B Proofs

B.1 Proofs of Section A

We start by evaluating the incidence effects of a general perturbation (dr,drs) of the baseline tax

system.

Proof of equations (58) to (61). The perturbed individual first-order condition of individual 6 ; writes
(1 — T; — dTi) ’LZIZ = ’U/ (lz + dlz) s
where the perturbed wage rate w; satisfies, to a first-order in (dry, dr),

’LZJ/L' ((11 + dll) Fl, (12 —|— dlg) FQ) — w; (llFl, ZQFQ)
=F! (L +dly) Fy, (Ia + dlz) Fp) — Z] (1 Fy, 1o F»)

2 2 2
WF L, dl, .
= E (llFl,lgFg)F dln— E y, 5‘2 l E z’)’i,ndln-

n=1 n=1 n=1

Denoting by dw; = ﬁ’iq;iwi, this is a linear system of two equations (indexed by 7 € {1,2}) with two

unknowns (dws, dis), which can be rewritten as

d’UAjl = ")/7;71d[1 + "}/7;72d[2, Vi € {1, 2},
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which immediately leads to the matrix form (59).

We thus get, to a first order in (dr, dr2),

(1 — Ti) w; =+ (1 — T,') (12)1 — w,-) — ’LUZ‘dTi = 1)/ (lz) + ’UN (lz) dli,

i.e., using the first-order condition at the baseline tax system,

2
widr; = (1 — 1) (0 — w;) — 0" (L) dl; = (1 — 1) Z Wiy mdl, — Liv" (1) di;

n=1

[(1 - Ti) WiYin — lﬂ}” (lz) H{n:i}] din
1

2
n=

Using the formula (57) for the labor supply elasticity, we can rewrite this equation as

2 2
dTZ‘ lﬂ}” (ll) ~ lﬂ)” (l,) ~
= wn —1 n=i dln = R I n=i dln
l—m 2 [V’ A—r)w ' }] ,; [W’ v ) Y

n=1

1 ~
[V gt }]

M-

n=1

This is a linear system of two equations (indexed by i € {1,2}) with two unknowns (dly, dl5), which

1 “ - dr
(’71,1 - ) dly + i ,2dly = !
€1 1-— T1

. 1 N dr
v2,1dl1 + (’72,2 — ) dly = 2 )
IS 1— T2

can be rewritten as

and hence, in matrix form, as

mome \ & 0 di, _ —
Y21 Y22 0 = dly T4

the left hand side is invertible, we immediately

—

Assuming that the matrix in square brackets on

obtain (58).
The utility of individual 6; changes, to a first-order in (dr1,dms), by

. dTi R ~ v (lz) 7 /
=(1—m)wl; T + dw; + dl; A—r)w dl; | U (1 — 1) wily —v (L)) .

But the individual’s first order condition (55) implies (11’7,?% =1, so that we obtain (60).
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Government revenue changes, to a first-order in (dr,drs), by
2 2

i=1 i=1
Ti

2 dr;
:ZTiwili (l + dUA}z + dll> Fi,
=1

which implies (61).

Next we focus on the partial equilibrium case.

Proof of equations (62) and (63). With two types, we can easily invert explicitly the matrix in equa-

tion (58) to obtain

. — - N 1 dr
( dly > _ ( Y11 — é Y12 ) ( 1‘1_7;1 ) _ Y21 71— =

7 1 d
dly 721 22 T o, 1—77722 (’Yll - i) (722 - é) — V12721

Consider a perturbation of 75 only, i.e., dr, = 0. Then the previous expression implies that the

changes in labor supplies are given by

Y22 — é dr €222 — 1 dr
( dly ) —721 ton B —£2721 o

dly (’Yll - é) (722 - é) — 712721 (’711 - é) (52722 - 1) — €2712721

Now take the limit as type-fs labor supply becomes inelastic, i.e., e — 0. We get

~ dr _ 1 dr
diz -\ 0 dly = 0,

which shows (63). Finally, (59) implies that

N > 71,1 dm
diy = y1pdh = — 37— —1——
5 "l n
and dwy = 72’1d[1 = %dwl. The Euler’s homogeneous equation theorem states that

wiLy +waLlo = F (Ly, La)

so that 9 9
w w

w11, + Waye1 = LlaiLl + L287L2 =0,
1 1

and hence diy = —%duﬁl.
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B.2 Proofs of Section 1

B.2.1 Proof of equations (6), (7), and (8)
We first derive the expressions for the labor supply elasticities.

Proof. We first derive the labor supply elasticity along the linear budget constraint (6). Rewrite
the first-order condition (1) as

v (1(0) = (1—7(0)w(B),

where 7 (0) = T" (w (0) 1 (0)) is the marginal tax rate of agent 6. The first-order effect of perturbing
the marginal tax rate 7(0) by drp on the labor supply [(6), in partial equilibrium (i.e., keeping
w (#) constant), is obtained by a Taylor approximation of the first-order condition characterizing

the perturbed equilibrium,
v (1(0) +dlp) = (1 —7(0) —dre)w (9),

around the baseline equilibrium. We obtain

v (1))

v (1(0)) + 0" (1(0)) dlp = (1 =7 (0)) w (0) — w(6) drg = v' (1(6)) — =70

dTg,

and thus
dl@ 1}/ (l (9)) dTg

1O)  LOw (LO)1—-7(8)

which immediately leads equation (6).

Next we derive the labor supply elasticity along the non-linear budget constraint (6), keeping

the wage constant. The perturbed individual first-order condition writes
o (L0) + dlg) = [1 = T" (w0 (0) (1 (60) + diy)) — drg] w (0)
A first-order Taylor expansion implies
v (10)) + " (1(0)dlp = (1= T (w(9)1(6)) w(9) = T" (w (9)1(0)) (w (9))* dlg — w (0) s,

ie.,

d’l‘g

1(1(6)) w (0) T (w (0) 1(0))
1(9))) d(1—7(0))
HOYT" (w(6)1(0)) 1 = T" (w(0)1(6))’

_ 11— ‘r()(l_T/(
LT (w(@)1(0) +e1 0w

which yields equation (7).

9
(=T (w (B)1(9) 0" (1(0) +
(¢
(¢
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Finally, we derive the partial equilibrium labor supply elasticity with respect to the wage along

the non-linear budget constraint (8). The perturbed individual first-order condition writes
v (L(0) +dlp) =[1 =T ((w(0) + dwg) (L(8) + dlp))] (w (0) + dwg) .
A first-order Taylor expansion then implies

o' (1(0)) + 0" (L(0)) dlg = (1= T" (w(8) L(6))) w(8) = T" (w (8) L (6)) (w (8))" dlo
= T" (w(0)1(0)) w(0)1(0) dwe + (1 =T (w (0)1(0))) dw,

B dly _(L=T' (w()1(6)) —w(O) L(H)T" (w(O)1(6))w(0) duwy
L) v (1(0)) + (w (0)* T (w (0) 1 (9)) w (0)1(6)
(=T w(@)1(0) ~w () 1) T" (w (0)1(0))) ity duw
(1 =T (w () 1(8))) +w (0) L (0) rizramqpm T (w (6) 1 (8)) w(6)

which implies (8).

B.2.2 Proofs for Examples 1 and 2

We first provide algebra details for the CES technology. It is straightforward to show that the

cross-wage elasticities are given by (15). We have

700 = (=) A
(C]

which implies, for all € ©,
1
/ ¥(6,07)do* =1—p=—.
[e) g

Moreover, denoting interchangeably by ¥ (y,y*) = 7 (0, 0*) where y = y () and y* = y (6*), Euler’s

homogeneous function theorem writes
[0y 50 0)d0 =0,
which can be rewritten as
[ 36.0056) 1o 0)d0 767,05 6%) o 6°) =0

or equivalently,

/ Y,y ) yfy () dy — (L—=p)y™ fy (y°) dyﬁ;g*) =0.
R

23



Since 7 (y,y*) = 7 (0, 60*) does not depend on y (or ), this implies

1-n (9*) (9*2%/ yfy(y)dy_(l_p)y*fy(y*)%:0’
@

f@ a(r)L (x)p dz fR+ yfy (y)dy db
Substituting in expression (15), we hence get

y(9°) fy (y (67)) dy (07)

¥ (y,y(07) =(1-p) I uf,(dy  do
Ry YJy

We now provide the algebra details for the Translog production function.

Proof First, we show that if the conditions 6,¢', [y a (6')d¢' =1, 3(0,0') = 3(#',0), and B(6,0) =
— Jo B(0,0")df’ hold, then the production function (16) has constant returns to scale. Indeed, we

can then write
1 = _
InZ(\¢)=n7 (L) + (/ agdH) InA+ = (In >\)2 (/ Bo,0d0 + 69’9/d9d9’)
<) 2 <) ox0

+1n\ ( / agpdf + / Bo.oIn L (0)do + oo In L (6) d9d9’)
[S] (]

Ox0O

which is equal to In.Z (£) + In A.

Second, we derive expression (17) for the wage. We have
F (L + pog-) —InF (L)
1 [ =
= / ag [In (L (6) + pdo- (6)) —In L (0)] dO + 5 / Bo.o [In® (L (0) + ud- (0)) — In® L (0)] do
e e

+ % o 659,0’ [In (L (0) + udg~ (0))In (L (0") + pde= (0")) —In (L (0))In (L (6"))] dOd’.

A first-order Taylor approximation of the right-hand side as u — 0 yields
In.Z (L + pdyp-) —In F (&)

_ ot 5. 5 nL(9)
M:o”/@ “’L(o)‘s‘) (0)do+ /6 L(6)

5o~ (0) db

1 5 In (L (#")) ;y In (L (6)) /
+ §,u oo 69)9/ l:(Se* (9) ( ) + dg~ (9 ) (01):| dhde’” + 0(,&)
Qg+ ln ’
ZM{L( >+50 0" /59 O T 0* d9 /509*7 }+0(M),
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Thus the wage of type 6* is equal to

wO) = iy (5 (2 + )~ F (2)
f((gg*;) {010* +E€*,9* IHL(Q*) +/6/§9*70/, In (L (9//)) d0/1}7

where the second equality follows from the symmetry of {5979/ Note that the same expres-

}(0,0')6(—)2'
sion can be obtained heuristically by computing the derivative of .Z ({L (6")}4.cq) With respect to
L (6%):

F (L) 0 F ({L(0")}yco)

w®) =T dInL (0%

Third, we derive the cross-wage elasticities and own-wage elasticities (18). For simplicity we
derive these formulas heuristically by directly evaluating the derivatives; they can be easily obtained

rigorously following the same steps as above for the wages. For the cross-wage elasticities, suppose
that 6 # 6’. We have

_ oln (F (L) /L (6)) . 3ln{a9 —|—,§979 In L (6) —|—f@ 59,9// lnL(Q")dH”}
Oln L (0") Oln L (0)

—+ 0,0 InL (0/) + / 69/79// InL (9/1) d@”} +
S}

() (28 o

69,0’
g+ Bogn L (0) + [, Bo.gr In L (6") do”

Il
N =2l
Q
<
1}

)

Similarly, the own wage elasticities are given by:

dln (Y (g) /L (0)) Oln {Ozg + 5979 InL (9) + f@ B@ygu InL (9”) d@”}
dIn L (0) - dIn L (0)
_ 59,9 — 14 (

ag + Bo.oIn L (0) + [o Bo,or In L (6) do” F (Z)

5(979) =

- ’7(976)

Finally, note that

. ( w (6) > o (L(H’)) N ﬁg,elnL () + [ Bo.on In L (8”) dO"
w (6) L(0) g+ Boro ML () + [, Boror I L (67) d9”

1 ( I (9/)) L +L() {800+ Jo Bo.ord8" } + [ Boor (n L (8") —In L (6)} do”
= 1In + n — _ —
ag- +1nL (8) {59,,9/ + [y ﬂggewd@”} + [ Borgr (L (07) — In L (6)} 6"

(L) el Boar In (L (6") /L (6)) do"”
Q0+ Jo B W (L (07) /L (89) db”
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so that the elasticities of substitution are given by:

1 Ol (w(0) /w(0"))
o (0,0 dln(L(8)/L(0)
-1 Bo.or _ Bor 0
o+ Jo Boor tn (5550 ) 40 v+ fo Boror tn (450 ) do
4 _ Bo.or B Bor.6

a9+ BooInL(0) + [o Bogr InL(07)d0" g + Boro In L (67) + Jo Boror In L (67) d6”
w@ LG\ " (w@) LO)\ | -
“l‘l( so) +(“Fe) ]5“"

This concludes the derivations of the wage elasticities for a general Translog production function.

