chω(zc) = tb

Choice Restriction 3 Chω(zc) = tc ⇒ Chω(zc) 6= ta

Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) 6= tb and Chω(zc) 6= tb

Choice Restriction 5 Chω(zb) = tb ⇒ Chω(zc) 6= ta

Choice Restriction 6 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc

Choice Restriction 7 Chω(zbc) = ta ⇒ Chω(za) = ta and Chω(zb) = ta

Choice Restriction 8 Chω(zbc) = tb ⇒ Chω(zb) = tb

Choice Restriction 9 Chω(zbc) = tc ⇒ Chω(za) = tc

The elimination process described in Table D.13 generates the response matrix of Table 6,

also presented below as D.14:
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Table D.13: Restrictions on Response Vector S for supp(Z) = {zc, zb, zbc} Under Choice
Restrictions below

Values Instrumental Variable Z takes Choice Restriction Analysis
Response Voucher for c Voucher for b Voucher for b and c 1 2 3 4 5 6 7 8 9

Types T (zc) T (zb) T (zbc)

1 ta ta ta X X X X X X X X X
2 ta ta tb X X X 7 X X X 7 X
3 ta ta tc 7 X X X X X X X 7

4 ta tb ta X X X X 7 X 7 X X
5 ta tb tb X X X X X X X X X
6 ta tb tc 7 X X X X X X X 7

7 ta tc ta 7 X X X X 7 7 X X
8 ta tc tb 7 X X X X 7 X 7 X
9 ta tc tc 7 X X X X 7 X X 7

10 tb ta ta X 7 X 7 X X 7 X X
11 tb ta tb X 7 X 7 X X X 7 X
12 tb ta tc X 7 X 7 X X X X 7

13 tb tb ta X 7 X X 7 X 7 X X
14 tb tb tb X X X X X X X X X
15 tb tb tc X 7 X X X X X X 7

16 tb tc ta X 7 X X X 7 7 X X
17 tb tc tb X 7 X X X 7 X 7 X
18 tb tc tc X 7 X X X 7 X X 7

19 tc ta ta X X 7 X X X 7 X X
20 tc ta tb X X X 7 X X X 7 X
21 tc ta tc X X X X X X X X X
22 tc tb ta X X 7 X 7 X 7 X X
23 tc tb tb X X X X X X X X X
24 tc tb tc X X X X X X X X X
25 tc tc ta X X 7 X X 7 7 X X
26 tc tc tb X X X X X 7 X 7 X
27 tc tc tc X X X X X X X X X

This table presents all possible values that the response variable S can possibly take when instrumental variable Z ranges over
supp(Z) = {zc, zb, zbc} and treatment status T ranges over {ta, tb, tc}. The first column enumerates the 27 possible response
types. Columns 2 to 4 indicate the response types according to the vector of the values that [T (zc) , T (zb) , T (zbc)] takes. The
remaining nine columns indicate whether the response type violates any of the following choice restrictions:

Choice Restriction 1 Chω(zc) = ta ⇒ Chω(zb) 6= tc and Chω(zc) 6= tc
Choice Restriction 2 Chω(zc) = tb ⇒ Chω(zb) = tb and Chω(zc) = tb
Choice Restriction 3 Chω(zc) = tc ⇒ Chω(zc) 6= ta
Choice Restriction 4 Chω(zb) = ta ⇒ Chω(za) 6= tb and Chω(zc) 6= tb
Choice Restriction 5 Chω(zb) = tb ⇒ Chω(zc) 6= ta
Choice Restriction 6 Chω(zb) = tc ⇒ Chω(za) = tc and Chω(zc) = tc
Choice Restriction 7 Chω(zbc) = ta ⇒ Chω(za) = ta and Chω(zb) = ta
Choice Restriction 8 Chω(zbc) = tb ⇒ Chω(zb) = tb
Choice Restriction 9 Chω(zbc) = tc ⇒ Chω(za) = tc

A check mark sign indicates that the associated response type does not violate the choice restriction. A cross sign indicates
that the associated response type violates the choice restriction.

88



Table D.14: Response Types Generated by WARP for supp(Z) = {zc, zb, zbc}.

Instrumental Count. Response Types of S
Variables Choices s1 s2 s3 s4 s5 s6 s7

Voucher for c T (zc) ta ta tb tc tc tc tc
Voucher for b T (zb) ta tb tb ta tb tb tc

Voucher for b or c T (zbc) ta tb tb tc tb tc tc

E T-3 Implies Vytlacil’s Theorem (2002)

In the binary case where T ∈ {0, 1}, T and 1[T = 1] are equivalent and condition (iii)

reduces to:

(
T |Z = z,V = v

)
≥
(
T |Z = z′,V = v

)
or
(
T |Z = z,V = v

)
≤
(
T |Z = z′,V = v

)
,∀v ∈ supp(V ).

