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A Empirical Appendix

A.1 Currency names and codes

Table A.1 lists the country name, currency name, and the three-letter currency code for our sample

countries.
Table A.1: Currency names and codes
Developed markets Emerging markets

Country Currency Code Country Currency Code
Australia Australian dollar AUD Brazil Brazilian real BRL
Canada Canadian dollar CAD Chile Chilean peso CLP
Denmark Danish krone DKK Colombia Colombian peso COP
Germany Euro EUR Czech Republic Czech koruna CZK
Japan Japanese yen JPY Hungary Hungarian forint HUF

New Zealand New Zealand dollar NZD Indonesia Indonesian rupiah ~ IDR
Norway Norwegian krone ~ NOK Israel Israeli shekel ILS
Sweden Swedish krona SEK Malaysia Malaysian ringgit ~ MYR
Switzerland Swiss franc CHF Mexico Mexican peso MXN
United Kingdom British pound GBP Peru Peruvian nuevo sol PEN
United States US dollar USDh Philippines Philippine peso PHP
Poland Polish zloty PLN

Singapore Singapore dollar SGD

South Africa South African rand ZAR
South Korea South Korean won KRW
Thailand Thai baht THB
Turkey Turkish lira TRY




A.2 Comparing External Debt Sources

Figure A.1: External LC Debt Share in Global Mutual Funds and US TIC, 2015

Correlation: 95%
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Note: This figure plots the percentage of external government debt denominated in each country’s
local currency using data from global mutual funds in Maggiori et al. (2019) (MNS) and the US
external position in the Treasury International Capital (TIC) data. MNS data uses data for the
entire European Monetary Union (EMU). TIC data uses Germany for the Euro area. All data are
for end of year 2015.



A.3 Standard errors and t-statistics of LC bond-stock betas

Table A.2 reports regression estimates for the LC bond-local stock betas by country, 3(bond;, stock;).
It shows the point estimates from estimating Eqn. (1) for each country, together with Hansen-
Hodrick and bootstrap standard errors. Both asymptotic Hansen-Hodrick standard errors and boot-
strap standard errors account for serial correlation due to using overlapping return observations.
For details of the bootstrap standard errors see Appendix A.6. Table A.3 presents summary statis-
tics for the t-statistic of three regression betas: LC bond-local stock beta, 3(bond;, stock;), local
stock-US stock return beta, 5(stock;, stockys), and realized inflation-output beta, 3(m;, IP;). The
betas based on daily overlapping bond and stock returns, 5(bond;, stock;) and B(stock;, stockys),
are more precisely estimated than the betas based on monthly macroeconomic data, B(m;, [P;).
For the majority of countries g (bond;, stock;) is statistically different from zero and S (m;, I P;) is
statistically different from zero for 11 out of 28 countries.



Table A.2: Regression estimates of LC bond-local stock beta

Beta Hansen-Hodrick SE  Bootstrap SE N R?

AUD  -0.185%%* (0.0356) (0.0365) 2,453  0.406
BRL  0.149%* (0.0591) (0.0536) 2,044 0.117
CAD  -0.0936%** (0.0211) (0.0254) 2421 0.207
CHF  -0.0757%%* (0.0243) (0.0244) 2,421 0.185
CLP  -0.0448 (0.0375) (0.0382) 2,189 0.025
COP  0.166%** (0.0444) (0.0434) 2,291 0.215
CZK  0.00405 (0.0171) (0.0193) 2,420 0.001
DKK  -0.0581%%* (0.0185) (0.0213) 2,395 0.108
EUR  -0.107%%* (0.0195) (0.0199) 2,484 0.302
GBP  -0.120%** (0.0265) (0.0299) 2,455 0.175
HUF  0.218%%* (0.0257) (0.0301) 2,393 0.387
IDR  0.202%%* (0.0361) (0.0489) 2,201 0.340
ILS  -0.0367 (0.0195) (0.0301) 1,701 0.033
JPY  -0.0303%%* (0.00684) (0.0072) 2,315 0.185
KRW  -0.0612%* (0.0245) (0.0247) 2,361 0.102
MXN  0.0601%* (0.0235) (0.0276) 2,428 0.048
MYR  0.00862 (0.0280) (0.0292) 2,338 0.002
NOK  -0.0745%%* (0.00992) (0.0128) 2,422 0.268
NZD  -0.0894%* (0.0360) (0.0340) 2,427 0.080
PEN  0.0869%+* (0.0157) (0.0192) 2,124 0.267
PHP  0.157** (0.0615) (0.0587) 2,280 0.138
PLN  0.00857 (0.0151) (0.0165) 2,402  0.002
SEK  -0.101%** (0.0269) (0.0275) 2,423 0.220
SGD  -0.0390* (0.0173) (0.0209) 2,423 0.071
THB  -0.0696** (0.0302) (0.0344) 2,283 0.088
TRY  0.316%%* (0.0713) (0.0694) 2,248 0.296
USD  -0.134%%* (0.0170) (0.0344) 2,427  0.269
ZAR  -0.0478 (0.0366) (0.0428) 2,394 0.021

Note: This table shows the regression estimates of the LC bond-local stock beta, B(bond;, stock;), based
on Eqn. (1) by country. The regressions are estimated using daily observations on overlapping one-quarter
holding returns from 2005 to 2014. Hansen-Hodrick standard errors are used with 120-day lags to adjust for
overlapping holding periods of returns. Bootstrap standard errors are computed as the standard deviation
of bond-stock betas estimated on bootstrapped data, 5°°° (bond;, stock;) , where the standard deviation is
taken across 500 independent bootstraps. The bootstrap procedure adjusts for serial correlation and het-
eroskedasticity in bond and stock returns and is described in detail in Appendix A.6. Statistical significance
is based on the larger standard error between Hansen-Hodrick and bootstrap standard errors, with the
significance level indicated by *** p<0.01, ** p<0.05, * p<0.1.



Table A.3: Summary Statistics of the t-statistic for Various Betas

(1) (2) B @ () (6)
Mean Median Min Max  # of countries with |t/ > 1.96 N
Panel (A) Developed Markets

B(bond;, stock;) 472 444 248 T.87 11 11
B(stock;, stockyg) 12.94 12.95 894 22.25 10 10
B(mi, IP;) 3.66 2.90 0.59 9.65 6 11

Panel (B) Emerging Markets

B(bond;, stock;) 297 250 024 847 11 17
B(stock;, stockys) — 9.50 9.71 5.70 13.83 17 17
B(m;, IP;) 1.91  1.45 038 449 5 17

Panel (C) Full Sample

B(bond;, stock;) 3.66 313 024 847 22 28
B(stock;, stockys)  10.77 9.98 5.70 22.25 27 27
ﬁ(m,IPi) 2.74 2.20 0.38  9.65 11 28

Note: This table presents summary statistics for the absolute value of the t-statistic of three regression
betas: LC bond-local stock beta, B(bond;, stock;), local stock-US stock return beta, S(stock;,stockys),
and realized inflation-output beta, §(m;, I P;). Hansen-Hodrick standard errors with 120-day lags are used
for S(bond;, stock;) and B(stock;, stockys), which are estimated using daily regressions. Hansen-Hodrick
standard errors with 12-month lags are used for 3(m;, IP;), which is estimated using monthly regressions.
We do not report the t-statistic of B(stock;, stockys) for i = US because it is equal to 1 by definition. Panel
(A) shows results for developed markets. Panel (B) shows results for emerging markets. Panel (C) shows
results for the full sample.

A.4 Robustness Checks for the Main Empirical Results
A.4.1 Long-Term Debt

The cross-sectional relationship between LC bond-stock betas and LC debt shares is robust to
measuring the LC debt share only in long-term debt, as shown in Figure A.2. We obtain face
values and issuance dates for all historical individual sovereign bond issuances from Bloomberg for
14 emerging markets and estimate the long-term L.C debt share as the outstanding amount of LC
debt with five or more years remaining to maturity relative to all outstanding debt with five or
more years remaining to maturity.



Figure A.2: LC Debt Share in Long-Term Debt versus Bond-Stock Beta
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Note: This figure plots the bond-stock beta on the x-axis and the share of LC debt in all outstanding
long-term debt on the y-axis. Long-term debt is defined as having a remaining time to maturity
of five or more years. The share of LC debt in long-term debt is estimated from individual bond
issuance data from Bloomberg.