]

B.3 Proofs of Section 2

B.3.1 Proof of Lemma 1

Proof. Denote the perturbed tax function by T (y) = T (y) + ph (y) (later we let ;o — 0). Denote
by di (0, h) the Gateaux derivative of the labor supply of type  in response to this perturbation, and
let AL (0,h) = dl (0, h) fo (6). The labor supply response dl (6, h) of type 6 is given by the solution

to the perturbed first-order condition:

0 =v' (1 (6) + pdl (6, h))
— {1 =T"[@(0) x (1(0) + pdl (0, )] — ph' [ (0) x (1(0) + pdl (0,h))]} @ (0),  (65)

where @ (0) is the perturbed wage schedule. Heuristically, @ () satisfies
W (0) —w(0) = Fp ({LO) + pdl (0, h)) fo () }grco) — Frio) ({LO) fo ()} grco)

(9/) // ,
=/ 7 0y.(0ry1dlL (6, ) fo (6) d6' + 0 (1) =u9£(9)/ #dl (', h)do’ +o(n),
© e L(9)

so that, to a first order as yu — 0,
@ (0) — w (0) = pw () / v (0,0')dl (0", h)de'. (66)
S

To derive this equation formally, denote by d.%Z (h) € M the measure on © defined by the Gateaux
derivative of the measure .# in the direction h. We have d.# (h) = [5dL (¢, h)de:df’. We then
have

w(0)—w ) =w{0, L)+ pdL(0,h),L+pdZ (h)}—w(d,LH),2).
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The right hand side of this equation is equal to

wo (0,L(0),.2) udL (6, h) + / (WO, LO), %+ pdL (0, h)d) —w (8, L(8),.2)} do’

—5(6,0) %de(é),h)Jr/@ 6,6 ((Z)) pdL (¢, 1) dO' + o (1)

—w (6) {‘(9 0)di (0, 1) + /@ﬁ(@,@’)df(e’,h) d@’} Fo(u),

which leads to expression (66).

Next, for any function g, we have, to a first order as p — 0,

g[w (0) (1(0) + pdl (6, h))] — g [w(0)1(0)]
={[@ (0) —w (0)]1(0) +w (0) udl (6,h)} g' (w (0) 1 (6))

:M{/@W(@,Q’)di(e/’h) de’ +di(9,h)}w(9)l(9)g’ (w (0)1(8)).

A first-order Taylor expansion of the perturbed first-order conditions (65) around the baseline

allocation then yields:

0 =" (1(0)) pdl (6, 1) + ph” (w (0)1(6)) w (6)
—{[@ () —w (O] (1 =T (w(0)1(6))) — [T" (@ (6) (L () + udl (6, h))) = T" (w (0) 1 (6))] w (6)} -

Using (66), we obtain

0 :Wudf(ﬁ,h) b (w (6)1(8)) — [/@7(9,9’)df(6’7h) @' (1 =T (w(0)1(0)))
+ U@y (6,0")di (0", h) b’ + df(@,h)] w(0)1(0) T (w(0)1(8)).

Solving for dl (0, h),

ai (0.h) = [1—-T"(y(0)) - (9 )T (5 (0))] [ 7 (0,0") AL (0", h) do’" — 1’ (y ()
(1= 77 (y (0))) W55 4y (O) T (w (9))] = 11 =T (y (9) ~y (O) T (y ()5 (6,6)
T QI y(<%)>T;§fT(9)<) wy - (0)
_ "(y(0))+e1,1--(0)y "y T _ INETI7 Y /
Tl ETG@OOTG@) T gvs (g g) / 7 (0,67) L6, h) d
=T (y(0) +er1-- (0)y(0)T" (y()) “L1—7 \W) VY,
R FeR OGO e
T—T"(y(@)Fer.1_-(0)y(O)T" (y(0 ,
- n' (y (0))
1T (y(6)—y(O)T" (y(9)) - ’
L= =rg@) e @@ oy - (0) 7 (0.9)

which leads to equation (21).
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B.3.2 Proof of Proposition 1

We now derive the general solution (22) of the integral equation (21). Assume that the condition
o | K1 (0,67 dd6’ < 1 holds.

Proof. For ease of exposition, denote by A’ () = %7 and g (0) = di(0,h). The integral
equation writes

0(0) = — Brar (0)7(0) + /O K (0.0)) g (0') de'.

where K (0,0') = Ey., (0)7(,68'). Substituting for ¢ (#’) in the integral using the r.h.s. of the

integral equation yields:
9(6) == Era—r () (6) + / K1 (6,0') {—El,u (00 (¢) + /@ K (9’,9”>g<9”)d9”}d0’
- {El,l r /Kl NEi i (0) 1 (0) dQ/}
/{/ Ky (0,0YK(0',0") ¢ (0”)d0”}d0’.
Applying Fubini’s theorem yields
{ /Kl YEi - (0N (6”)d9’}
/ { / Ky (0,0) KL (0, 9”)d0’}g(6”)d0”
=_ { /Kl ) B T(9)h’(9)d9’} /K2 (6.0)9(¢") de',
where K (0,0") = [o K (0,0") K (8”,0")d#"”. A second substitution yields:
00 =~ B @F 0+ [ 50,00 Bue @)1 000
+/®K2 (9,9’){-@1714 CAYAU /K1 0',0") g (68" d&”}d@’
which can be rewritten, following the same steps as above, as
g(0) =— {EM_T (0) R (9)+/@K(0,9')E171_T AN (9’)d9’+/@K2 0,0)Er 1. (0)) 1 (0’)d0’}
—i—/ng 0,0") g (0")do’,

where K3 (0,0") = [5 K2 (0,0") K (6”,0')d8"”. By repeated substitution, we thus obtain: for all
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g(0) =— {El,“ (0) ' (0) +Z/ Ki (0,0 Ep1_, (0)) ' (0") d9’}
i=179

+ / Koi1 (0.0') g (8') 6,

where for all n, K, 11 (6,0") f@ (0,0") K1 (6”,0")d9". Now the last step is to show that that
Jo Kny1(6,0") g (0") do’ converges to zero as n — oc.
Now, applying the Cauchy-Schwartz inequality to the interated kernel yields

Kpn (0,0) (/ K, (0,07 d9”) </ Ky (07, 0)] d9”>

Integrating this inequality with respect to 6’ implies
/\Kn+1 (9,0')%9'5(/ K., (0,9”)|2d9"> (//u{1 (9”,0’)2d9”d0’>
© O eJoe
= || Ky )2 x/ 1K, (6,0")] 0"
(S]
By induction, we obtain
[ s 0,00 do" < a3 x [ 13 0,07 0"
] ©

We thus have, using the Cauchy-Schwartz inequality again,

2

i1 (0,0 By (0") R (0) do’

< (Z Koia 0,007 a0 ) ([ [Biacr @) @)

- ~ 112
<1 ([ 1 @ a0 ) < B

2
d(,,/>

Thus, for all § € O,

<

/ Ki (6,0 Ep 1, (0") ' (0)de’
(S)

By 0 |K1 (0,072 do" | x || K, 5
2\ Je

= / K, (0.0)) vy (/)1 (6) 6.
=179

Denote by

Since ||K||, < 1, the previous arguments imply that the sequence {x, (¢)},~; is dominated by a

convergent geometric series of positive terms, and therefore it converges absolutely and uniformly
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to a unique limit x (6) on ©. Similarly, we have

lim =0.
n— 00

/ Koir (0,6') 9 (8') do'
©

Therefore, we can write
9(0) = — Buiar (0) I (0) - Z/ K. (0,0') Buy_r (0) I (0') 0,
(C]

which proves equation (22).
To show the uniqueness of the solution, suppose that g; (6) and go () are two solutions to (22).
Then A (0) = g2 (0) — g1 (0) satisfies the homogeneous integral equation

A (6) :/@Kl 0,0)A(0))do.

The Cauchy-Schwartz inequality reads

aoF ([ moofa) ([ aere).

Integrating with respect to 6 yields

JNCR I NG
e ©

Assumption || K] < 1 then implies JolA (0)]*df, i.e., A(0) =0 for all € ©.
[

In case the condition || K, |3 < 1 does not hold, there exist methods to express the solution to the
integral equation (21). Schmidt’s method consists of showing that the kernel of the integral equation
(21) can be written as the sum of two kernels, K1 (0,0") = K (6,0") + K. (6,0"), where K (0,0') is
separable and K. (0,6’) satisfies the condition HK€||§ < 1. This decomposition is allowed by the
Weierstrass theorem: by appropriately choosing a separable polynomial in § and ¢’ for K (6,6’),
we can make the norm of K. (6,6’) arbitrarily small. It is then easy to see that the solution to
(21) satisfies an integral equation with kernel K. (6,6’), where the exogenous function on the right
hand side (outside of the integral) is itself the solution to an integral equation with separable kernel
K (0,6'). The former integral equation can be analyzed using the same arguments as in the proof
of Proposition 1. The latter integral equation can be analyzed using the arguments of the proof of
Proposition 3. We can then derive a solution to (21) of the same form as (22), with a more general

resolvent. This technique is detailed in Section 2.4 of Zemyan (2012).

B.3.3 Proof of Corollaries 1 and 2

We now derive the incidence of tax reforms on wages, utilities, government revenue, and social
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welfare.

Proof. First note that we can also write this equation as

(1 =T (w(0)1(0)) —y(0)
(1=1"(y(0))
=T () —y(O)T" (y(0)] 1.1~ (0)
1=T"(y(0)) +e1--(0)y(0) T (y (0))
1,1 T()
C1-T'(y(9) +enir O)y(0)T" (y(0))

10 (0) /@ 5 (0,0)dl (0, 1) dO' — 20, (6)

T (w () 1(6))] fo v (6,0") dI (6, h) db’ = I (y (6))
W%&@ y (0)T" (w (6)1(6))

/ ~(0,0")dl (0, h) de’
S)

di(6,h) =

K (y (9))
h (y(6))
1=T"(y(9))’

which, along with (66), proves equation (26).

Next, the first-order effects of the tax reform h on individual 8’s tax liability are given by:

znm{;kumuwywmuam»—Twmmumn+Mwwﬂu@+umwm»@

#ﬁ@w»ywﬂdwm»yévwﬁvﬂwcmwﬂ+h@w»
0
)

7Oy )| (14 =5 ) a0 + LB LUDL 0.