(E.1)

Equation (E.1) can be written in terms of an agent ω for whom Vω = v ∈ supp(V ) as:

Tω(z) ≥ Tω(z′) or Tω(z) ≤ Tω(z′), (E.2)

which is the monotonicity condition of Imbens and Angrist (1994). Condition (iv) reduces

to:

P

(
T = 1[ϕ(V ) + g(Z) ≥ 0]

)
= 1,

which is the separable representation of Vytlacil (2002). Under (E.2), the response matrix

of the binary treatment model is lower triangular. This implies that matrices B1,B0 are

maximal matrices and thereby lonesum, which corroborates conditions (i) and (ii) of T-3.
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F Examples of Unordered Monotonic Response Matri-

ces

Section 5.2 examines the case of multiple treatments, in which the treatment indicator takes

three values and the instrumental variable also takes three values. This setup generates 27

possible response types. The number of response matrices generated by the combination of

7 response types taken from these 27 possible ones totals 888,030. Among those, there are

66 response matrices that are unordered monotonic responses. Namely, response matrices

whose binary indicator matrices associated with each treatment choice are lonesum. Those

are listed in Table F.1.
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G Why Do We Get Separability?

This appendix motivates why separability condition (iv) of T-3 holds. We now present a

detailed discussion of how the lonesum property of matrix Bt generates separability of the

choice equation in item (iv) of T-3. Our proof is in three steps. We first show that if all

Bt; t ∈ supp(T ) are lonesum, then Bt[i, j] can be expressed in terms of its column and row

sums by:7

Bt[i, j] = 1

[ ( NS∑
j′=1

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
︸ ︷︷ ︸

Number of columns whose sum isbigger than or equal to the column sum of Bt[·, j]

≤
( NS∑

j′=1

Bt[i, j
′]

)
︸ ︷︷ ︸
row sum of Bt[i, ·]

]
, (G.1)

Next, we use (G.1) to show that Bt[i, j] can be also expressed in terms of propensity

scores and response-type probabilities as described in Equation (G.2).8

Bt[i, j] = 1

[( NS∑
j′=1

P (S = sj′ ) · 1
[ NZ∑
i′=1

P(Z = zi′ )Bt[i
′, j] ≤

NZ∑
i′=1

P(Z = zi′ )Bt[i
′, j′]

])
≤
( NS∑

j′=1

P (S = sj′ ) ·Bt[i, j
′]

)]
.

(G.2)

We then use Equations (15) and (17) in the text to replace the termsBt in Equation (G.2)

with propensity scores and the probability of T = t conditional on S, which is a function of

the values that T and V take.9

A consequence of (i) in T-3 is that each binary matrix Bt is equivalent to its maximal.

This property generates a key ingredient of the proof. Bt[i, j] can be expressed in terms of

its column and row sums using the following relationship:

Bt[i, j] = 1

[ ( NS∑
j′=1

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
︸ ︷︷ ︸

Number of columns whose sum is bigger than or equal to the column sum of Bt[·, j]

≤
( NS∑
j′=1

Bt[i, j
′]

)
︸ ︷︷ ︸

row sum of Bt[i, ·]

]
,

(G.3)

7 See Lemma L-12 of Appendix A for a formal proof.
8See Lemmas L-5–L-8 and Lemma L-14 of Appendix A for a formal proof.
9 For instance, we show that 1[T = t|Z = zi,S = sj ] can be expressed as 1[T = t|Z = zi,S = sj ] =

1
[
ϕ(sj , t) + g(zi, t) ≥ 0

]
where g(zi, t) = P(T = t|Z = zi) and ϕ(sj , t) = −

∑NS

j′=1 P(S = sj′) · 1
[

P(T =

t|S = sj) ≤ P(T = t|S = sj′)
]
.
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where i ∈ {1, . . . , NZ} and j ∈ {1, . . . , NS}. Equation (G.3) states that we can determine

Bt[i, j] by comparing the ith row-sum with the number of columns (including the jth column)

whose column sum is greater than or equal to the jth column sum. If the row sum is equal

to or greater than this number of columns then Bt[i, j] = 1, otherwise, Bt[i, j] = 0.