A.4.2 Excluding the Financial Crisis

One important period in the middle of our sample is the financial crisis of 2008—2009. While
this period marked an important recession for the US and many other countries, we show in this
section that our main empirical results are not driven by the financial crisis. Figure A.3 shows our
baseline L.C bond-stock beta on the y-axis against a LC bond-stock beta excluding the financial
crisis period on the x-axis. We see that the bond-stock betas are extremely similar when excluding
the financial crisis, indicating that our key bond cyclicality measure is not driven by a small number
of observations. Figure A.4 shows that our main stylized fact in Figure 2 remains unchanged if we
exclude the crisis period in our construction of LC bond betas.



Figure A.3: Local Currency Bond Betas Excluding 2008—2009
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Note: This figure shows LC bond-stock betas excluding the period 2008-2009 on the x-axis and
LC bond-stock betas for the full sample (including 2008—2009) on the y-axis.

Figure A.4: Local Currency Debt Shares and Bond Betas Excluding 2008—2009
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Note: This figure differs from Figure 2 only in that it excludes 2008—2009 from the computation
of LC bond betas on the x-axis.

A.4.3 Default-Adjusted Bond Risk Premia

To adjust for default risk, we construct a synthetic default-free nominal bond yield. We follow
Du and Schreger (2016a) by combining a US Treasury bond with a fixed-for-fixed cross-currency



swap to create a synthetic default-free local bond. Figure A.5 plots the LC debt share against
default-adjusted bond-stock betas, which are computed by replacing LC bond yields by synthetic
default-free LC bond yields in the computation of LC bond returns. The strong similarity to Figure
2 shows that our main empirical finding is robust to adjusting for the default component of L.C
bond returns.

Figure A.5: Local Currency Debt Shares and Default-Adjusted Bond Betas
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Note: This figure differs from Figure 2 only in that it uses synthetic default-adjusted LC bond log
excess returns in Eqn. (1) to estimate bond-stock betas.

A.4.4 Adjusting for FX hedging errors

In Section 2.1.1, we calculated the LC bond excess return over the local T-bill rate in local currency
units. We discussed that from the dollar investor’s perspective, these excess returns approximately
hedge the LC fluctuation against the US dollar for the holding period between quarter ¢ and t + 1.
In this section, we re-calculate the bond-stock beta after adjusting for these FX hedging errors for
the USD investor.
In particular, suppose that the USD investor invests $1 in the LC bond at ¢ and funds the
position by shorting $1 of the LC T-bill. At ¢+ 1, the gross USD return on the LC bond is
Ph i S LC ]5i,t+1

LC
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where PZLft denotes the price of the n-quarter LC bond at time ¢ in country ¢, and & ; denotes
the LC exchange rate defined as USD per LC units, so an increase in & ; corresponds to a LC
appreciation against the USD. Recall that 7; ,,; is equal to 5 years. The USD cost of shorting the

LC T-bill from time ¢ to time ¢ + 1 is:
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So the exact USD excess return of going long the LC bond and shorting the LC T-bill becomes:
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Similarly, for a USD investor, the USD excess return of going long in the LC equity and shorting
the LC T-bill is:
~m 5i7t+1 m m LC
LT 41 = —5‘7: (PP - eXP(—y¢,1,t/4)]-
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We estimate the bond-stock betas adjusted for FX hedging errors by running the regression:

- LC 5 ~m
iy = a; + B(bond;, stock;) x xr{"} + €; 4.

Figure A.6 shows that adjusting these FX hedging errors has no effect on the estimated bond-
stock betas. The correlation between the bond-stock beta in local currency units (y-axis) and the
bond-stock beta after adjusting for the FX hedging errors (x-axis) is 99.8%.

Figure A.6: Bond-Stock Beta Adjusting for FX Hedging Errors

Correlation: 99.8%
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Note: On the horizontal axis, we plot the bond-stock beta using the bond and stock dollar excess
returns after adjusting FX hedging errors, as described in Section A.4.4. On the vertical axis, we
plot our baseline bond-stock beta in local currency units.

A.4.5 Controlling for Debt/GDP ratios and using LC Debt/GDP ratio as the
dependent variable

We first add the Debt/GDP ratio as an additional control into our benchmark regression. The
regression results are shown in Table A.4. The coefficient on [(bond;, stock;) remains significant
and similar in magnitude compared to the benchmark regression results in Tables 3 and 4.

We then repeat our benchmark empirical specification using the LC debt/GDP ratio as the
dependent variable. Table A.5 presents the regression results. In column (1), we regress the
total LC debt/GDP ratio on the bond-stock beta, after controlling the local-US stock return beta,
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B (stock;, stockys), log GDP, the FX regime, the commodity share, and the total debt/GDP ratio.
The coefficient on S(bond;, stock;) is negative and significant. In columns (2)-(4), we regress the
external LC debt/GDP ratio estimated from the TIC, Morningstar, and the BIS data, respectively,
on the bond-stock beta, the same set of macroeconomic controls, and the external debt/GDP ratios.
The coefficients on S(bond;, stock;) remain negative and significant.

Table A.4: Controlling for Debt/GDP Ratios

(1) (2) (3) (4)

STOT STIC sMNS $BIS
B(bond,;, stock;) -09.97**  -119.2%*  .92.08%*  .149.0**
(35.17)  (49.47)  (33.38)  (58.82)
B(stock;, stockyg) 5.018 -7.431 8.524 -3.487
(24.97)  (21.64)  (22.73)  (30.82)
log(GDP) 1.635 3.698 2.379 -4.400
(4.674)  (5.843)  (4.208)  (7.821)
FX Regime -0.560 3.554 4.387 -0.815
(3.557)  (3.328)  (3.716)  (8.700)
Commodity Share -0.230  -0.441**  -0.350 -0.391
(0.265)  (0.205)  (0.226)  (0.282)
Total government debt/GDP 0.140
(0.0878)
External government debt/GDP 0.394 -0.474 -0.177
(0.334)  (0.318)  (0.665)
Constant 53.11 36.56 46.29 114.5

(53.42)  (58.60)  (51.50)  (66.37)

Observations 26 26 26 26
R-squared 0.467 0.652 0.530 0.301

Note: This table shows the cross-country regression results of the LC debt shares on measures
of bond-stock betas and other macroeconomic controls. In column (1), the dependent variable is
the share of LC in total government debt. In column (2), the dependent variable is the LC debt
share estimated using the TIC data. In column (3), the dependent variable is the LC debt share
estimated using the Morningstar data. In column (4), the dependent variable is the LC debt share
estimated using the BIS Locational Banking Statistics. The independent variables are the bond-
stock betas ((bond;, stock;) and the local stock-US stock betas [(stock;, stockys). We control for
the total Debt/GDP ratio in column (1) and the external Debt/GDP ratio in columns (2) through
(4). We also control for average log per capita GDP between 2005 and 2014, the average exchange
rate classification used in Reinhart and Rogoff (2004), and the commodity share of exports. The
commodity share of exports is defined as the sum of “Ores and Metals” and “Fuel” exports as a
percentage of total merchandise exports from World Bank World Development Indicators. Robust
standard errors are used in all regressions with the significance level indicated by *** p<0.01, **
p<0.05, * p<0.1.
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Table A.5: LC Debt/GDP ratios and LC Bond Cyclicality

M) @) 3) ()
LC debt/GDP LC debt/GDP LC debt/GDP LC debt/GDP
Total External-TIC  External-MNS  External-BIS
B(bond,;, stock;) -51.30%*** -16.37%%* -13.85%* -25.57*
(17.42) (5.569) (6.594) (13.33)
B(stock;, stocky s) -3.296 -3.661 -0.607 -3.638
(5.788) (2.656) (3.390) (3.672)
log(GDP) -0.404 0.991 0.789 -0.439
(1.771) (0.796) (0.705) (1.157)
FX Regime -0.972 0.166 0.453 -1.254
(1.129) (0.648) (0.873) (2.037)
Commodity Share 0.0276 -0.0432%* -0.0201 -0.0248
(0.0619) (0.0242) (0.0359) (0.0363)
Total government debt/GDP 1.007***
(0.0767)
External government debt/GDP 0.835%** 0.616%** 0.537%*
(0.0715) (0.118) (0.217)
Constant -1.508 -7.165 -6.277 11.77
(17.03) (8.212) (8.332) (11.24)
Observations 26 26 26 26
R-squared 0.943 0.916 0.802 0.529

Note: This table shows the cross-country regression results of the LC debt/GDP ratios on bond-
stock betas and other macroeconomic controls. In column (1), the dependent variable is the total
LC debt/GDP ratio, including domestic and external government debt. In column (2), the depen-
dent variable is the LC external/GDP ratio, estimated using the TIC data. In column (3), the
dependent variable is the LC debt/GDP ratio, estimated using the Morningstar data. In column
(4), the dependent variable is the LC debt/GDP ratio, estimated using the BIS Locational Banking
Statistics. The independent variables are the bond-stock beta ((bond;, stock;) and the local stock-
US stock beta S(stock;, stockyrs). We control for the total Debt/GDP ratio in column (1) and the
external Debt/GDP ratio in columns (2) through (4). We also control for average log per capita
GDP between 2005 and 2014, the average exchange rate classification used in Reinhart and Rogoff
(2004), and the commodity share of exports. The commodity share of exports is defined as the sum
of “Ores and Metals” and “Fuel” exports as a percentage of total merchandise exports from World
Bank World Development Indicators. Robust standard errors are used in all regressions with the
significance level indicated by *** p<0.01, ** p<0.05, * p<0.1.