1
él,w (9)

The first-order effects of the tax reform A on individual welfare are given by

duu (y (8) = T (y (8)) — v (1(0))) = [day (6) — AT (y (6)) — o (y (8)) — dyv (1 (8))] /' ()
= [ =T @ (©)y(0)ag (0, 1) ~ 1(0) ' (1(8) L (8, 1) ~ b (y (9))] w' (0)

(=T (5 (®)y(0) Kl + 51,:(0)) di (6,h) + E;;w}g) o ((ye)()g))} ' (0)

—1(0) 0 (1(8))dL(8,h) ' () —h(y (6))u (6)

(=T O (6) | a0 + =R )

) ’ o o
7| ¥ O~ b)),

The first-order effects of the tax reform h on government revenue are given by

d%cnh>=dhlézwyw»ﬂmmdﬂ

=Lh@@uuww

o [ G 0) Wy (0) L Vi
[ oo [  ( agay) Gen]s0 R0
(Y

_ / €l, ) R ( ) 1 N
—/ﬂhh(y) fy (y) dy+/R+T (y) { sllu(y) =77 () + (1 + = (y)> dl (y,h)} yfy (v) dy
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The first-order effects of the tax reform A on the social objective are given by

x4d%<TJw::x*dh/gu<yw>—iwy<w>—v<u9»)m<9ww

:/@ {1;;((1/6)(0))%/ (0)dl (6, h) + my O) K (y(0)) —h(y (0))} 96 () fo (6) d6
=/]R+ [mdi(y,h) + mh’ )| vgy W) fy (y) dy — . h(y) gy () £y (y) dy.

The first-order effects of the tax reform h on social welfare are finally given by
d# (T,h) = d% (T,h) + X\~ *d¥ (T, h)

:A(Lwﬂmh@hwwy

/ gl,l—T (y) ' (y) 1 7
+A+T“”[aw@>1—?@»*(**@ww0d“%m}”?@”y

1-T"() 4 Ea-r(Y),/
+~/]R+ [ B () LRy (y)} y9y (y) fy (y) dy.

This concludes the proof of equations (28) and (29).

B.3.4 Proof of Proposition 2

We now specialize the production function to be CES. In this case the integral equation (21) has a

simple solution.

Proof. If the production function is CES, the cross wage elasticities 4 (#,6’) do not depend on
0 (see equation (15)). Hence the kernel of the integral equation, K (6,6") = Ej., (6)7(6,6), is

multiplicatively separable, i.e., the product of a function of 6 only and a function of ¢ only:

0 (6)
K 9 0/ = 75l,w( ~ 0 9/
1(’ ) 1_,?(9’9)517’“}(9)7(» )
1w (6) (L—p)a(@) L) :
- 50 =r (¢ 0).
1-~5(6,0 élyw(e):|x[ f@a(ﬂf)L(x)pdm Kl()Xﬁg( )
The integral equation (21) then writes, letting h' (y) = %,

di (0,h) = — Eyq_» (0) ' (y (0)) + 51 () /@ Ko (0') Al (6, 1) do’

and can be solved as follows. Multiplying by xo (8") both sides of the integral equation evaluated at
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0 yields

ko ()AL (0", h) = — k2 (0") Eva—r () 1 (y (8))

+ k1 (0") Ko (0) /@ Ko (7Y A1 (6", h) do".

Integrating with respect to 6’ gives

/52 (9’)di(9’,h)d9’:7/ ko (0") Epa—r (/)1 (y (0')) dO’
©

S}

n (/@ K1 (0) K2 (6) d@’) (/@ Ko (07)dL (0", ) d9”) ;

o ra () B (01 (y (6)) do’
1-— f@ K1 (9/) K9 (9/) de’

ie.,

/ Ko (0')dL(0',h) do" =
(S]

Substituting into the right hand side of the integral equation (21) leads to

Jor2 (0) Eva—r (0) 1 (y (67)) O’

di(0,h) == Ei1—+ (0) ' (y (60)) — 1 (6) =2 — Jor1 (0) ko (0)d0" 7
(_)

which implies equation (30).

Suppose in particular, as in Saez (2001), that the tax reform h is the step function h(y) =
Ify>y~}, so that b’ (y) = 0,~ (y) is the Dirac delta function (i.e., marginal tax rates are perturbed at
income y* only). To apply this equality to this non-differentiable perturbation, construct a sequence

of smooth funtions ¢, . (y) such that

52/* (y) = lim Py* e (y) )

e—0

in the sense that for all continuous functions ¢ with compact support,

lim RO (W) v (y)dy =1 (y"),

e—0

i.e., changing variables in the integral,

. ’ / dy(9/> o *
iy [ e ) {000 29 by ).

e—0

This can be obtained by defining an absolutely integrable and smooth function ¢,- (y) with compact

support and f]R @y (y) dy =1, and letting ¢y . (y) = 5_1@9* (%) We then have, for all ¢ > 0,

N F / gay*,g(y(e/)) /
/ - _F Py, (Y (0)) Jo £2(0") Eya—r (6) ch
OBy == B Oy O I L@ @) o
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Letting € — 0, we get

—1
0 ) E *
(2482) " 2 (6°) B (0°) =y

) = dy- (y (0))
dl(0,h) =—Ej 1 (0) —2—"""L _ — k1 (0 )

O == B O =y o)~ O o @ @) a0 )

Epqr (y (67)) 1 Epw(y(9)7(6,67)
= —_ " c 57 * 0)) + =
1w | T @ T B 007 @,0) a0
This formula will be useful for the proof of Corollary 3.
]

B.3.5 Proof of Corollary 3

Next, assume that the production function is CES and the baseline tax schedule is CRP, given by
(31) for p € (—o0,1), so that in particular, 1 = 7" (y) = (1 —7)y P and T (y) = p(1 — 1)y P~ L.
We start by deriving prelimilary properties of the labor supply and wage elasticities.

The labor supply elasticities (7), (7), and (12) are given by

Fir () =g e (_r)y” S
e 1=T'(y)+eyT"(y) (L-7)yP+eyp(l—7)y P~ 1+4pe’
an(y) == LW =y ) (=n)y " —yp(l —ny " _(-pe
b 1=T'(y)+eyT"(y)  (A—-7)yP+eyp(l—71)y ! 1+pe’
and ) . ® . .
El - (y) _ - L,1—7 ~ _ 1+4pe _
: _ (1—p)e —p
1-5(0,0)&,(0) 1+ s l+pe+(1—-p)<
i (-
Bl G ® _ SmE (-p)e
wl¥) =73 5 - (—pe — —p) e
1-70,0)6.0) 14+ 1+pe+(1-p)7

Note that all of these elasticities are constant. This is because the curvature of the CRP tax schedule
(captured by the parameter p) is constant. This feature allows us to simplify further equation (29)
to obtain (32), respectively.

We can now prove Corollary 3.
Proof. Suppose first that the baseline tax schedule is linear, i.e., p = 0 in (31). In this case we have

i 1
By (y (@) 7(0.0)do) = — /-o’e/de/: £ _x=
[ B @) @00 = [ 5000 = s

o

Qo

where the last equality follows from expression (15) for the cross-wage elasticities 4 (6',68"). Thus

the integral equation (30) becomes

A1) == T e ) - = (1 f(“”)év&mwwwwwﬂ

C1-T1+ C1-7 1+ 2 g

o
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Note that the first term in this expression for individual € is proportional to the exogenous marginal
tax rate perturbation at income y (@), and the second term is a constant independent of 6.

Now integrate this equation to get the effect of the perturbation on government revenue. Formula
(28) writes

4% (T, h)
[ vy [ 7 | () di ) uf, ) dy
[ s [ e (142) 7 [ diwne,

Ry Ry € R,

_ (c—-1)e 7 ,
—/RJFh(y)fy(y)dy—m“/ﬂhh(y)yfy(y)dy

c(l4+e)e 7T B o ((dy(6) -1 ,
I 1_7/R+ /R+v(y,y)h(y)< 7 ) dy]yfy(y)d%

where the last equality uses a change of variables to rewrite the integral [o 7 (0,0")h' (y (")) df'.

But using expression (64) to substitute for ¥ (y,y’), we obtain

/m l/nh Ty ) (dydf/) > B dy'] yfy (y)dy

_ _ LUH /
[/ﬂh(l G )

Ely] = (1-p) / W (9) vy (v) dy

Hence we obtain

4% (T, h)

Z/Rh(y)fy(y)dy—wl_TT/Rh’(y)yfy(y)dy—G;:fzgliT/Rh’(y)yfy(y)dy

= /]R h(y) fy (y) W (y) yfy (y) dy,

which is exactly the partial equilibrium formula.

1—7'(S

Now suppose more generally that the baseline tax schedule is CRP with p € (—oo,1). Consider
the Saez perturbation at income y*, ie. h(y) = Ify>,~y and h'(y) = dy~ (y). Substituting for
the labor supply elasticities and using the fact that the elasticities E~'l71_7 (0) ,ENLw (6) are constant,

equation (67) can be rewritten as

Eii_r (y(67)) dy (09)\ " B (y(09)7
[59*(1’)*( i) T Jo B (5(8)

B, dy 0\ B
1T (y*) [5y* (y) + ( a0 ) 1_ El’w/a’y(yay )‘| .

(6,607)
7 (0",0) do’
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Substituting in the expression (28) that gives the revenue effects of the tax reform, we obtain:
dZ (T, h)
[ Tty s [ 7o) |2 20 (1 D) s, )
r, (EVHY R, Elw 1-T'(y) 5 i e

Law
T’ (y) {51 1-r <
=1—-F, (y" +/ = —
Yy ( ) ]R+ 1 _ T/ (y*) gl,w

T' () < 1 ) Ei1rErw (dy(e*))—l
_ 1+ _ Al ’ , * d )
~/]R+ 1=T"(y*) Elw/) 1— El,w/aﬂy AT vhy (W) dy

1\ =
4 Q) El} ufy (4) 8- () dy

ie.,

A% (1) =1 = F, (") = vy sy (0
- T :
A W T e ()
‘<”%>El’”1—£;w [ o (%) s
=1 = Fy (y") ~ e IE%/(;*) “Fo () = Brar (14 &) X

{_i 1 TIQE%/Z;*)ZJ*fy (y*) + (dyd(g*)>_ /]R 1 T;gzj(?y*)v(y,y*)yfy (v) dy} .

The terms in curly brackets are equal to

<dy(0*)) {/R ' ) ¥,y ) ufy (y) dy + W) W(y*,y*)y*fy(y*)dy(a*)}

df 1= (v*) =T ) da
() T (y(0) .
_< do ) {/el_fp,(y(m))v(y(ﬂ),y(ﬂ )y (9) fo (0)do
T (y (0"))

A A 6) ) 67) o 87

(O[T w6) *
< do ) {/el_T/(y(e*))v(y(G),y(ﬂ ))y(@)fg(H)dG}

- (dyd(g*)) {/Dh 1 _T/T(/y()y*)w(%y*)yfy () dy}.

Thus we obtain

A% (T, h) =1 — F, (y*) — él,l_T%y*fy (y")
— B (L+ &) (dyd(g*))_ /]R+ 1 _T;F(,y()y)v (v, y") ufy (y) dy.
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Another way to write this formula is as follows: using the expression (64) derived above for the cross
wage elasticities and the fact that 7 (y,y*) depends only on y* (so that it can be taken out of the

integral), we get

(dy(ﬁ*)>_ W(yvy*)/ _T'(?!)yfy(y)der%v(y*,y*)y*fy(y*)

a T () )
:% fRy yf;y ) / Yy W) dy ilT/T(fJ(y))yfy (")
] )
so that we can write
AR (T.1) =L F, ()~ Euacr sy £ )
e TR IO,

We can rewrite this more concisely as

1

A (T,1) =1 = Fy (") = 1= 0y

Yyl (y7) .