An example clarifies Equation (G.3). Consider the binary matrix B in Table G.1. The

table also shows the matrix generated by reordering the columns of matrix B in decreasing

column sums and its rows in increasing row sums. The rows of the reordered matrix consist

of a sequence of elements 1 followed by a sequence of elements 0. Thus matrixB is equivalent

to its maximal.

Consider the last column of the reordered matrix. It consists of elements [0, 0, 0]′ whose

column sum is 0. All 5 columns have column sums greater than or equal to 0. The row sums

(1,3 and 4) are all less than 5, which generates the elements 0. The second column consists

of elements [0, 1, 1], whose column sum is 2. There are 3 columns whose column sum is equal

or greater than 2 (first, second and third columns). The sum of the first row is 1, which is

less than 3, and this generates the element 0. The second and third row sums are 3 and 4,

both greater than or equal to 3, thereby generating the elements 1.

Equation (G.3) also holds for the original matrix. The first column of the original matrix

consists of elements [1, 0, 0]′, whose column sum is 1. There are 4 columns whose column

sums are greater than or equal to 1 (first, second, fourth and fifth columns). The sum of the

first row is 4, which is greater or equal than 4, generating the element 1. The sums of the

second and third rows are 1 and 3, both less than 4, generating the elements 0.
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Table G.1: Example of a Binary Matrix B that is Equivalent to its Maximal

Row Row Sum Binary Matrix B Row Row Sum Reordered Matrix B

B[1, ·] 4 1 1 0 1 1 B[2, ·] 1 1 0 0 0 0

B[2, ·] 1 0 0 0 1 0 B[3, ·] 3 1 1 1 0 0

B[3, ·] 3 0 1 0 1 1 B[1, ·] 4 1 1 1 1 0

B[·, 1] B[·, 2] B[·, 3] B[·, 4] B[·, 5] B[·, 4] B[·, 2] B[·, 5] B[·, 1] B[·, 3]

Column Sum 1 2 0 3 2 3 2 2 1 0

The lonesum property of Bt also generates the following equality:10

1

[( NS∑
j′=1

1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
≤
( NS∑

j′=1

)Bt[i, j
′]

]
=

= 1

[( NS∑
j′=1

P (S = sj′) · 1
[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

])
≤
( NS∑

j′=1

P (S = sj′) ·Bt[i, j
′]

)
1

]
. (G.4)

According to Remark 6.3 , no 2 × 2 sub-matrix of each Bt takes the prohibited pat-

terns (52).11 As a consequence, we have that:12

NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]⇔ Bt[i

′, j] ≤ Bt[i
′, j′] ∀ i′ ∈ {1, . . . , NZ},

thereby 1

[ NZ∑
i′=1

Bt[i
′, j] ≤

NZ∑
i′=1

Bt[i
′, j′]

]
= 1

[ NZ∑
i′=1

P(Z = zi′)Bt[i
′, j] ≤

NZ∑
i′=1

P(Z = zi′)Bt[i
′, j′]

]
. (G.5)

If we substitute Equations (G.4)–(G.5) into (G.3) we obtain:

Bt[i, j] = 1

[( NS∑
j′=1

P (S = sj′ ) · 1
[ NZ∑
i′=1

P(Z = zi′ )Bt[i
′, j] ≤

NZ∑
i′=1

P(Z = zi′ )Bt[i
′, j′]

])
≤
( NS∑

j′=1

P (S = sj′ ) ·Bt[i, j
′]

)]
.

(G.6)

10See Lemma L-13 of Appendix A for a formal proof.
11See Lemmas L-5–L-8 of Appendix A for a formal proof.
12See Lemma L-14 of Appendix A for a formal proof.
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Next we can represent Equations (15)–(17) in terms of Bt as:

P(T = t|Z = zi) =

NS∑
j=1

Bt[i, j] P(S = sj), (G.7)

P(T = t|S = sj) =

NZ∑
i=1

Bt[i, j] P(Z = zi), (G.8)

where S is a balancing score for V .

Equations (G.7)–(G.8) are useful for translating the summations over Bt into propensity

scores of t, conditional on Z and V . We substitute Equations (G.7)–(G.8) into (G.6). As

we show here and in the proof of Theorem T-3, we can construct g(zi, t) and ϕ(sj, t) from

the following relationships:

1[T = t|Z = zi,S = sj ] = 1
[
ϕ(sj , t) + g(zi, t) ≥ 0

]
, where g(zi, t) = P(T = t|Z = zi) and

ϕ(sj , t) = −
NS∑
j′=1

P(S = sj′) · 1
[

P(T = t|S = sj) ≤ P(T = t|S = sj′)
]
.