A.4.6 Weight the benchmark regression by per capita GDP

We show in Table A.6 that weighting the benchmark regression presented in Table 3 by per capita
GDP does not change the results.
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Table A.6: LC Debt Shares in Total Government Debt onto LC Bond Cyclicality (Weighted
by per capita GDP)

(1) (2) (3) (4)

Local Currency Debt Share sToT sror stor stor
B(bond;, stock;) -110.1%** -02.24%*
(19.53) (36.40)
B(#, gdp) 69. 747
(15.58)
B(m,IP) 74.20%*
(34.85)
B(stock;, stocky s) 13.06
(24.19)
log(GDP) 4.029
(4.741)
FX Regime 0.643
(3.803)
Commodity Share -0.198
(0.244)
Constant T2.86%**  53.07**¥* 72 Q7H** 23.74

(3.935)  (6.817)  (4.594)  (53.73)

Observations 28 22 28 28
R-squared 0.309 0.335 0.063 0.384

Note: This table differs from Table 3 in that observations are weighted by per capital GDP. Robust standard
errors are used in all regressions with the significance level indicated by *** p<0.01, ** p<0.05, * p<0.1.

A.4.7 Larger sample using the inflation-GDP beta

Our main sample in the paper is constrained by the availability of long-term LC bond yields to
estimate bond-stock betas. We can extend our sample to over 100 countries by measuring the
realized inflation-GDP beta. To obtain standardized data across as many countries as possible, we
use the inflation and GDP data from the World Bank World Development Indicator (WDI), which
arc available at the annual frequency. In order to obtain more precise estimates, we use a longer
sample from 1980 to 2017. We require at least 20 observations for a country to be included in the
sample, which leaves us with 107 sample countries.

Similar to the realized inflation beta with respect to industrial production as estimated by Eqn.
(3), we can estimate the realized inflation beta with respect to GDP by running the following
regression.

Aﬂ'i,t = a; + B(Tf'i, GDPl)AGDPZ’t + €, (Al)

where Am; ¢ is the yearly change in the year-over-year inflation rate, and AGDUPF;; is the annual
change in the GDP growth rate. The coefficient 5(m;, GDP;) measures the realized inflation cycli-
cality with respect to GDP for country i. Before estimating the inflation-output relation for each
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country, we winsorize the top and bottom 1 percent of the inflation rate and the GDP growth
rate across countries to remove extreme outliers. Having estimated inflation-output betas for each
country, we do not do any further winsorization.

Figure A.7 is a binscatter plot showing a positive relationship between the LLC debt share in
external debt based on the TIC data and the realized inflation-GDP beta. Regression results are
reported in Table A.7. We use bootstrap standard errors that account for correlated estimation
error in 5 (m;, GDP;), as described in Appendix A.6. We can see that the coefficient on the realized
inflation-GDP is positive and significant. However, the magnitude of the coefficient is notably
smaller compared to the regression coefficients in Table 3, likely reflecting the fact that the inflation-
GDP beta is less precisely estimated than our main cyclicality measures used in the paper, leading
to classical measurement error and attenuation bias.

Figure A.7: Binscatter plot of LC debt share vs. realized inflation-GDP beta
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Note: On the horizontal axis, we plot the realized inflation-GDP beta. On the vertical axis, we
plot the share of LC debt in total external debt, measured by TIC. The binscatter is plotted with
20 bins.
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Table A.7: LC Debt Shares in External Debt and Realized Inflation-GDP beta

(1) (2)

Local Currency Debt Share ste sTIc

B(mi, GDP;) 11.92%%* 8.70***
(3.00) (3.20)
log(GDP) 14.03%**
(2.76)
FX Regime -0.29**
(0.14)
Commodity Share 7.24%%
(3.10)
Constant 41.5G***  _93,79***

(4.69)  (27.16)

Observations 107 107
R-squared 0.08 0.36

Note: This table shows the regression results of the LC debt share in external debt based on TIC on the
realized inflation-GDP beta. Column (1) shows the univariate specification without controls. Column (2)
shows the specification with controls. Standard errors used in all regressions are the larger ones between
Huber-White robust standard errors and bootstrap standard errors. We use a wild bootstrap (Davison and
Hinkley (1997)) to account for heteroskedasticity in regression residual. We account for estimation error in
B (m;, GDP;) by bootstrapping inflation and GDP with a moving block bootstrap (Maddala (2001)) with
lag length 4 years taking into account cross-country correlations. For details of the bootstrap procedure see
Appendix A.6. Significance levels indicated by *** p<0.01, ** p<0.05, * p<0.1.

A.4.8 Time-varying betas and LC debt shares

We next show that our results are stable across different time periods. To start, we show that
individual countries’ bond-stock betas are stable over time. We estimate time-varying LC bond-
stock betas, [3;(bond;, stock;), using five-year rolling windows between t — 5 and ¢. Panel (A) of
Figure A.8 shows the average bond-stock beta for developed and emerging markets. The average
beta for developed countries fluctuated between —0.15 and 0, and the average beta for emerging
market fluctuated between 0 and 0.1. Panel (B) of Figure A.8 plots the cross-country rankings of
the bond-stock betas between 2008 and 2014. We can see that the cross-sectional ranking is very
persistent. The average pairwise rank correlation between 2008 and 2014 is 92%.

We next run the cross-sectional regressions of the LC debt share at time ¢ on S (bond;, stock;)
for every year in our sample. The regression results are shown in Table A.8. The coefficient on
B(bond;, stock;), is negative and statistically significant for all sample years.
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Figure A.8: Time variations in the bond-stock beta

(A) Rolling bond-stock betas
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Note: Panel (A) plots the average rolling LC bond-local stock beta over time for developed markets
(G10) and emerging markets (EM). The bond-stock beta at time ¢ is calculated using a five-year
rolling window between ¢t — 5 and ¢. Panel (B) plots the cross-country ranking of the five-year
rolling bond-stock betas over time, with each color indicating a sample country.



"] puR ¢ — 7 U9OMIDQ MOPUIM SUI[[OI
TeaA-0AT] ® SUISL POJRI)Sd B)9( YD0)S-PUOQ 91} UO 7 IeAA UL 9IRYS }gop )T 93 JO SHNSOI UOISSaITal A[Ieak 91} SMOYS () ST, DJ0N

L4T°0 v61°0 §¢c0 18¢°0 1¢¢°0 ¢9¢0 18¢°0 897°0 794°0 ¥€9°0 porenbs-y
Lc LC L¢ LC 9¢ 14 ¥e [44 0¢ 0¢ SUOIIRAISSA O

(c9zv) (eP1°7) (790%) (z1o7) (656°¢€) (L1z°¢) (¢12°€) (29L°2) (829°2) (L29°2)
wkaSTTL sk PETL  srsPO L 5sx8G 0L srs86'EL  ssesG8LL s PT8L  4sx0G°G8  4esxCF I8 40064 Je)Suo))
(z'81) (29v1) (01°¢2) (L8°22) (16°L1) (Lee1) (98°€1) (eree) (£6°02) (527e)
wkx€9°G0" sk €GTL  whk€L7067 sk D GOT™  ssk0L°96  soksGT 96~  sskOF GO sV €CT™ sV GTT™ s IFTT- (1240035 *puoq)g

7102 €102 z10g 1102 010% 6002 8002 L00Z 900Z 5002
(o1) (6) (8) (L) (9) (9) ) (€) (@) (1)

IeoA AQ oIeYS 1qap O] 9Y) JO UOISSAISY QY 9[qr],

17



A.5 LC Bond Return Comovement with US Stock Returns

We now show empirically that the LC bonds with the best hedging value for the domestic govern-
ment are risky for international lenders. In this analysis, we proxy for domestic agents’ marginal
utility of consumption with the local log excess stock return and for international lenders’” SDF
with the US log excess stock return. We decompose the local log excess stock return into a global
and an idiosyncratic component according to:

wriy = a; + B(stock;, stockys) X xrifs, + a:rf:%io. (A.2)

We define the systematic global component of local stock returns as the fitted value of Eqn.
(A.2):
a:rft = B(stock;, stockys) X xrifg,.