T (y*) é11—r + %Em—r (1+ 5l,w)/R (T (y) = T' (y")) jmdyl .
+ Ry Yy

Finally, the integral in the last expression can be easily calculated since the tax schedule is CRP.
We have

1 T (y) =T (y") _ 1 W) —y?
&ﬂ@@@4+1wmwyh@@‘&ﬂ@@@4+ Gy W
o o [ e (B) TR
AL Mh yfy () dy — (y*) /ﬂhy fy (W) dy] =1- W (f) T
B fR+ i%lg%l(zyy*);:’ Fy () dy - fR y*)) fy (y) dy
- Jo, Ef)dy fR+ y/y fy)dy

where ¢ = ¢(y) and ¢* = ¢(y*) are the consumptions (disposable incomes) of types 6 and 6*

respectively. Therefore

d% (T,h) =1 — F, (y*) — %éz,l_fy*fy (y")
— %El’lf'r (1 + él,w) y*fy (y*) (1 - E[S?é?]) .
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Finally, we derive the effects of the perturbation on social welfare. We have
A~1d9 (T, h)

3 1—7 -7
= [ 0wk [ a6 @+ Y

laow 51 W

i (y, >] ufy (y) dy

gl,l—‘r 1- T/ (y) El,l—T

é’l,w 1-1 (y*) gl,w

:f/wgﬂ ) fy (v >dy+/ o ®) ufy ()6, (y) dy

* R+

1-T'(y) Eir Eiw_ o (dy (0)\ 7
—/]R+ 99 (W) T W) 1= Frojo 5l’w7(y,y )( =0 ) yfy (y) dy.

The second and third integrals of this expression are equal to

* -1 = o
(dycgg )) {El,l-r~ El,lfT 9y (y*)y*fe (9*)

Elaw

LEZ v /R 9y () 11__;/((2%7 (v, y") yfy (y) dy}

1—Elw/0'€lw

(dyd(g*)> {Ell 9y (¥ )1y fa (67) — El,“/mgy(y)l_TT//(())f—y( )yfy(y)dy}

=—Epi-, <dyd(g*)) /R+ 9y (y) 11_1?,/((%7 (v, ") yty (v)dy

Using the fact that ¥ (y, y*) depends only on y* and equation (64), we obtain another way of writing

these terms:

%)\ 1 _ v
Emf%gy W)y fy ) — Era-r (dycgg )> 7(1/,1/*)/]R 9y () llg,(())yfy( ) dy

=Enaee gy 0009 0y 07) = Bace g VO [ 00 0) 1= el )

B W) [ (12 02T W)e W)
o fR+yfy(y)dygy(y )/]R<+ <1 (1—T’(y*))gy(y*))yfy(y)dy

Therefore,
A9 (T, h)

=— /yoo 9y W) fy () dy — Era— ( ) B / ! _IT, ((y))v (v, y") ufy (v) dy

Y Evyr y'fy(y") . =T () g, )
—= [ s 2 e )/M(l ST e Y

Finally, the effect of the perturbation on social welfare is given by

d# (T,h) = dZ% (T,h) + X\~ 'd¥9 (T,h).

68



We thus obtain

_ * o T/ (y*) ~ * * 1 * *
dw (T,h) =1 —Fy (y )/y 9W) fy (y)dy — w&,l—ry Ty (") — Wy fy (W)
1 -
e [ =T ) .
1 -
# B [ 0T )0 W) -0 - T W a6 Wdy .
Reorganizing the terms easily leads to formula (32).
0

B.3.6 Proof of Proposition 3

Suppose that the production function is Translog, as defined in Example 2, with the functional form
specification (19).

Proof. A Taylor expansion of the right hand side of (19) as § — ¢’ writes

B(ﬁ,@’)za{l—oxp(—(@ o) )]:—azn'< 5 (0~ 9)>n+o(9—9’)2N“.

Ignoring for now the error term o (6 — 9’)2N+1 and denoting by Sy (6,60') the first N terms of the

Taylor expansion, we get

e (0.0) = )+ — B (0.0) =3 (0)+ 3 E (0 )~ (0= )
! X @ N (0) 2 35l
N n4+1 2n
, « ( 1) 2n , 2n—

)+ 5 2 {Z( ; ><9u9> O — o) }

2 N n+1
—x(0) + o U ( . ) (0= o) @ — o)™

X( )k:0n=max{l,’—§—| 2ns7n! &
a 2N .

—X(9)+mk:0Ak(9)(9_N9> )

where pg = [~ 09 (0) df and
N n+1
-1 2n n—k
A= X (z)nv< ) )w’—uef .
n:max{l,f%]}

We therefore obtain that 7y (6,6’), and hence the approximate kernel K, (6,6') = Ej, (8) 7n (6,0")

of the integral equation (21), can be written as the sum of multiplicatively separable functions, which
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allows us to derive a simple closed-form solution for di (6,h) at an arbitrary degree of precision.

Letting % (y) = 1&;?()7;)7 we can write the approximate solution to the integral equation (21) as

diy (0,h) = —E;1_. (0) 1 (y(0)) + /@

2N+1
{ > ki (0) ki (9’)} din (¢, h)de’, (68)

=0

where
ko1 (0) = Erw (0), Koz (0/) =x(0"),

and for all ¢ € {1,...,2N + 1},

_ Eiw (0)
x (0)

This equation can thus be rewritten as

ki1 (0) (0 — o) ™", ki (0)) = A1 (0).

X ) X 2N+1
diy (0,h) == Ep1—- (0) 2 (y(0)) + Z aiki (0),
=0
where the constants (a;),-, are given by

a; = / Kio (0')dI (6, h)do'.
(S]

We thus obtain immediately that the solution to (21) is of the form

din (6,h) =~ Eya—r ()i’ (y (9)) + By (6)

N
1
72 a1 (0 — 1g)™
dot x (0) nzoa +1(0 = po)

To characterize the constants (a;);5 in closed form, integrate over © both sides of (68) evaluated
at ¢’ and multiplied by k; 2 (6'):

ai:/ kio (07)diy (9',h)d9’=—/ kio (0)) By, (01 (y(0'))do’
© ©
2N+1

+ > a4 / ki1 (0') k2 (07) dO),
j=0 7©
so that the vector a = (a;)y<;<on; IS the solution to the linear system
[12N+2 - A] a :h7

where Iy is the (2N 4 2) x (2N + 2)-identity matrix, and the matrix A = (A ;); icon,, and
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the vector h = (h;)) ;<o are given by:

AiJ‘ :/@I{jJ (0) R4,2 (0) d@,
h, = / kio (0) Eri_r (0) 1 (y(0))d6.
C]

We assume that the determinant det (Iay42 — A) # 0, so that this system can be inverted. The
inverse matrix [Ioyi2 — A]_1 can be expressed as the transpose of the matrix of cofactors from
[Ian+2 — A], which we denote by C, normalized by the Fredholm determinant det (Ioy42 — A).

Thus we have

2N+1
@i = det (I2N+2 - Z Ciihy.
so that the solution to the integral equation writes
R . R 2N+1 2N+1
diy (0,h) = — Er1-, (0)h' (y(9)) + ; W ; Cj,ih; | ki1 (0)
=~ Bia—- () 1/ (y(6))
2N+12N+1
+ /@ (M(IQT ; jz;) C;,z/‘% 1 /‘@j,2 (91) El,l—r (9/) iLl (ZU (9/)) d@’,

or, denoting by Ry (0,6’) the term in square brackets in the previous equation, or the resolvent

kernel of the integral equation,
din (6,h) == Ei1—- (0) W' (y (6)) +/ R (6,0') Eiar (6') 1 (y (6')) d6.
S

Finally, we can show that

2N+12N+1
S>3 Chakia (0) k2 (') = —det (D (6,0))
i=0 j=0

with D1’1 (9,9/) = 0, Di,l (6‘,9/) = KRi—2,2 (9’) for 4 Z 2, Dl,j (9,9/) = Kj—2,1 (9’) for _] Z 2, and
(Di)j (9, 9l)>2§i,j§2N+3 = I2N+2 — 1&7 SO that

det (D (0,0"))

N —
R (6,6) = det (I, — A)

This proves the first Fredholm theorem with a separable kernel.
We now compute a bound on the error in the approximation of the true solution dl (0,h) by

diy (8, h). We have
|0 0/|2N+1

— / ~
17(8,6") = (6,8 < S s (N + 1)
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which implies, denoting K, v (6,6") = Ey., (0) 3 (6,6'),

B 6_0/‘2]\[-‘,-1
N / I < o /
L1 0.0) = K 0,001 < [ B0 0)] 5 i

o (0 -0)" " supg | Eiu (0)
< ONHT2(N+D) (N + 1) =N

which converges to zero as N — co. Assume that ey (1 + My) < 1, where

My = Sup/ IR (60,6")]do’.
9co Jo

We then have (see Theorem 2.6.1 in Zemyan (2012) and Section 13.14 in Polyanin and Manzhirov
(2008)):
(14 My)* supg | Er1—r (0) 1 (y(0))

1—en(1+ Mpy) '

i (0,h) — diy (9,h)| <en

Now consider the approximation of dl (0, h) obtained from the third-order Taylor expansion of
3(6,0):

di(6,h) ~ = Ei1—+ (0) B (y (0)) + Evw () |a0 + ﬁ D ani (60— M]
n=0

= B O R (4 (0)) + Fra (0) a0 + 2+ (<9 o)+ (6~ mﬂ

x(0)  x(0)
B O (©) + Brw @) a0t — (= B ) B ()
Sy T @O\ das) T " 2 |
Letting 0 = pg — 70 and recalling the approximation ¥ 0,0)=x(0) + %LX_(Z;) , we get

Al (0,h) ~ = Eyar (0) ' (y/(0)) + B (6) % ...
0= 2200 (1) 4 (0= 12 )+ 2o (6 (0) + o (0-))]
== B OF 4 0) + Brn 0) o1 + -2 0 (00)]

which proves equation (33).

We can obtain (33) by computing the second-order approximation directly. We find

B6.0) 230 (0) (0 — ) o (8) + 1300 60) 0 (8) (8 — puo)”
— g (6) (6 15) o (') (6" — o),
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so that

i=1
with ~
K11 (9) :El,w (0)
K21 (9) :El,w (0) iEZ)
a1 (0) =B 6) 20 (6~ o)
ka1 (0) —El w (0) ;JZEG; (0 — ,Ue)Q
and
K12 (0') =x (0")
r20) =20 (0 —
K3.2 (9/) = — 042(302/) (9/ - 0)
a2 @) =215
Thus 4
di(0,h) == Era— () 1’ (y (0) + ) airiia (6)
with - .
aq f@ K12 (0) f?l,l—r (9) i}, (y(6))do
@ | g, - A Jo #2.2(0) v (0) W' (y (0)) dO
as f@ k32 (0) E:l,lf'r (9) {L’ (y(6))do
ay f@ K42 (9) Eq . (9) h' (y (9)> do

We can finally write

Ai(0,h) ~ — Erar (0) W (y (0)) + By (6) {al o) (a2 +as (0 — po) +as (6 — Mﬁ)]

x (0)
=~ B O 4 0) + B ) |01+ <P ar b s (0= + 2 0.