H Examining the Threshold Property of Condition (iv)

of Theorem T-3

Condition (iv) of T-3 states that the treatment choice T can be expressed as:

1[T = t|V = v, Z = z] = 1[ϕ(V , t) + g(Z, t) ≥ 0]. (H.1)

This representation can be understood as the combination of a separability condition and a

threshold property :

1. Separability Condition refers to the separable equation ϕ(v, t) + g(z, t) of the Equal-

ity (H.1).

2. Threshold Property refers to the fact that T takes value 1 if ϕ(v, t) + g(z, t) in (H.1) is
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greater or equal than the threshold value 0.

To clarify the role of the Threshold Property, consider the case in which the separability

condition holds but the threshold property does not. In this case, Equality (H.1) would be

replaced by Equality (H.2) below.

1[T = t|V = v, Z = z] = 1[ϕ(V , t) ≥ −g(Z, t)]. (H.2)

This section clarifies why the threshold property is necessary in Equality (H.1) of con-

dition (iv). Namely, we show that separability alone is not enough to produce unordered

monotonicity.

Let T take value t∗ ∈ supp(T ) when V = v and Z = z. Then the separability condition

and the threshold property discussed above imply that:

if t∗ = argmaxt∈supp(T ) ϕ(v, t) + g(z, t),

then ϕ(v, t∗) + g(z, t∗) ≥ 0 and ϕ(v, t′) + g(z, t′) < 0 for all t′ 6= t∗.

We use the following strategy to prove that separability alone is not sufficient to produce

unordered monotonicity.

1. We present an example in which the treatment choice T is expressed by an equation

where separability holds but the threshold property does not.

2. We show that this example can generate a response matrix that contains the prohibited

pattern (i.e., Equation (52)).

3. We then evoke Condition (iii) of T-3 which states that the prohibited pattern implies

that unordered monotonicity does not hold.

Let Ψ(t, z,v) represent the utility of choice T = t when V = v and Z = z. We assume

that Ψ(t, z,v) is separable, that is, Ψ(t, z,v) = u(v, t) + h(z, t) (but we do not invoke the

threshold property). It suffices to show that Ψ(t, z,v) can generate the prohibited pattern

defined by Equation (52). Let supp(T ) = {t1, t2, t3}, supp(Z) = {z, z′}, supp(S) = {s, s′}.

96



The associated response matrix is given by:

R =

 (T |S = s, Z = z) (T |S = s′, Z = z)

(T |S = s, Z = z′) (T |S = s′, Z = z′)



=


argmax
t∈{t1,t2,t3}

(
u(s, t) + h(z, t)

)
argmax
t∈{t1,t2,t3}

(
u(s′, t) + h(z, t)

)
argmax
t∈{t1,t2,t3}

(
u(s, t) + h(z′, t)

)
argmax
t∈{t1,t2,t3}

(
(u(s′, t) + h(z′, t)

)
 (H.3)

The prohibited pattern arises in the response matrix R above has t1 on the diagonal but

has choice values other than t1 on the off-diagonal. For this to happen we need the following

inequalities to hold:

u(s, t1) + h(z, t1) > max(u(s, t2) + h(z, t2), u(s, t3) + h(z, t3)),

u(s′, t1) + h(z′, t1) > max(u(s′, t2) + h(z′, t2), u(s′, t3) + h(z′, t3)),

u(s, t1) + h(z′, t1) < max(u(s, t2) + h(z′, t2), u(s, t3) + h(z′, t3)),

u(s′, t1) + h(z, t1) < max(u(s′, t2) + h(z, t2), u(s′, t3) + h(z, t3)).

Now consider the following values for u(s, t), h(z, t) :

u(s, t1) = h(z, t1) = u(s′, t1) = h(z′, t1) = 0,

u(s, t2) = h(z, t3) = u(s′, t3) = h(z′, t2) = 1,

u(s, t3) = h(z, t2) = u(s′, t2) = h(z′, t3) = −2.

The threshold property is violated as

u(s, t1) + h(z, t1) = 0 = max
t∈{t1,t2,t3}

u(s, t) + h(z, t)

but

u(s, t2) + h(z′, t2) = 2 = max
t∈{t1,t2,t3}

u(s, t) + h(z′, t)

while

u(s, t1) + h(z′, t1) = 0.
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Thus, the separability condition of Ψ(t, z,v) is not sufficient to guarantee that unordered

monotonicity A-3 holds.
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