It is conceivable that LC bond returns co-move with domestic stock returns only through the
idiosyncratic component, ajrﬁio, that is orthogonal to US stock returns. In this case, LC bonds
would have zero covariance with US stock returns and present no systematic risk to international
lenders, and our main channel would not be operative.

To alleviate this concern, we show in two ways that the LC bonds with the best hedging benefit
for the domestic borrower are indeed risky for international lenders. First, we directly estimate the
beta of LC bond returns with respect to US stock returns from a regression:

xr{jﬁt = a; + B(bond;, stockys) X xrig, + €it- (A.3)

Panel (A) of Figure A.9 shows that 5(bond;, stockyg) is highly correlated with our baseline measure
of bonds’ hedging value for the domestic borrower, §(bond;, stock;), estimated in Eqn. (1). The
cross-country correlation of these two different bond betas equals 89%, clearly supporting a link
between the domestic borrower’s hedging value and international lenders’ risk of holding L.C bonds.
Second, we estimate LC bond excess return loadings on the systematic global component of

domestic stock returns using the regression:
wrEC, = a; + B(bond;, stockaS) X Trth + €. (A1)

it

Panel (B) of Figure A.9 shows that S(bond,, stockaS) is 89% correlated with our baseline measure
of bonds’ hedging value for the domestic borrower §(bond;, stock;). In other words, LC bond returns
co-move with the global component of local L.C stock returns.
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Figure A.9: Local and Global Risks of LC Bonds

(A) Beta onto US Stock Returns

Correlation: 89%
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(B) Beta onto Global Component of Local Stock Returns
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Note: Panel (A) plots on the y-axis the regression beta of LC bond excess returns on US S&P stock excess
returns, S(bond;, stockyg), estimated from Eqn. (A.3). Panel (B) plots on the y-axis the regression beta of
LC bond excess returns on the global component of local LC bond returns, §(bond;, stock’inU 5), estimated
from Eqn. (A.4). Our baseline one-factor bond-stock beta with respect to the local stock market, estimated
from Eqn. (1), is shown on the x-axis in both panels. The bivariate correlation across countries is shown in
the figure title.
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A.6 Details: Bootstrap Standard Errors

We now give the implementation details for the bootstrap standard errors shown in Tables 3 and
4. We first describe the bootstrap used in Table 3, column (1), because this is illustrative of our
methodology overall. We bootstrap both the LC debt shares and bond and stock returns. On
the bootstrapped data, we then re-estimate bond-stock betas according to Eqn. (1) in the main
paper, and then regress LC debt shares on these estimated bond-stock betas. By re-estimating
bond-stock betas on the bootstrapped data this bootstrap procedure accounts for estimation error
in bond-stock betas.

We generate bootstrapped LC debt shares according to a wild bootstrap that accounts for
heteroskedasticity (Davison and Hinkley (1997)). Let by and by denote the point estimates from
regressing the LC debt share on bond-stock betas in actual data:

SZ.TOT = by + b1 8 (bond;, stock;) + €, (A.5)

that is by and b are the estimated constant and coefficient shown in Table 3, column (1). We use

g; to denote the residual for country i estimated on actual data. The bootstrapped LC debt share
TOT,boot -

s; is then defined as:

STOTH0! 4+ by B (bond;, stock:) + Xz, (A.6)

1

where X1, Xo,...., Xy are random variables that we draw independently from a standard normal
distribution with with mean zero and variance one. The conditional mean of siTOT’bOOt is therefore
by + b1 B(bond;, stock;) as in a standard parametric bootstrap and the conditional variance of the
bootstrap residual is V (X;e;) = 2. The wild bootstrap preserves the volatility of the residual
and it is appropriate when one is concerned about heteroskedasticity, similar to situations when

Huber-White heteroskedasticity-robust standard errors would be used.
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Figure A.10: Bootstrap Bond and Stock Returns

(A) Defining Overlapping Blocks on Original Data
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(B) Defining Bootstrap Bond and Stock Returns

Bond Returns Stock Returns
Day Country 1 Country N Country 1 Country N
Lc LC m m
1 block randl xr 1,n,randl Xr N,n,rand1 xr 1,randl xr N,randl
LE Lc m m
2 Xl 1,nrand1+1 XI'" N nrand1+1 X' 1 rand1+1 XI' N rand1+1
Lc LC m m
Xr 1,nrand1+120 .- Xr N,n,rand1+120 xr 1,rand1+120 Xr N,rand1+120
LC Lc m m
IbIOCk rand2 xr 1,n,rand2 Xr N,n,rand2 xr 1,rand2 xr N,rand2
Lc Lc m m
Xr 1,n,rand2+1 Xr N,n,rand2+1 Xr 1,rand2+1 Xr N,rand2+1
LC LC m m
xr 1,nrand2+120 -+ Xr N,n,rand2+120 xr 1,rand2+120 Xr N,rand2+120
LC LC m m
block randK xr 1,n,randkK . Xr N,n,randK Xr 1,randK o Xr N,randK
Lc LC m m
T Xr 1,n,randk+120 - Xr N,n,randK+120 Xr 1,randK+120 . xr N,randK+120

Note: This figure illustrates the moving block bootstrap to generate bootstrapped LC bond and local stock log excess returns
(Maddala (2001)). :chLﬁ , denotes the log excess return over the 91 calendar day period ending on day t for the country i LC
bond with remaining time to maturity n. xrg’i denotes the log excess return over the 91 calendar day period ending on day ¢
on the local equity benchmark in excess of a 3-month T-bill. As illustrated, we preserve the correlation structure across stocks
and bonds and across countries by choosing the same blocks for stocks and bonds and all countries. randl, rand2, ... , randK
are iid random variables drawn uniformly from the integers between 1 and 7" — 120. We then define bootstrap returns as the
sequence of block randl, followed by block rand?2,... up to block randK.

We generate bootstrapped bond and stock returns while accounting for serial correlation and
heteroskedasticity in bond and stock returns. We use a moving block bootstrap, which Maddala
(2001) and Lahiri (1999) argue has superior properties to account for time series correlation. Let N
be the number of countries and T" be the length of the time series. We define 1" — 120 overlapping
blocks of length 120 days, where we use the same blocks for both bond returns xr,{'ﬁt and stock
returns xry; and we use the same blocks for all countries. Figure A.10, Panel (A) illustrates how
we define overlapping blocks on the actual data. Define K = |T/120], such that a combination
of K blocks will generate a bootstrap sample of length K x 120 ~ T'. Because T  is not generally

a multiple of 120, we round K down to be conservative. We then generate bootstrap samples
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iL, 5 ’tbOOt Z;’bo‘)t by randomly drawing K blocks and concatenating them. Formally, we draw

iid random variables randl, rand2, ... , randK uniformly from the integers between 1 and T'— 120
and define the bootstrap returns as the sequence of blocks randl, rand2, ...,randK. Figure A.10,
Panel (B) illustrates the construction of the bootstrapped bond and stock returns. Because we use
the same blocks across all countries, the bootstrap sample preserves the correlation of bond and
stock returns across countries. We choose a block length of 120 trading days as a trade-off between
capturing the serial correlation of overlapping returns (which are defined using 91 calendar days)
and having a sufficient number of blocks to generate plausible variation across the bootstrapped
samples.