73



The term in square brackets can be rewritten as

so that
AL (0,h) = — Erar (01 (y(0)) + By (0) [cl n cQXEZ; T (9,9)} ,
where ~ as
0 =po — E7

This concludes the proof.

B.4 Proofs of Sections 3 and 4

B.4.1 Proof of Proposition 4

We start by deriving the formula (42) for optimal taxes using mechanism design tools, i.e., by solving
the optimal control problem (37, 38, 40, 41).

Proof. The Lagrangian writes:

c- /. U(V(G))fe(G)d9+A{9(-$) L@+ oao) fe(9)d9}

B ; w1 [0.100) fo(0), 2] + [16) £3(6) + b(6) fo (6)] w2 [0.1(6) fo(0), ]
/@ (O (1(60)) 1(0) RIXOYON a6

/ 6)d6 — / 6)d6 — / ' (6) 1(6)do.

For simplicity of notation we denote

w(0) =2 16,1(0) fo(6), Z]
_ w1 [0,1(0) £6(0), L) + [L(0) £5(0) + b(6) fo(0)] w2 [0,1(8) f5(0), Z] (69)
- / .
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The first-order condition for V() writes:

u' (V(0)) fo(0) — Afo(0) — ' (6) = 0. (70)
The first-order conditions for b(6) writes:
— (O (10 10) Zg —n(0) =0 (71)

The first-order conditions for [(6) is obtained by perturbing . in the Dirac direction dy and evalu-

ating the Gateaux derivative of £ (i.e., heuristically, “%”):

dL (L, 6) =Mw(0) fo(6) — M'(1(6)) fo(60) — p(6)v"” (1(0)) 1(0)w(6) — p(B)v'(1(6))b(6)

*/ p(67)0"(1(6))1(6")dw (6", J9) " — 1'(0) = O, (72)
e
where dw (¢, dy) (or, heuristically, ¢ 65%3;)”) is defined as:
1
Ao (6,80) = limy - (167, (1(0") + 100 (6)) £0(0), 2 4 o] =& 1610 fo 0). 21} (73
"

Now, note that

0i(6) _ ws[0.16)fo(6). 2] fo(6) _ 3(6.6)
MO~ w10 L0.L) 1)

where the second equality comes from the fact that, by definition of the own-wage elasticity,

w2 [97 l(e)fg(e),f} fG(e)
w (0)

7(0,0) = L(0) (74)

(intuitively, ¥ = L 2% keeping .# constant). Thus, we can rewrite (71) as:

which implies

n'(0) = — p'(0)v" (1(0)) 7 (6, 6) — u(0)0" (1(6)) I'(0)7 (6, 6) — u(0)v" (1(0)) 7' (6,06) -

Using this expression to substitute for n’(6) into (72) yields

0 =Aw(6) fo(6) — A’ (I(8)) fo(6) — u(O)v" (1(8)) 1(O)w(6) — u(0)v" (I(0))wb(6)
(
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We now analyze the last line of this equation. From (73), we have

da (6", 09) =2 (0",1(0") fo (0'), L) fo (6") b6 (6')
+ lim % {O[0/,1(0") fo (0/), L + ude) — & [0/,1(8) fo (0'), L1}
=0o (0',1(0") fo (0'),L) fo (0") 09 (6') + 3,0 [0, 1(0") fo (6'), 2],

where we introduce the short-hand notation ws g in the last line for simplicity of exposition. Denote
by @139 and Wa3 ¢ the derivatives of W3 ¢ with respect to its first and second variables, respectively.
Now recall the notation (69) and note that

@@mmwnﬁn@=Wwwwﬁmﬁ””m%%¢MWM”ﬁ“”ﬂW)

[w+ UO)S5(0) + B(O) o (0)) 2] Ji (6) w2
w(6) ’

so that, using the definition of w(6) and equation (74),

w12 fe( )OJQ l 0 / 0 b 9 9 w22 UA)
010010 0), 21 o 0) = 202 LOROTIOROT 2 ) 010

Now, we have
(ﬁ (0,0) >/ _ {lwa1 + (1(0)f5(0) + b(0) f5(0)) waz] fo (0) + wafy (6)} w (6)
1(0) w? (0)
) + b(0) fo(6)) wo]

w2y (0) [wi + (1(0) ],

40
w? (0)
_Mﬁ%%mﬂ(>@+mm@wm
- w (6)

Therefore, the previous two equalities imply

a2 10.10)52 0). 2110 0) = ( (77)

Next, from definition (69) we have (omitting the arguments (6, L(0"),.Z) on the right hand
side)

‘:/’3,9 [6‘/7 ! (6/) f9 (9/) ,f]
_wigg + (1(0") f5(0") + 0(6") f6(6")) wase  [wi + (L(6") f5(6") + b(6") fo(6")) wa] wa.p

w (0") w? (0") (78)
_wize + (U0 )fe(fu )(;/)b(@ )fo(0")) waze ul) ((g))7 @.0),
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where the second equality follows from the definition of @ (6") and of the cross-wage elasticities

T0.0) = G x T {010 Jo (6). 2+ ] - w000 fo (0). 21}

= (9/)w379 0,100 fo(0),2).
Note moreover that this equality implies

07(0,0) _, w130 O LO) Jo (6, 2) + (UO)J4(0) +(0)fo0)) waso (0, 1(0') Jo (¢), 2)
o0’ w (07

=1(0

ws,o (0, 1(60) fo (0') ., 2)
—1(0) = W) X ...
w1 (0, 1(6") fo (0), L) + (L(0) f5(0") + b(0') fo () w2 (6, 1(6") fo (0") , L]

wiz,o + (L(0") fo(0") + b(6") fo(6")) was.6

and thus, from (78
( ) A / / / 1 8’7 (9/’ 9)
@300 10) 1o.0). 2] =7 =g (79)

Substitute equations (77) and (79) in (76) to get:

0 =Aw(8)fo(0) — A" (1(6)) fo(0) — p(O)" (1(0)) 1(0)(0) — u(O)v" (10
+u/(0)0" (1(0)) 7 (0,0) + u(0)v” (1(0)) I'(0)7 (6, 0) + (O)v
_ /@ (0 UONO) ...

{@s (6,1(6") fo (6), L) fo (6") 09 (6) + Q3,0 [0, 1(6) fo (¢') , £1} db
=w(0) f5(6) — A’ (1(0)) fo(6) — u(O)v" (1(0)) 1) (6) — u(0)v' (1(8))b(6)
+ ()" (16)) 7 (6,0) + p(B)v” (1(6)) b (6) 7 (6,0)

n {u(9)v 10) 205 0.0) 1 w(o)’ (100))1(0) o fo <0>}

\
—
=
=
B
=
=
2 =
— 5
—~
=
>
N

(0,0
b(0)
L(6)

o w0 0,160 10 2) 5000+ [ @ WO T
and hence,

0 =w(0) fo(0) — A’ (1(6)) fo(0) — p(O)v" (1(6)) L(B)b(6) — u(O)v' (1(6))(6)
+ ' (0)v" (1(0)) 7 (6,0) + p(®)v” (1(0)) b(6) 7 (8, 0) + u(0)v' (1(6)) 77257 (6,6)

- [y G g (50)
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Using the definition of the labor supply elasticity (6), we finally obtain

a0 16D 30.0) 4 u0) (14 ) 0 10) 11517 6.6)

/ / / l(e/) a’? (9/7 9) /
—/@u(9 ) (1(0 ))mT‘w :

Moreover, defining the wedge (1 — 7(8))w(8) = v'(I(#)) and noting that

v (1(0)) + v (10)) 1(8) = (1 = 7(0))w(0) <1 = 1_17(9)) ’

we can rewrite (81) as

0 =N (6)o(6) = AL = T(6))w(6)(6) D)1~ 7@)o) (1+ ) 50
O = 70007 0.0+ 6) (14— ) (1= 7)) 17 6.0)
= i Lo =y Ly

X))+ 1(6)1 ~r(@)uo) (14— {55 0.0 - 00)}
O 0007 0.0~ 1 [ w01 =0 0) gD

Using the fact that @w(6) = '“;/((g)) and dividing through by A\(1 — 7(6))w(8) fo(8) yields

o), w0 LN [10) g WO
o= * 3 (L ) LT 0~ )
/’L/(e) = 1 / / / 8:}/ (9/50) /
S 0~ TR J, OO T

and hence, using the relationship between the densities of productivities and wages:

() _ 1 1(0) _ Lo ()
1-7(0) (1 - 51,1_7(9)) N0(8) fu(w(0)) (1 —7(0,0) woy | - ARG

1 / i / Nl (9/7 0)
AT ORER® Jo €0 TN g
Note that for a CES production function, we have Bﬁg(:ﬂ) =0.

(81)

Finally, an alternative optimal tax formula is given by integrating the previous equation by parts

(with the appropriate boundary conditions on p (6)):

!/ !/ / 8’7 (9/70) !/ = / d / / !/ /
@) =@y 5 = [ 50.0) 5 (o)1 = (0 )y(6)] '
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We therefore obtain

() _ (1+ 1 ) u(0)  Jo ln(@)' (1(@))1(x)) v (=, 6) da
1—7(0) et1-7(0) ) Aw(0) fu(w(8)) A1 —=7(0))y(0) fo(0)
(9)> n(0) U (0) . pe)
) AMo(0) 1(0) ~ Afo(0)
)

) _ 1 p(0) B !
1—-7(0) <1 " 61,17(9)> Aw(0) fu (w(0)) AL —7(0))y(0) fo(0)

Note finally that the first-order condition (70) implies

p(0) = u' (V(0)) fo(0) — Afo(0),

so that, using u(6) = 0,
0
p0) == [ [ (V@) o) = Afo(a) da
0 ’
=Y [1 ) Wum] fola)de =

&

Afo(
[l

This concludes the proof.

We now derive optimal taxes using the variational tools introduced in Section 2, i.e., we tackle

problem (34, 35, 36) directly. We start by deriving the expression (48) for the counteracting pertur-
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bation hs.

B.4.2 Proof of equation (48)

Proof. Consider the perturbation hy defined by hi (y) = Iy>,+} and b (y) = d,- (y). As usual,
denote by 6* the type such that y(6*) = y*. We impose that hy + ho has the same effects on
labor supply as those that hy induces in the partial equilibrium framework. The general equilibrium

response to hy + hs is given by the solution to the following integral equation: for all § € O,

) €1+ (0) {hll (y (0)) + hy (y (9))}
dl (0, hy + hy) = — — —
R N (CUE O S 010) s
ElLw (9) / = N 17 (0! /
+ — 0,0")dl (0", hy + ho) db".
T3 0.0z, @) Jo ! @7
The partial equilibrium effect of k1, on the other hand, is given by: for all § € O,
; - hi (y ()
dlpg (0,h1) =—¢é11-~ (0) {1
’ 1-1 0
(v(®)) s

— _ S (0*) )
1T (y(0%) Fear (07)y (0%) T (y (67)) by~ (y (0)) .