Having generated a bootstrap sample, we follow the same estimation procedure as in the actual
data. We re-estimate Eqn. (1) country-by-country on the bootstrapped data:

xr and xr

LC\boot Jboot
Ty oot — g 4 oot (bond;, stock;) x xr?ft o 4 e%"t. (A7)

We then run a cross-sectional regression of siTOT’bOOt onto the bond-stock betas estimated on
the bootstrapped sample, 3% (bond;, stock;), where we use a hat to emphasize that we use betas

that were estimated on bootstrapped data:

s OThboot - phoot 4 oot Ghoot (hond, stock;) 4 £2°°. (A.8)
The estimated slope coefficient b’{OOt is the coeflicient of interest in the bootstrapped data. The boot-
strap standard error reported in Table 3 is the standard deviation of bl{"‘)t across 500 independent
bootstrap samples.

We verify that our bootstrap procedure captures plausible volatility for measurement errors in
bond-stock betas, and also how these measurement errors are correlated across countries. Table
A .2 reports the standard deviation of Bb""t (bond;, stock;) across 500 independent bootstrap samples
alongside with asymptotic Hansen-Hodrick standard errors for g (bond;, stock;). Hansen-Hodrick
standard errors with lag length 120 days explicitly account for heteroskedasticity and serial corre-
lation induced by using daily data on overlapping returns. Comparing across columns in Table A.2
confirms that the block bootstrap volatility in the measurement error of bond-stock betas is similar
to asymptotic Hansen-Hodrick standard errors, so these very different approaches to adjust for
heteroskedasticity and overlapping return observations generate consistent results. Table A.9 simi-
larly shows summary statistics for the bootstrap t-statistics. Each t-statistic in this table is defined
as the point estimate of 8 (bond;, stock;) divided by the standard deviation of [Bboot (bond;, stock;)
across H00 independent bootstrap samples. Table A.9 is analogous to Table A.3, which reports
the properties of t-statistics based on asymptotic standard errors. Because the point estimates are
the same in both tables, any differences in t-statistics are due to differences between bootstrap
and asymptotic standard errors. The comparison again reveals that the significance of bootstrap
t-statistics is similar to Hansen-Hodrick t-statistics.
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Table A.9: Bootstrap t-Statistics for Bond-Stock Betas

(1) (2) B @ (®) (6)
Mean Median Min Max  # of countries with |t/ > 1.96 N
Panel (A) Developed Markets Bootstrap t-Statistics

B(bond;, stock;) 412 400 263 5.83 11 11
B(stock;, stockys)  10.85 10.91  8.29 14.87 10 10
ﬂ(ﬂi,IPi) 1.90 1.35 0.64 4.50 4 11

Panel (B) Emerging Markets Bootstrap t-Statistics

B(bond;, stock;) 264 217 021 7.25 10 17
B(stock;, stockys) — 8.10 8.62 4.74 12.52 17 17
B(mi, I F;) 1.25 0.96 0.06 3.89 3 17

Panel (C) Full Sample Bootstrap t-Statistics

B(bond;, stock;) 322 294 021 7.25 21 28
B(stock;, stockys) — 9.12 8.74 4.74 14.87 27 27
B(mi, IP;) 150  1.01  0.06 4.50 7 28

Note: This table is analogous to Table A.3 except that t-statistics are based on the standard deviation
across independent bootstrap samples. Bootstrap samples for bond returns, stock returns, inflation, and
industrial production are constructed as described in Appendix A.6. This table presents summary statistics
for the absolute value of the t-statistic based on bootstrap standard errors of three regression betas: LC
bond-local stock beta, 5(bond;, stock;), local stock-US stock return beta, S(stock;, stockys), and realized
inflation-output beta, B(m;, IP;). The standard deviation of bootstrapped betas across 500 independent
bootstrap samples are used for the standard errors.

Because our bootstrap procedure preserves the correlation structure of returns across countries,
we expect bootstrapped bond-stock betas to be correlated across countries. We verify that the
cross-country correlations of bootstrapped bond-stock betas are intuitive. Across 500 independent
simulations the bootstrapped US bond-stock beta, BbOOt (bondy s, stockyg), is slightly positively
correlated with Bb""t (bond;, stock;). Taking the average across all countries except the US, the
average cross-country correlation of bootstrapped bond-stock betas equals

; corr <Bb°°t (bondy s, stockys) ,BbOOt (bond,;, stocki)) =0.17.

N -1 iAUS

As one might expect, US bootstrapped bond-stock betas have a higher correlation with devel-
oped markets (0.28) than with emerging markets (0.11). The highest pairwise correlation of
Bb‘”t (bondy g, stockys) with any country is 0.60 for Canada, which is intuitive because of the espe-
cially close economic and financial linkages between the US and Canada. While these correlations
are positive they are on average quantitatively small, consistent with their effect on bootstrapped
standard errors being modest.

Next, we show how the different components of the bootstrap procedure affect the resulting
bootstrap standard errors in our main results in Table 3. For this, we switch on the different
components of the bootstrap one-by-one for the benchmark regression in Table 3, column (1).
Table 3, Panel (A) reports results with the total LC debt share on the left-hand side and Table
3, Panel (B) reports results with the external LC debt share from TIC on the left-hand side. We
look at these two different left-hand-side variables to show that bootstrap standard errors can be
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either smaller or larger than Huber-White robust standard errors. Each column in Table A.10 uses
a different methodology to compute standard errors. For both panels, column (1) of Table A.10
reports asymptotic Huber-White heteroskedasticity-robust standard errors for comparison. The
standard error in column (1) is therefore not a bootstrap standard error and it treats 5(bond; stock;)
as observed. However, it is a robust standard error that accounts for the fact that LC debt shares
may have heteroskedasticity. Moving to column (2), we run a bootstrap that bootstraps LC debt
shares according to Eqn. (A.6) but does not bootstrap bond and stock returns, therefore treating
B (bond;, stock;) as observed without estimation error. The point of this is to verify that the wild
bootstrap procedure for the LC debt share works and gives similar statistical significance as the
robust standard error in column (1). We see that the standard error in column (2) is very similar
to the one in column (1) in both cases, though slightly smaller. A look at the associated t-statistics
reveals that the magnitude of the difference between column (1) and (2) standard errors is tiny and
has no bearing whatsoever on statistical significance at any conventional significance levels. This
reassures us that the bootstrapping procedure for the LC debt share is reasonable and accounts for
conditional heteroskedasticity similarly to robust Huber-White asymptotic standard errors. Next,
column (3) shows bootstrap standard errors that account for estimation error in (oot (bond,;, stock;)
but do not allow these estimation errors to be correlated across countries. Formally, column (3)
bootstraps the LC debt share according to Eqn. (A.6) and it bootstraps bond and stock returns
for each country independently, i.e. it uses a block bootstrap as depicted in Figure A.10 but it runs
the block bootstrap separately for each country. We thereby generate the same amount of volatility
in BbOOt (bond,;, stock;) across bootstrap simulations as in the full bootstrap, but we switch off the
cross-country correlation in 3000 (bond;, stock;). We can see that the standard errors in column (3)
are again extremely similar to the standard errors in columns (1) and (2) with virtually identical t-
statistics in both Panels (A) and (B). Finally, column (4) runs the full bootstrap procedure described
above, re-estimating 3 (bond;, stock;) on bootstrapped data for bond and stock returns. Column (4)
accounts for cross-country correlations in bootstrapped bond and stock returns by using the same
blocks across countries as shown in Figure A.10. We see that the resulting standard errors and
t-statistics are again virtually indistinguishable from the ones reported in columns (1) through (3).
To be conservative, in the main text we report the maximum of the Huber-White robust standard
error and the bootstrap standard error from the full bootstrap procedure throughout Tables 3 and
4 and Appendix Table A.7. In Table A.10 Panel (A), the column (1) robust standard error is
slightly larger than the column (4) bootstrap standard error, so we report the robust standard
error in column (1) of Table 3 in the main text. Conversely, in Table A.10 Panel (B) the column
(4) bootstrap standard error is slightly larger than the column (1) robust standard error, so we
report the bootstrap standard error in column (1) of Table 4 in the main text.

Having explained the baseline bootstrap, we now briefly outline how we modify this procedure
to account for different estimated betas on the right-hand side of the regressions in Table 3. In
column (4) and in the second set of columns in Table 4, we replace Eqn. (A.5) with a regression that
includes additional controls and use that to bootstrap LC debt shares. We additionally generate a
bootstrap sample of US stock returns and re-estimate the local-US stock return on the bootstrapped
sample. We use the same blocks for US stock returns as for bond and stock returns in all other
countries, thereby preserving the correlation between US and local stock returns.