In particular, note that in partial equilibrium, we have dipp (0,h1) =0 for all 8 # 6*, i.e., the only

individuals who respond to a change in the marginal tax rate at income y* are those whose type is
0* (and hence whose income is y*). Substituting for (84) in the left hand side and under the integral
sign of (83) yields:

. gl,l—T (0) . _ 1 él,1—7' (0)
o) YO ST T G0 15 60.0) 6 0)
l

W (9> _ / él,1—‘r (9/) / /
) /@7(9,9)17T’(y(9/))61}*(y(9))d9’

{04+ (y () + R (y (0))}

i.e., after changing variables in the integral in the second line of the previous expression,

€117 () ha(y(9)  _ (- _ &a-.(0) dy- (y (9))
1=5(0.0) &0 (0) L =T (y(0)) <El’1_7 =1z 7(0,0) €1 (9)>

This implies

My(y(0) - N oy~ (y (0))
1—T (y(0) 70,08 0) 7 (y (0))
1 Elw (0)Erar (0%) [dy (0" _ .
1T (y(6%)) g1+ (0) ( do ) 70,6%),
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which can be rewritten as

hy(y(0)  _ Ew (0) &1~ (07) |~ 1 e e
1—T’( (6)) _1—T/y(9*))l gl’li(g) [7(‘9’9)511*(9(9))4-( 0 ) 7(9,9)1

1
(
- ty(ﬁ*)) e »(j)il(é; ( d( > [3 (6",607) 3o~ (6) + 7 (6,67)]

or

ooy A= T () v O T O 1 (0)

B O) == - T OO S, ) e 0y O (00)
LT O) e Oy OT 4 (0) e (0) Ay

TGO O ey () 700

a7 (07)  (dy(07) , , )
- 171}’(34(9*)) ( 20 ) X (L=T"(y(0)) —y (0)T" (y (9))) v (6,07).

This proves equation (48). Note that h} (y (6)) is a smooth function, except for a jump (formally,
a Dirac term) at § = 6*, which adds to the jump in marginal tax rates defined by the tax reform
hy at 6* so that the total response of labor supply of individuals with income y* is equal to their
response to hy in the partial equilibrium environment.

Now, integrate this expression from 0 to y (letting ho (0) = 0) to get ho (y):

ha (y (0)) = —

51,177(9*) dy(e*) - Y ! / Uealld / ok /
1_T/(y(9*))< 20 ) /0(1—T(y)—yT W)y y*)dy'.

The integral in this expression can be rewritten as

[ a-rw -y enaean) (22 ) b w
* /y A-T'()—yT" ()7 y")dy,
0
and hence

(@) = - - O T ) - T DA ) T

* (dyd(g*)>_1 /Oy A=-TW)-yT" W N7 Y y") dy'}.

(Note that we could have obtained this expression by integrating over § € © rather than y € Ry,
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the expression

dha (y(6) _ Eaor (6) (dy Ga
db LT (y(6%))

do ))_ (1=T"(y(®) ~y (O)T" (y(6)))

x (7(6,07) +7(67,67) G- (6)) x (dlﬁl?) 7

and and using a change of variables in the integral.) This concludes the proof.

We now derive the effects of the combination of perturbations h; + ho on social welfare.

B.4.3 Proof of Proposition 5

Proof. We start by deriving the effect of the perturbation i = hy + ho on the tax liability of any
individual #. We have, to a first order as y — 0,

QT (w (0)1(8)) ~ pi=" {T (@ (6) (1(6) + pl (6, 1)) — T (w (6)1(6))} + hy (i (6) (1 (8) + pudly))

pn—0

_ { [ 2@.00ai@.mar+aie h)} Y(O) T (5(8)) + ha (y (6)) + ha (4 (6))

This can be rewritten as

Eri—r (07
dnT (y (9)) =Ly0)2y+1 — 1I_1T/((y))

Sy (9*>)) {(1 T () =y T" (")) A " 5") Ly 207

1T (y(6%))
+ <dyd(g*))1 /Oy 1-T () —y'T" (y/))ﬁ’(y’,y*)dy’},

{ /@ 2 (0.6)5, (4 () d6 + 5, (y <0>>} (O T (4(9))

T (56) T2~ 1 51 ()66 (4 (0)

e (0) (AN
l)){v(ﬁﬁ)(de) YO ((6))..

1T (y (0
+A=T (") =y T ()T Wy Loy <dyd(g))

n /ZI (1 _ T/ (y/) _ y/T// (y/))ﬁ/ (y/’ y*> dy’},
0
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ie.,

G (674 6) 8, (4 0)

* * -1
1 EZ’IT’Ey(?oz)) (dyd(g )) {7(979*)y(9)T’ (y(©))-..
+/O A=T()—yT"(y)7(y,y") dy }

dnT (y (0)) =liy0)>y1 —

Next, we derive the effect of the perturbation h; 4+ ho on the aggregate tax liability. We have,
to a first order as u — 0,

/ T (y) fy (y) dy
Ry

<[ + {T' W)y () y + / "U-T ) -y <y'>>v<y’,y*>dy'} £, () dy

dp

=1-F, (") - T;f’;;*) Euimr () 5y (57)
- ) (dy(a*) T () (0,0 v, () dy

s () / =T =T ) ) 1, )

where we obtained the expression in the last line by switching the two integrals. Hence we get

dZ (T, h)
%51,17 (y*) y*fy (y*)

Ea-r (07)  (dy(6")\ " : "
- 1_ZT,(y(9*)) < 70 > /R+T W) (W y") ufy (y) dy

57 -7 (9*) dy (9*) - > / / e aldd / !/ * / !
_1“T'(y(9*))< de ) /y,zo(l—T(W—yT Ny 1= Fy () dy

=1- Fy (y*) %gl,l—r (y*) y*fy (y*) _ 51,177— (0*1 dy (0*) -
1=T"(y") =T (y(67)) \_ df

=1-Fy(y") -

/ (1T ()~ yT" () (1 = F, @) + T’ ) ufy (1)} 7 (v 0") ds.

But by Euler’s homogeneous function theorem, we have

Ear (0)  (dy(O)\TT[* _
—1_lT,(y(9*))< 20 ) /Ow(y,y)yfy(y)dy—O,
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so that substracting this (zero) term from the previous equation, we can write

T (y)
1=T"(y*)

A% (T, h) =1 — F, (y") 11 () (dy(e*)>1...

1-=T"(y(6%)) do

<[ TLA T @) — T ) (1= Fy @) — (1= T () ufy )}y (3 w™) dy.

El1-7 (y*) y*fy (y*) -

Now note that

Q=T () —yT" W) A=F, () — Q=T () yfy ) =[1-T" )y 1 - F, ()],
so that we finally obtain

- T Y A )

Ea-r (07)  (dy(0)\ : S
- 1_IT/ (y (6%)) < 40 ) /R+ (A=T"(y)y(1 = Fy ()] v(v,y") dy.

A% (T,h) =1 - F, ()

Note that using (11), this equation can also be expressed as

A% (T,h) =1 — F, (y*) — %s},” W)y fy (")
51,177 (9*) / *\ = * * / W(y7y*)
—I_T,(y(e*)){w W)y y") + ]Rer(y) Y (6%) dy}v

where we denote ¢ (y) = (1 —T"(y))y (1 — F, (y)) and ¢ () = d%’i—(:).
Next, we derive the effect of the perturbation h = h; + he on the utility of any individual 6.

First, the change in individual consumption due to the perturbation is

ATy (6) — T (y (6))] = du [y (6)] — du [T (3 6))]
e O 000 WD 0 O}y 1T )
ha (5(0) — b (5 (0))

i 0)) . % 3 1—71 0* dy (6" -
=~ Ly)>y-y — lle:%y(*)))El,l—T (07)y (0) 6y~ (y (9)) — 1 iLT/ (y( (91)) ( yd(g )> T

x {(1 ST @)y 0200 - [ Q=T @) -y T D) dy'} |
0

where the last equality follows from the same steps as those of the derivation of d,T (y (8)) above.
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Thus the change in individual utility due to the perturbation is

dp [u(y (6) =T (y(6)) —v (1(6)))]
v (1

= (du [y (8)] — dn [T (y (6)] — ' (L(6)) dul (B)) ' (4 (6) = T (3 (8) — v (L (9))
{ Liy0)>y+y — E“ T,((z*)) (1 =T (y(9)y(8) —1(0)v" (1(0))] 6y (y(G))}u’ )
- () o {a-rwenseree..

—/ A=T"()=vT"(W)v ¥y )dy}
0
Using the individual first-order condition (1), this can be rewritten as

dn fu(y (0) =T (y (0)) — v (1(0)))]

Ear (07) (dy(0)\ ™
== Oz = T o770 < 0

{(1 ST (0)y (0) 1 (0.67) / AT )~y T W) W) dy/} i (0).

which is a manifestation of the envelope theorem. The first term in this expression is the PE term,
the second is the GE welfare effect.

Finally we derive the effect of the perturbation h; + ho on the social welfare. Summing the
previous expression over all individuals using the density function fg 0) = fy (y) d%—(:), and defining
the marginal social welfare weights as g,(y (0)) = %, we obtain that the change in the
government objective due to the perturbation h(-) = hy (+) + ha () is

=AY (T, h) = —A7'dy, [/O uly (0) =T (y(6)) —v (1(6))) fo (6)db

[l 20 )
o {y(@)>y*} 1_ 7" (y*) d6

-/ LT )~y T W) W) dy

=0

(1=T"(y(0))y (6)7(0,0)...

}Alu' (0) fo (0) dO
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Switching the two integrals in the last line of this expression implies that —\A~*d¥ (T, h) is equal to

/ ]I{yZy*})‘_lu/ (y) fy (y) dy
Ry

i~ (¥7) (dy G

) - / * -1 7 3
T T )\ as ) {/R+(1—T(y))yv(y,yM u () fy (y)dy.-..

- /: /:O (1= ') —yT" W)y () XN () fy () dydy’}

[e%e} _ ) ) »
[ A (47)

—/y A=T"(") = yT"(y) v (W', y7) [/jgy ) £y (v) dy} dy’},

'=0 Y=y

But note that
(L=T"(v)ygy () fy (v) — (1 =T" (y) = yT" (y)) (/oo 9y (V') fy () dy’)

__ {(1 ~T' (y)y (/yoogy (') fy (y/)dy/ﬂ,'

Thus, we obtain

1 _ > 51,1—7(?4*) dy(e*) o
-2 d%(T,h)—/y* gy(y)fy(y)dy—l_T/(y*)< 9 )

o /
< = (o w) 5w )| )i
Therefore, the normalized effect of the perturbation on social welfare is finally given by:
A (T,h) = d% (T, h) + \"*d¥Y (T, h)
=B ) = [ a0 fy - s 0 )

T’ (y*)
Sar (07) (dy(0)\" : '
B 11}’ (y (6%)) ( df ) /R+ (A =T"()y (1= F, ()] 7 (y,57) dy

Pl (W) Jo-rons ([T awn )] .
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But note that
[(1=T () y(1—F, ()] - {(1 T )y (/yoo 90 W) fy (W) dy/ﬂ/

_ [(1 ~T' () y (1 - F, (y)) <1 - /:o 9 ) %dy/ﬂ :

so that, using the definition of g, (y), we get

1irl(y*)*)5l71—r W)y fy (v*) x

d# (T,h) =1— / gy (y T (y

€17 (07) y (67) / _ ) .
- 1_ZT/(y( 6%)) < > /1R+ (A=T"(y)y (1*Fy () (1*9?;(2/))] v (y,y") dy.

Now, at the optimum we must have ?_ng(Tyhg = 0, therefore
' (y") v fy )
0 —1—g *\ ~ . * Y
R )

1-T7 1-F
za, 7(9*)/R [(1 gy (¥)) ( ) y( y(y))]v(y’y*)d%

(1 =T"(y(67))) (1 = Fy (y*)) v’ (6%)

which leads to the optimal tax formula (49).
[

We now prove that the optimal tax formula obtained by the variational approach coincides with

the formula obtained by solving the mechanism design problem.

B.4.4 Proof of the equivalence of (42) and (49)

Proof. Substitute for u(6) = A fe (1 —g(x))dFy(z) in the optimal tax formula (42) evaluated at 6*
to get:
T () _ (6)

L=T"(y(6%)) 1-7(6%)

:<1+ 1 )fg (1-go(@))fo(z)dz Jo [ a@Ni@) (121 = go(a)) fo(a')da’) | A(w,07)da
eLi-r (07) ) fu(w(07))w(07) (1 —7(67)) y(6%) fo(6%)

- 1 1—F9(9*) g _ r fg(x) "
=(* o) mEEE </9 (=l ”1—F9<9*>d>

Lo [0 =T @) @) (= Faw) ([0 - 90w 25 )| (0,00
=T (y ) y(0) o () ’

where the last equality uses individual z’s first order condition (1). Using the definition of the

fo(z)
1—Fy(0

average marginal welfare weight go () = |, 3 go(x)) dx and multiplying and dividing the first
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term on the right hand side by w’(6*)/w(6*), we can rewrite this expression as

) _ 1 WO ey L= Fe(0%)
e v el v o) e o XA w ey

(
Jo 1 =T"(y(6))) y(6) (1 — Fy(6)) (1 — go (6))) ~(6,6")dé
(1 =T (y (6%))) y(0*) fo(6*)
We now change variables from types and wages to incomes in each of the terms of this equation.
First, recall that Fy(0*) = F,, (w (0*)) = F, (y (8*)), and

o (0) = £, (w (6)) x 20
Second, we can rewrite the integral as
[ 3510 =T ) 5(6) (1 = Fo#) (1= 30 0))] 1 (0.6%) 9
— [ ]a =T wen-vO T wE) - R 0 - 0) L2
=T )8 (00 o )] (60,67 a9
- [la=mwen-vo 1" 6 o) - Ry - a6 0)

(=T () 0) 1= 0, (16D £y (0 0] 47 0 0) 67 a9

-/ [(1 ST () — T ) (1 - Fy() (1— gy (1))
—(1=T W)y —gy W) fy (y)] v (y,y*) dy

:/ di (1 =T"(y) y (1 = Fy(y)) (1 = gy (¥))] x 7 (4, y") dy,
R, @Y

where the second equality uses

Lo @) 1 6O) 7 < f (0)

= 9o (0)7

and v (6,0%) = v(y(0),y(0%)), and the third equality follows from a change of variables in the

integral. Third, we have

w'(6)

w'(0%)  1-Fp(07)  _ w'(0°)1-Fp(67) _ ) 1- Fy (y(6))
w(0*) folw(0*)w' (0%)  w(@*) fo(6*) w03 y(0) fy (y(67))
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To compute y((O))/ w((g)), note that the first order condition 1(0) = w(#)® (1 — T"(y(0)))® implies

o) _ . (w’(Q) y’(O)T”(y(9))>
w(®)  1-=T'(y(0) )

Using (8), we can write
1(0) —w(9)y(O)T” (y(6)) N
1(0)F +ew(9)y(O)T" (y(6))

él,w(o) =

These two equations imply that ll/((g)) / qu;((g)) is equal to

(1 _ w(0) y'(O)T"(y(0)) €

w'(0) 1—T'(y(h)) ) €= l(@)% +ew(0)y(0)T" (y(0)) { |:l(9)g - w(@)y(@)T” (y(e))} .

[+ oo won - HE ST (10w won)] }
o (0) {1 . (1+ &) w(O)y(O)T" (y(9)) — o LOT W) (1(9)% + ew(0)y(6)T" (y(t‘)))) }
=€lw .

1) —w(O)y(0)T" (y(0))

But the second term in the curly brackets is equal to zero; to see this, note that its numerator is

proportional to

(1+2)y(6) - (1_T,é;$§)) gy O + cw@y(O)T” (y(e)))

o (14¢e)w'(9)1(0) — (1 +ey(0) TH ((;( ) y'(

where the last equality follows from the fact that y'(0) = w’(0)1(0) + w(8)I'(f) and the expression

above for TH)) Therefore, we finally obtain

y' (0) () —1
v(6) 00 dlnw(0) dlni(9) .
w’(0) L+ w'(0) L+ ( do do =1+ 5l,w(0)-
w(0) w(6)
This implies
L-F,w(8?) 1 1-F,y(6")
w(0*) fw (W(0*)) 14 E1,w(0%) y(60%) fy (y(67))
Finally, note that
1-T'(6)
! _ T O Oy T @) b7 () 1 __&1-+(9) LI
1 + Elw (0) 1 + = T’1(9)T+(5?)1 T((QG))E(O()QT)“”(O) El1—1 (9) S (9) 1 + El1—7 (9) Ell—7 (9)
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Collecting all the terms, we obtain

T (0%) | - 1 a0\ 1-F, ((6")
Ty (67) (1 - <e*>) (=00 (67)) <ém R <e*>) YO, (4(67)

Jo, a [(L=T () y (1= Fy(y)) (1 = g, ()] x 7 (4, y") dy
AT GOy ) f, @) <y )
1B 0Y)
“as o ) LG @)
fo, 10T )y (L= Fy () (1 — 3 )] % 7 (5,5 dy
AT GOy ) f, G0 <y ) ’

which is exactly formula (49).

B.4.5 Optimum Characterization and Proof of Corollary 4
Here we show how to rewrite formula (49) as an integral equation.

Proof. The idea is to integrate by parts the last term in equation (49). Let

(=g, (W) =T (y)y (1 - F,(y))
YW =T Ay a- Py

so that optimal taxes satisfy

T"(y*) . Yy ') Eies (07)

1-T'(y 1-F

y (y7) Y (6% R+¢ () (v, y") dy.

0=1-g, (y*) —

Disentangle the Dirac and the smooth part of v (y, y*), i.e., the own- and cross-wage elasticities. We

get:
0=1-gy(y") - 12{?(;*)@,17 (v") %
- M O W) s y*) + 73 W5y Y (07) 8y (y)] dy
y(0)  Jr,
— * T/ (y*) ~ * y*fy (y*)
=1-gy (y") 1—T’(y*)“_T(y)W

e () () () ﬂy(a(e)) [ iy

Assuming that y — 7 (y,y*) is continuously differentiable for each y*, we can integrate by parts the
last term of this equation. Using  (0) = 0 and ¢ (7) = 0 yields

T (y*) . v fy (v°)

T VT gy e O 6

tenc ) [ 0w [(dy;g”)‘ il (jy’y*)] .
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Now, since the marginal social welfare weights g, (y) sum to 1, we have
(1-5,0) 0~ F @) =1~ F,0) - [ 0,65 0)d
Yy
Yy
— [ 0w 5,0~ B, ) = 6, ) - F, ),
0

so that [(1 - g, (y)) (1 — Fy ()] = (94 (y) = 1) f, () and thus

A-T")ylgy (W)~ fy () + A= T"(y) —yT" (y)) 1 — gy () (1 — Fy (y))

U (y) = (1—T'(y*)) (1 - F (y))

Hence (85) can be rewritten as

") 1 1-F ) o
1—T’(y*)7§z,1 T( *) yfy( ) (1 gy(y ))

IR (=T (y) -y T (y*) 1 —gy (y) 1 = Fy (y ))ﬁ(y* )
v fy (y*) (1=T"(y*)) (1 = F(y*)) ’
C1-F ) -T )y (9 (W) 1) fy (y )i(y* v
v fy (y*) (1=T"(y*) (1 = F(y*)) ’

+

L-F ) [ =g, A-T )y - F, ) |(dy ()" d7(y.y")
y*fy (y*) /1R+ (1=T"(y") (1= F(y")) l( > ] w

The right hand side of this expression is equal to

1y:ij($(/*;) 1=5,(") i1 i(y*) [1 - 1y§/”(( )))gl’l_T (y*)v(yﬁy*)}
- | EMOCE O () i,
:1y_*ij@(,*;) (15,6 _glg’j ( T)(fo YD) (1= g, )T ()
+ [ g ) O LR (W) T,
We thus get
() 1 1-F,(y")

T "R ) () o - i)
S Rm (1-T W) T y)
- /uh (=9, W) ( v fy (%) ) (1 -1 (y*)) Ty ) W

the first line in the right hand side of the previous equation, and changing

T (y*)
1-T"(y*)

variables from incomes y to types 6 (using the identities f, (y*) %&9)*) = fo (0%), Fy (y(9)) = Fy (0),

Denoting by
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_ * ~ * -1
and dw(éji;y ) _ d’Y(gée ) (dz(;)> ), we obtain

Ty () T () / (1= 50 (0) (1-T"(y(9)y(0) 1-Fy(09)dy(6.0) .,

L=T"(y(0) 1-T"(y(0%) Je (L =T"(y(0%)y(0") fo(6)  db
Equation (52) follows immediately from this expression since %ﬁ = 0 when the production
function is CES.

Multiplying both sides of the previous equation by 1 — 7" (y (6*)), we then get

T’ (y (6%))

:T(y(é*)) (1- T’ (y (07)))

o (13 (6) (1L~ Fy (0)) d7 (0.67)
+ [ a-Twenye @RS -

which leads to the following formula for the optimal net-of-tax rate 1 — 7 (6*) =1 — 1" (y (0*)):

(= 0) = [1- [ (= oy LU= O L= B DT g
0

T (y (67))

de,

L+ 159

—a-r@n{i- [ |a-wo) (S ) v @7 6.6 0 - o)),

This is now a well-defined integral equation in (1 — 7" (y (6))), so that we can use the mathematical
apparatus introduced in Section 2 to characterize its solution, i.e., the optimal tax schedule. Similar
to the integral equation (21), it can be solved in closed form if 5 (6, 8*) is the sum of multiplicatively
separable terms. We can use the same techniques as in Section xx in the Translog case to get a

separable kernel.

]

B.4.6 Proof of Corollary 5

We now derive the formula for the optimal top tax rate when the production function is CES.

Proof. Assume that in the data (i.e., given the current tax schedule with a constant top tax rate,

assuming that the aggregate production function is CES), the income distribution has a Pareto tail,

. F(y®)
so that the (observed) hazard rate — m fd )

assumption, the income distribution at the optimum tax schedule is also Pareto distributed at the

converges to a constant 1/a. We show that under these

tail with the same Pareto coefficient 1/«. That is, the hazard rate of the income distribution at the
top is independent of the level of the top tax rate. At the optimum, we have
1-Fyy®) 1-F0) 1-F0)0y0) 1-F(0)

yOLO) g0 060 v  0f) " (86)

where we define the income elasticity e, 9 = dIlny (0) /dInf. To compute this elasticity, use the
individual first order condition (1) with isoelastic disutility of labor to get 1(8) = (1 — 7(0))° w(6)*.
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Thus we have

w(0) 1—7(0)

_dlnl(9) _ dln(1—1(0)) dlnw(0) (0w (0) 07'(0)
WO="T0me 0 ding “Tdme = °© '

But since the production function is CES, we have, from equation (14),

dinw(f) dlna(0) dln L (0)
i dame Y e
_dlna(9) 1dll(0) 1dnfy(6) _0a'(6) 1 10f;(6)
T dlng o dlnd o dn®  a(®) o o f(0)°
0w’ (0)

Thus, substituting this expression for w(0) in the previous equation, we obtain

a®) o T e ) 1-7(0)

- <9a' ) 1 16f5(0) 676 >

Moreover, since we assume that the second derivative of the optimal marginal tax rate, T" (y),

converges to zero for high incomes, we have limy_, o, 7/(6). Therefore, the previous equation yields

(1. 0a’ () 11. 9]‘}5(9)).