The bootstrap in column (3) of Table 3 is analogous to the baseline bootstrap described above.
However, we choose a different block length for the moving block bootstrap because our data for
Am; s and AIP;; is monthly, whereas our data for overlapping bond and stock returns is daily. We
use a moving block bootstrap with block length 12 months to generate bootstrap samples for Am; ¢
and AIP; ;.
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Due to data limitations, we choose a simpler bootstrap procedure for column (2) of Table
3. We no longer have access to the raw survey data and therefore cannot generate a boot-

strap sample of survey inflation and output expectations. Instead, we account for measure-
Survey Survey

ment error in 3 <7Ti , gdp;; ) by re-sampling the betas directly from the asymptotic dis-
tribution estimated with Newey-West standard errors with lag length 3 months. Concretely, we
draw ,BbOOt <7T£S'urvey7gdpfurvey> ~ N (5 (W?umey, gdpf‘urvey> . SE (6 <ﬂ_;‘5'u'rvey7 gdpfurvey>)) inde-

pendently across countries, where SFE (6 <7r;9 umey,gdpfumey ) denotes the standard error for

I6; (ﬂfumey, gdpfumey) estimated with Newey-West and lag length of 3 months. The bootstrap

sample for the L.LC debt share is generated as in our baseline bootstrap. This simpler bootstrap ac-

Survey

counts for measurement error in 3 (7Ti , gdpfwvey>, but unlike our baseline bootstrap it cannot

account for correlations in this measurement error across countries. We think that these boot-
strap standard errors are still informative, because we have seen in Table A.10 that allowing for
cross-country correlations in the estimation error has only negligible effects on the standard error.
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A.7 Testing the CAPM
A.7.1 GRS Test of the CAPM

The paper treats stock market betas as proxies for expected excess returns. We now estimate a
standard Gibbons et al. (1989) (GRS) test for the CAPM, with the US stock market as a proxy
for total wealth.

We start by sorting our countries into five equal-sized portfolios, sorted by their LC bond betas
with respect to the US stock market. We obtain quarterly bond excess returns (not overlapping)
for these five portfolios. Due to our short sample period, it is unsurprising that average excess
returns are noisy.

We test the CAPM with the GRS statistic, which Campbell (2017) shows can be written as:

GRS — T — N — 1 (Sharpettlangency)2 (SharpeTU”S)z. (A.9)
N 1 + (Sharpej}s)?

Here, Sharpel@tangency is the Sharpe ratio of the tangency portfolio of the LC bond portfolios,
Sharpef}g is the Sharpe ratio of the US equity market, T' = 42 is the number of quarterly returns,
and N = 5 is the number of portfolios. The GRS statistic, hence, increases in the distance between
the Sharpe ratios for the tangency portfolio and the US equity market.

We estimate the tangency portfolio Sharpe ratio from the portfolio returns as in Campbell
(2017) Chapter 2.2.3. This gives a tangency Sharpe ratio of Sharpel©tangency — (.52, compared
to a US equity market Sharpe ratio of Sharpef}q = 0.17, over our sample period 2004-2015. The
Sharpe ratio for the LC bond tangency portfolio hence exceeds the equity Sharpe ratio over our
short sample period. However, the tangency Sharpe ratio is very close to the US equity Sharpe
ratio of 0.56 reported in Campbell (2003) for a longer sample that is conventionally used to obtain
a more precise estimate of average US equity excess returns. The proximity between the tangency
Sharpe ratio and the US equity Sharpe ratio from this longer sample is an intuitive indication
that the difference between tangency and US equity Sharpe ratios over the shorter sample is not
statistically significantly different.

Substituting the values for SharpelCtangency g harpefls, T, and N into (A.9) gives a value for
the GRS statistic of GRS = 1.72. Comparing this value to the critical values of a Fy 7y distri-
bution gives a p-value of 0.16, showing formally that we cannot reject CAPM at any conventional
significance level.

A.7.2 GMM Risk Premium Estimation

We next make use of the fact that our assets of interest are bonds and that we can use quoted bond
yields to construct ex ante measures of LC bond risk premia. Ex ante bond risk premia may be
more precisely measured than the ex post average returns over a limited sample used for the GRS
test. We find that ex ante LC bond risk premia have a statistically and quantitatively significant
relationship with US stock market betas across countries. This estimation is similar to the GRS test
in Section A.7.1, because we seek to estimate whether investors require a higher risk premium for
LC bonds that comove more with the US stock market. Further, we want to understand whether
this price of risk is statistically distinguishable from the average US equity risk premium.

A concrete example makes clear the advantage of ex ante risk premia measures based on bond
yields, whereas realized bond returns are noisy measures of ex ante expected risk premia over our
short sample. For instance, the US had extremely low government bond yields throughout our
sample, indicating that investors required low risk premia for holding US Treasuries. However,

27



US Treasury yields dropped even lower during our sample and, in particular, during the financial
crisis, an event that would have been very hard to predict ex ante. As a result, looking at US excess
returns, it would appear as if the US had a high risk premium, whereas clearly markets price a
very low risk premium into US Treasuries.

We estimate a regression of ex ante average expected risk premia onto the beta of LC bond
returns with respect to the US stock market, while accounting for the fact that the betas on the
right-hand side of this regression are not known but instead must be estimated.

For comparison and to set the stage, we first estimate this relationship in two steps without
accounting for generated regressors. As a first-step, we estimate country-by-country regressions:

a:r{jgt = o5+ /3,':67’@"‘57t + €t (A.10)

using daily data on overlapping 1-quarter holding returns. Because we use daily overlapping

returns, the average number of return observations per country is high at 2513. For comparison,

the maximum number of return observations is 2608, so our data is close to a balanced panel. Let

RP;,, denote the average ex ante risk premium estimated for country . In a second step, we then
estimate the regression:

ﬁi,n = u+ KB + u;. (A.11)

The coefficient, k, estimates the cost of exposure to the US stock market and is the coefficient
of interest.

To estimate «;, f;, 1, and & in a single step while accounting for estimation error in the first
stage, we define the following Generalized Method of Moments (GMM) moments, which we expect
to have a population mean of zero:

RPiy — p— K5 for 1<i<N
(RPin — 1 — KB:) Bi for N+1<i<2N
Git = ot —a; — Bixr(is 4 for 2N +1<¢ <3N (A.12)

=h

(ZBTZLtC — o — ﬁixrﬁ&t xrﬁ&t or 3N +1<i<4N

Here, N denotes the number of countries in the sample and the parameter vector to be estimated
is:

b = [N7K7a>16]/7
a = [ag,a9,..,an],
/6 = [ﬂhﬂ?v'“wBN]-

The first 2N moment conditions in (A.12) are for the cross-sectional regression in the second stage.
Moment conditions 2N + 1 through 4N are for the first-stage regressions. In sample, the 4N
moments (A.12) cannot all simultaneously be set to zero, because we only have 2N + 2 parameters.
The GMM estimator b is defined by setting:

1<
Axf;gt (b) — 0, (A.13)

where A is a weighting matrix of size (2N + 2) x 4N that has full rank. It is a standard result for
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GMM that the estimated parameter vector b has asymptotic distribution

b~ N(by,V) (A.14)
V = T '(AD) ' ASA' (AD)7V, (A.15)

where bg is the true underlying parameter value, D = E [%} is the sample average of the derivative
of g with respect to the parameter vector, b, and S is the spectral density matrix of g; at frequency
Zero.

We implement GMM with weighting matrix A = [(2N + 2) x 4N] that ensures that the GMM
estimates for ; and k agree with the point estimates from the two-step procedure. This requirement
pins down the weighting matrix:

11><N 01><N 01><2N
A = O1xv  lixn  Oixon |- (A.16)
Oanvxn  Oanxn  Zon

Here Oprx p and 157« p define block matrices of all zeros and ones with size [M x P], respectively.
We use Zony to denote the identity matrix of size 2IN. For our application, we use the consistent
estimator for D:

—1Iyx1 P OnxN —klN
. —B —3? OnxN —2k X diag(8)
D =1 onx1 Onxa ~In R DIRE o i (A.17)

2
T -1 T -1
Onx1 Onx1 —InD oy W?Jls,tT —IND iy (‘T’TWS,J T

where diag(3) denotes the matrix with the elements of 3 along the diagonal. We estimate the upper
left [2N x 2N] submatrix of S from the cross-section of countries, with the assumption that (5;, u;)
are independent but not necessarily identically distributed. We also assume that g;;,1 < i < 2N
are independent of g;;, 2N < j < 4N, so we can set the upper-right 2N x 2N and the lower-left
2N x 2N block matrices of the spectral density matrix, S, to zero. We cannot estimate the upper-
right 2N x 2N and the lower-left 2N x 2N block matrices of the spectral density matrix, S, because
RP;, is constant over time for each country. The spectral density for moments 2N + 1 through
4N is estimated from the time series with a Newey-West kernel with m lags to account for serial
correlation and overlapping return observations:

IN.§1 IN§12 0N><2N
S = InS12  InSo Onxon .(A.18)

Oanvsn Oonsny T7F Zthl (ﬁtﬁé + iy (1 - m+r1) [Gey_; + §t+i§t'}>
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Here,

N
=) D) I (4.19)
o= g > g (2.20)

T N
. 1
f12. = N 9o Z Z i tGi+N,ts (A.21)

and g; refers to the vector containing elements gon41, through gsn:. We choose a lag length of
m = 120 days to account for the length of overlapping observations of approximately 60 trading
days. A lag length of m = 120 days is sufficiently small relative to our overall sample length of
2608 trading days that standard asymptotic standard errors apply.

We then compute the GMM standard errors for pu and « as follows:

SE(p) = /V(1,1), (A.22)
SE(R) = V(2,2). (A.23)

Table A.11 column (1) starts by reporting the estimated regression Eqn. (A.11) without ac-
counting for generated regressors. We note that the bond-US stock beta enters with a strongly
positive coefficient that is also statistically significant. The results suggest that the price of US
stock market risk is 8.96%, i.e. an asset with a unit beta with respect to the US stock market has
a risk premium of 8.96%. This number is very close to and not statistically significantly different
from the equity premium of 8.1% reported in Campbell (2003). Column (2) in Table A.11 reports
results from the GMM procedure, which accounts for generated regressors. The point estimates are
identical to column (1) and the standard errors are only slightly larger without affecting statistical
significance, as one would expect if the vector of bond betas, 3, is precisely estimated.

Table A.11: GMM: Bond Risk Premia onto Bond-US Stock Betas

(1) (2)
LC Bond Risk Premium OLS GMM

Bi R.96*** 8 9p***
(2.69) (3.31)

Constant 2.80%** 2 RO***
(0.33)  (0.39)

Observations 28 28

Note: This table estimates the regression (A.11), where LC bond-US stock return betas are es-
timated via (A.10). The specification in column (1) does not account for generated regressors.
Column (2) accounts for generated regressors by using the GMM procedure described in Appendix
A.7.2. Significance levels are indicated by *** p<0.01, ** p<0.05, * p<0.1.

30



B Model Appendix

The Model Appendix is structured as follows:
e Appendix B.1 microfounds real exchange rate shocks.

e Appendix B.2 shows that under the assumptions of lump-sum taxes and a representative
domestic consumer, inflating away domestically-held LC debt has no effect on domestic real
consumption. Inflating away LC debt is only an aggregate transfer of resources to domestic
consumers when the debt is owned by international lenders. This insight allows us to focus
on externally-held debt throughout the main paper.

e Appendix B.3 derives the first-order conditions.
e Appendix B.4 proves Proposition 1.
e Appendix B.5 describes the numerical solution.

e Appendix B.7 shows that the quantitative results are robust to reasonable variation in pa-
rameter values and in particular to allowing separate exchange rate processes for emerging
and developed markets.

B.1 Microfounding the Real Exchange Rate

This section describes the goods and preferences microfounding the real exchange rate.

B.1.1 International Consumers

Following Gabaix and Maggiori (2015), we assume that international consumers consume a con-
sumption basket:

Ci o= (AT on'T, (B.1)

where &, is a non-negative, potentially stochastic preference parameter.3? A} denotes the number of
apples and O} the number of oranges consumed by international consumers in periods ¢t = 1,2. We
normalize the preference shock in period 1 to one. The period 2 preference shock is log-normally
distributed according to Eqns. (20) and (21). To summarize, the distribution of the preference
shock is:

& = 1,

L 5
E = expleg— 5% |5 (B.2)
€9 = )\E’I*:L‘z + eq, (B3)

where es is distributed according to:

ey ~ N(O,ag),

32Pavlova and Rigobon (2007) also consider a similar foundation for real exchange rate fluctuations based
on preference shocks.
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independently of x5 and z3. International consumers’ welfare function is given by:

2 ) 1—v*
Ur = EZ(&*)t%. (B.4)
t=1

We assume that the international economy is endowed with an equal amount of apples and
oranges in each period. Furthermore, the international economy’s endowment of apples and oranges
equals A7 = O] = X{ =1 in period 1 and it equals A5 = O3 = X3 in period 2, where X3 follows
the distribution described in the main paper. Since the domestic economy is assumed to be small,
the effect of domestic bond payoffs on international consumers’ consumption is negligible. The

international consumers’ consumption bundle then equals:
Ci = Aj=0;i=1,
C; = A5=0;=X;.
B.1.2 Domestic Economy

Domestic consumers have preferences over the real domestic consumption bundle and domestic log
inflation:

U(CQ,?TQ) = 1_7—%7['%. (B5)

The domestic consumption bundle consists entirely of apples:

Cy = A (B.6)

The amount of apples consumed in Eqn. (B.6) is endogenous, and depends on the exogenous
endowment net of real debt repayments, as specified in Eqn. (9) We define the consumption-
weighted real exchange rate as the price that international consumers are willing to pay for apples,
where the numeraire is one unit of the international consumers’ consumption bundle. With (B.1),
(B.4), (B.5), and (B.6), the real exchange rate equals:
au*
dAT

U~
dCy

= gt, (B?)

showing that the real exchange rate indeed follows the process described in the main paper.

B.2 Domestic Debt Extension

We now present an extension of the model with domestically-held LC debt. That is, the government
can borrow from its own domestic consumers with LC debt in addition to borrowing from interna-
tional lenders. We show that under the assumptions that the government has access to lump-sum
taxes and a representative consumer, inflating away domestically-held LC debt leaves domestic real
consumption unchanged. Inflating away LC debt only generates an aggregate transfer of resources
to domestic consumers if that debt is held by international lenders. This observation motivates our
focus on internationally-held debt throughout the paper.
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We assume that the government borrows face value DY¢4°™ of LC debt from domestic con-

sumers and face value DO of LC from international lenders at prices Q@4 and Q*“. Note
that we allow for potentially different bond prices paid by domestic consumers and international
lenders. We continue to assume that the government needs to raise external financing D/R* in
period 1. To leave period 1 consumption normalized at 1, we assume that proceeds from domestic
bond sales are rebated to domestic consumers.

The real amount of domestic goods needed to repay the government debt in period 2 becomes:

DFC

Dy = + (DLC + DLC’d0m> exrp(—ms). (B.8)
&

Because the government has access to lump-sum taxes, real period 2 domestic consumption equals
the domestic endowment minus real resources needed to repay government debt plus the payoff on
the domestically-held LC bond portfolio:

Cy = X9—Dy+ DLC’dom(:’iL‘p(—ﬂ'g). (Bg)

Substituting (B.8) into (B.9) shows that domestic real consumption depends on D¢ and D¢
but is independent of domestically-held debt DZCdom.

DFC
CQ = X2 — (5— + DLCQJIP(—TFQ)) . (BlO)
2

Intuitively, surprise inflation reduces domestic consumers’ returns on their LC bond portfo-
lio. However, surprise inflation also reduces the taxes required to repay debt. With lump sum
taxes these two effects exactly cancel and domestic consumption is independent of the return on
domestically-held debt. The finding that real domestic consumption is independent of domestically-
held LLC debt makes clear that externally-held debt is the key variable for the equilibrium inflation
policy and bond risks.