6o0e a(f) o bono fo(0)

lim g9 =
f—oo 1+§

Note that the variables 02&5? and 9}3; "((90)) are primitive parameters that do not depend on the tax
rate. Assuming that they converge to constants as # — co, we obtain that limg_, £;,¢ is a constant

independent of the tax rates, and hence

1
Ey,0 = E1,0 + Ew,0 = (1 + 6) €1,0

converges to a constant as § — oo. Therefore, the hazard rate of the income distribution at the
optimum tax schedule, given by (86), converges to the same constant 1/« as the hazard rate of
incomes observed in the data.

Now let y* — oo in equation (52), to obtain an expression for the optimal top tax rate T,y =
limy« o T7 (y*). Since the production function is CES with parameter ¢, and the disutility of labor

is isoelastic with parameter €, we have

~ 9
im Eyq, (yf) = ———.
A B 07 = 77

Furthermore assume that limy+_,o g, (y*) = g, so that lim,«_, g, (y*) = g. Therefore (52) implies

Tto l+efo, . 1 §g—1 1-g 1-§ g—1
1tp _l+e/ Q_glypd=t_1-9 1-5 9-1
— Ttop € « o aE ao o

This concludes the proof.
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B.4.7 General equilibrium wedge accounting

We finally propose a decomposition into several components of the difference between the partial

and general equilibrium optimal taxes, respectively given by formulas (54) and (52).

Proposition 6. The optimal marginal taz rate of type 6 in general equilibrium can be expressed

as a function of Tpr(0) and three additional terms:

7'(9) - TPE(Q) + gg(g) —1
1—7(0) 1—7‘pE(9) o
“F®) (1Yo (Ease6)
oty (1 2) - @) (Emw) 1)
1 _ 1— Fy(w(®) 11— Fi(wa(6))
* <1 +2) (=800 (FL0 ~ o) a
PT’OOf Adding and substracting from equation (52) the partial equilibrium tax ;722 (9()9) constructed
n (54), we find
T(0) _ 7pe(0) 4 90 (0)—1
1—7(0) 1—7pg(9) o

L (1SR wEY) ) es®)
T B 9 ))<y(9*))fy(y(9*))> E—rt

Substituting for = ,ED(EG()g) in the second line of this expression using the definition (54), we obtain

7(9) _{ mpE(0) N 99(9)—1}

1—7(0) 1—7pp(0) o
_# _ 1 Fy((ﬁ* _ } ldewd ) .
“Fe I ”(( TN, (" ) (1%) Fllwa(0))wae) - I

w(0* — Fl(w
:~1*(1—g(9*))(1+él,w(9*))( @ ))7]’;:(126(91)0 (1+1>W(1 3(9)),

where the second equality follows from a change of variables from incomes to wages in the hazard
rate, and the fact that

L= Fy(y(67) _y'(0%) 1=F,(y07) _ y'07) 1-Fy W)
y(0) Ly (y(6%))  y(07)) y'(0°))fy ((67))  y(6%)) w'(6*)) fu (w(67))

1— Fy (w(6"))
w(0*)) fw (w(6%))

(we showed the last equality above). Now, note that

- 1—7(0)—y(0)7'(6)
L+é&,(0) L+ 1= T(e)+;;(e)rf(e)5 1+¢

= 1—7(6
=0 s :
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so that

()  7pr(0) go (0) — 1

1—-7(0) 1-71pr(9) o
_aamr ) gy (14 D) (Ao Fu @) () 1) Lo Fawa®)
2 090 (142) (Gi@) ~ (1 2) a0

Adding and subtracting

yields the result.
O

The first correction in formula (87) is the cross-wage effect (g(y*) — 1)/ (see (52)). It is
always negative for a Rawlsian planner, and hence pushes in the direction of lower tax rates. The
second correction is due to the own-wage effect, and is captured by the adjusted elasticity E1,1—T
vs. €1,1—,. It is always positive, and hence pushes in the direction of higher tax rates. Finally the
third correction is due to the fact that (54) and (52) are evaluated at different wage distributions. In
(87), this is accounted for by the difference between the hazard rate of the wage distribution at the

general equilibrium optimum, f,, (w(f)), and that of the wage distribution inferred from the data,
d

w

forces.

(wd(9)).56 Figure 10 decomposes quantitatively the relative importance of each of these three

C Numerical Simulations: Details and Robustness

C.1 Details on Calibration of Income Distribution

We assume that incomes are log-normally distributed apart from the top, where we append a Pareto
1-Fy(y)

yfyy(y) ’
decrease the thinness parameter of the Pareto distribution linearly between $150,000 and $350,000

and let it be constant at 1.5 afterwards (Diamond and Saez, 2011). In the last step we use a standard
kernel smoother to ensure differentiability of the hazard ratios at $150,000 and $350,000. We set the

mean and variance of the lognormal distribution at 10 and 0.95, respectively. The mean parameter

distribution for incomes above $150,000. To obtain a smooth resulting hazard ratio

we

is chosen such that the resulting income distribution has a mean of $64,000, i.e., approximately the
average US yearly earnings. The variance parameter was chosen such that the hazard ratio at level
$150,000 is equal to that reported by Diamond and Saez (2011, Fig.2). The resulting hazard ratio

is illustrated in Figure 6.

56With endogenous marginal social welfare weights, there would be an additional correction term
to account for the fact that the welfare weights are endogenous to the tax schedule.
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Figure 6: Calibrated Hazard Ratios of the Income Distribution

C.2 Additional Graphs for Benchmark Specification

Figure 7 illustrates optimal marginal tax rates as a function of income in the optimal allocation.
Marginal tax rates in this graph reflect the policy recommendations of the optimal tax exercise which
is to set marginal tax rates at each income (rather than unobservable productivity) level. A general
pattern is that the marginal tax rate schedule is shifted to the left because individuals work less for
optimal taxes than current taxes. This is visible most clearly for the top bracket and the bottom of
the U that start earlier.

S E Partial Equilibrium Planner
——Elasticity of Substitution 3.1/ |
—-—-Elasticity of Substitution 1.4
- - Elasticity of Substitution .6

o
©
;

o
0
T

o
3

Marginal Tax Rates
o o
(9] ()

o
~

o
w

o
)

0 100 200 300 400 500
Income in $1,000

Figure 7: Optimal Marginal Tax Rates as a Function of Income

C.3 Utilitarian Welfare Function

We here consider another often used social welfare function, namely the utilitarian welfare function.

This implies we set f(0) = f(8). To obtain a desire for redistribution, we assume the utility function

11—k
to be — (c — l“’é/ (1 + %)) . Thus, k determines the concavity of utility and therefore the

1-k
desire for redistribution. Figure 8 illustrates optimal Utilitarian marginal tax rates for two values
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of k (1 and 3). As in the Rawlsian case, the optimal U-shape of marginal tax rates is reinforced.
Given that low income levels now also have positive welfare weights, the cross wage effect here is a
force for higher marginal tax rates for low income levels. Thus, the result that marginal tax rates
should be higher for low income levels is stronger than in the Rawlsian case in two ways: (i) the size

of these effects is larger and (ii) it holds for a broader range (up to $50,000).

Figure 8: Optimal Utilitarian Marginal Tax Rates (CRRA = 1 in left panel and CRRA = 3 in
right panel)
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Next we ask how the results about tax incidence are differ in the Utilitarian case. In contrast to
the Rawlsian case, the policy implications of the optimal tax schedule are not necessarily overturned.
For a relatively low desire to redistribute (k = 1, see the left panel of Figure 9), the welfare gains
of raising tax rates on high incomes are muted due to general equilibrium. For a stronger desire to
redistribute (k = 3, see the right panel of Figure 9), general equilibrium effects make raising top tax
rates more desirable. How can that be explained? General equilibrium effects make rising top tax
rates more desirable because the tax revenue increase is higher. At the same time the implied wage
decreases for the working poor make them worse of. In case of very strong redistributive tastes, the
tax revenue get a stronger weight (as they are used for lump-sum redistribution at the margin). In
case where relatively richer workers (for whom the lump-transfer is less important relative to the

very poor) still have significant welfare weights, the wage effects dominates.
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Figure 9: Tax Incidence Utilitarian for o = 1.4 (CRRA = 1 in left panel and CRRA = 3 in right
panel)
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C.4 General Equilibrium Wedge Accounting

Figure 10 decomposes quantitatively the relative importance of each of the three forces highlighted
in Proposition 6, for ¢ = 0.33 and ¢ = 1.4. The partial (resp., general) equilibrium optimum is
represented by the black dashed (resp., red bold) curve. The black dotted, blue dashed-dotted, and
diamond-marked curves illustrate suboptimal tax schedules where each of the three elements of the
decomposition (87) (respectively, the cross-wage term, the elasticity correction term, and the hazard

rate correction term) are ignored. This graph shows that the hazard rate correction term (iii) has a
minor quantitative importance.
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Figure 10: General Equilibrium Wedge Accounting

C.5 Translog Production Function

First we again look at tax incidence but change the parameterization of the Translog production

function such that 5(y*,y*) = —1 for y* = $80,000 instead of $250,000.
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Figure 11: #(6,0*) with y(0*) = $250,000 (left panel) and the implied tax incidence
(right panel)

x10°

<~ P 1R~ T —
N ’ R N R Parital Equilibrium
\ ’ 095 4 —-=-Cobb Douglas
2 \ ’ : —— Translog Case 1
7 - = Translog Case 2
“ , 0.9
\ 1
= 15} \ I' ~ 085 Ry | eeeemmmms
g | ) = 08
<3 e T
] 1075 Wy S e T
Ao 1r \ d S Y sy e
= 1 > 07
= ‘\ ! & 2
h P T
05k ===-Cobb Douglas ! 1 065, | T
. —— Translog Case 3 \ 2
- = Translog Case 4 \ | 0.6+ ]
1
o ‘\ ’ 0.55
r ’
L L \ L L 05 L L L L
0 100 200 300 400 500 0 100 200 300 400 500
y* in $1,000 y*

Figure 11 illustrates the distance dependent wage effects for these Cases 3 and 4. The tax
incidence results are illustrated in the right panel. Here the best comparison level for y* to under-
stand the effects of distance dependence is $80,000. In line with the results in the main body of the
text, the general equilibrium effects on tax incidence are increased in magnitude through distance

dependence.

Figure 12: Optimal Marginal Tax Rates for Translog Production Functions
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Figure 12 illustrates the resulting optimal marginal tax rates for all 4 cases. As cases 1 and 3
are more similar to Cobb Douglas than cases 2 and 4, not surprisingly, marginal tax rates are closer
to the Cobb Douglas counterpart. These results can be best interpreted by looking at Figure 13
where the own-wage effects are illustrated.”” For Cases 1 and 3, ¥(y,y) is relatively flat and close
to -1 (as in Cobb Douglas). For Case 4, the wage effects are generally a bit larger in magnitude and
still relatively flat (magnitude varies by a factor 2), which explains why the CES effects are mainly
increased in magnitude. For Case 2, the magnitude of the wage effects strongly increases and varies

5TThey are illustrated for the current tax system but do look very similar for the respective
optimal tax system.
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by a factor of up to 6, which explains why the shape of marginal tax rates is more different from
CES than in the other 3 cases. Finally, welfare gains in consumption equivalents are 1.09%, 0.31%,

1.85% and 2.53% respectively for these cases.
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Figure 13: Tlustration of the own-wage effect for current policies
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