B.3 First-Order Conditions

Proof of Inflation First-Order Condition with Commitment

We now prove the commitment government’s first-order condition characterized by Eqns. (26)
and (27). To simplify the derivation, we assume that there is a discrete number of states j = 1, ..., N
that are realized with probability f;. With a discrete number of states f; takes the role of the
probability density function f(X5) in the main text. We use x;, m; etc. to denote the values
for log real domestic output and log inflation if state j is realized in period 2. In this section we
omit the superscript ¢ and time period o subscript and reserve subscripts to indicate the state that
has been realized. For simplicity, we first prove Eqn. (26) with the two additional simplifying
assumptions that there is only one output shock (;E;‘ = x;Vj) and there is no real exchange rate
shock (e = 0Vj), before proving the general case. In this simplified special case, the commitment
government’s problem is to choose the vector my,ms...., 7n to maximize:

N C;—’Y a
EU =) f TS T ) (B.11)
j=1
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where consumption in state ¢ is given by:

C; = Xewxp(z;/X)-D <]§* e$gLC i) + (1 - s)) , (B.12)

and the LC bond price equals:
N
> fiMiexp(—m;). (B.13)
j=1

Here, the international lenders’ SDF in state j follows from Eqn. (14) and equals:

M; = §&exp(—v'zj). (B.14)

The international real risk-free rate satisfies:
N
> fiM. (B.15)
j=1

The commitment government chooses the inflation rate in state ¢ such that the marginal benefit

of raising inflation in that state equals the marginal cost. The derivative of ex-ante expected utility

with respect to log inflation in state i, CfiE—U equals:

dE’U aoi O} 7\ dgte )

- = U)o+ QLC Z fiT= | = — fiom (B.16)
aC; | dQ*¢

= flU/ Z f?U/ QLC dﬂ'i - inﬂTi, (B17)

where we use the notation U’ (C;) = BC (Cj,mj) = ¢y 7. Dividing by the probability f; and setting

dEU — () gives the first-order condition:

dm;
oC;  1dQM 0C;
R (. Ly o) =
am; U (Cy) . + T dm E U (Cy) aQLC | (B.18)
Differentiaing Eqn. (B.13) with respect to m; shows that:
LC
ddQﬂ_. = —fiMexp(—m;). (B.19)

When the domestic output Xo follows a continuous probability distribution we need to replace f;
by the density f(X2). m by 7§5(X2), C; by C§ (X2), and M by M5(X2). For brevity, we omit the
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arguments of 7§, C§, and Mj, so Eqns. (B.18) and (B.19) become:33

00, 1 dQrc oCs
c ! / 4
ars = U'(Cy) ot + %) drs E (U (CY) 9QLC | (B.20)
1 dQLC . .
%) drs —Mjexp (—75). (B.21)
2

This proves Eqns. (26) and (27) for the special case where X3 is the only shock in the model.

Next, we extend the proof to the case with exchange rate shocks and separate international and
domestic endowment shocks. Let f;, denote the probability that domestic real output state X
and real exchange rate & are realized. Note that we allow domestic output and the real exchange
rate to be correlated. We write the probability that output state j is realized as:

o= > fir (B.22)
k

so f; continues to be the analogue of the probability density f (X2) when X follows a continuous
distribution. When domestic output takes a discrete set of N values the government’s problem
simplifies to choosing 71,72, ..., Tx to maximize:

EU = > fi <
ik

where consumption in state (j, k) is given by

c
jk Q2

. B.2
T 27T]>, (B.23)

Cjp = Xeap(a;j/X)—D (iw +(1- s)—> (B.24)

and the LC bond price is given by:

QY = E[Mjeap(-m5)&), (B.25)
= E[E[M;& |Xs]exp (—5)], (B.26)
= Y B [M5E | Xy = X cap(—j), (B.27)
jik
= Z fiE[MyEy | Xo = X exp(—j). (B.28)
J

Here, we have used the law of iterated expectations and the definition of f; in Eqn. (B.22).

Taking the derivative of expected domestic consumer utility, %, with respect to the optimal

33Formally, the proof with a continous probability density relies on the Calculus of Variations
but is otherwise analogous to the discrete probability case.
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inflation rate in state i gives:

1—7
dEU aak dQ"c
d’ﬂ'i = ZflkU, @k;) QLC Zf]k — 5 d’ﬂ'i

— f,-onri (B29)

ac, | s | dQC

Setting (SETY = (0 and dividing by the probability f; gives the inflation first-order condition:

OC, 1 dQ*® oC
o = St T 1 S gt | @A
aC,, 1 dQLC ICjp
= E [U’ (Cypp) = 677 ] T dm [U’ (Cir) Qgc (B.32)
Taking the derivative of expression (B.28) with respect to m; shows that:
1d LC .
F dQTr' == —e:z:p(—ﬂ'i)IE [M2 62 |X2 = Xz] . (B33)

If X5 and &; follow continuous distributions we need to replace f; by f (X2), and m; by 75(Xs),
and Cj, by CF (X2, &) in Eqns. (B.32) and (B.33). For brevity, we omit the arguments of 7§ and
CS in the main text. This proves Eqns. (26) and (27) in the main text.34

Proof of Inflation First-Order Condition without Commitment

We next prove the no-commitment government’s inflation first-order condition Eqn. (25). With-
out commitment, the government’s problem is simply to maximize (B.23) subject to (B.24) but
taking the bond price Q¢ as given. If Xy and & follow discrete probability distributions the
first-order-condition becomes:

am; = Z Jik U’ aac”“ (B.34)

oC,
! ) ik

X5 = Xi] (B.35)
If X5 and &, follow continuous probability distributions, we need to replace m; by 75¢ (X5) and Cy
by C7¢ (X2, &2). We again omit the arguments of 74¢ and C§°, giving:

oCye
8 nc

ard® = E [U’ (C39) |X2] . (B.36)

Proof of Eqn. (28)

34A formal proof with X5 and & continuous again requires the Calculus of Variations but is
otherwise analogous to the discrete case.

36



We now prove Eqn. (28) in the main paper. First,

dEU  d _|Cy7
R PR (B:37)
d7T2 / ng
= —aF |m—2| +E b)) —= | . B.
a [7‘1’2 ds]—i_ [U (C2) ds] (B.38)

Now, recall from Eqns. (9) and (10) that we can write real domestic consumption as:

Cy = Xo— % (sRYC + (1 - s)RFY) . (B.39)

Because R"C = R*is independent of s it follows that:

dCQ - D LC FC SD dRLC
o - BB - —— ) (B.40)

Combining Eqns. (B.38) and (B.40) proves Eqn. (28) in the main paper. Because the govern-
ment faces a constrained optimization problem of choosing s from the interval [0, 1], a necessary
condition for an equilbrium is complementary slackness, that is either €Y = 0 and s is at an

ds
interior solution, or s = 1 and% >0,0or s=0 and% < 0.

B.4 Proof of Proposition 1

Government without Commitment

We start by log-linearizing the first-order condition for the no-commitment government around
ca = 0 and m = 0. Recall that the first-order condition for the inflation problem of a government
without commitment is given by:

Ty = E[U’(Cg)g—gj

XQ] . (B.41)

Before log-linearizing, we note that the following expressions hold exactly:

_ _ _ 1
Cy = Xexp(zy/X)—D ((1 —s)+ SW exp (—7‘[‘2)) , (B.42)
0Cs -1
8_71-2 = SDW eXp(—?TQ) . (B43)

Eqn. (B.42) follows from combining Eqns. (9), (10), (11), and (12) and using that in the
simplified special case & is constant and equal to one. Eqn. (B.43) is the partial derivative of Eqn.
(B.42) with respect to 7.

We start the log-linearization by noting that:

U'(Cy) = G5,
exp(—c2)
~ 1—rc. (B.44)
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We can approximately write period 2 consumption as a log-linear function of domestic output
and inflation as follows:

Cy = Xexp(z2/X)—D ((1 —-s)+ sﬁ exp (—772)) (B.45)
~ X+a9—D((1—-35)+s(1—(m—Em)))
= 149+ 5D (m — Em).

Note that we have used the definition that X = D + 1, which ensures that Cy equals one when
all shocks are equal to zero. We have also dropped second- and higher-order terms. It then follows
that log consumption approximately equals:

g ~ (Co—1 (B.46)
~ 29+ sD (mg — Emy). (B.47)

Substituting Eqn. (B.47) into Eqn. (B.44) shows that we can write domestic marginal consumption
utility as an approximately log-linear function of domestic output and inflation:

U/ (CQ) ~ 1 — YT —’)/SD (7T2 —Eﬂ'g). (B48)

Also, we have the log-linear approximation

o0, 1
3—71-2 = SDW exp (—7T2) (B49)
sDexp (— (ma — Ema))

~ sD(1— (mg —Emy)).

Q

In the special case with no real exchange rate shocks (g9 = 0) and only one global output shock
(x9 = %), the conditional expectation on the right-hand side of Eqn. (B.41) is trivial and the first-
order condition for the no-commitment government has the following log-linear approximation:

0Cs
— / ___“
amy = U (CQ) 37'(‘27
amy &~ sD (1 —yxy —vsD (13 — Em)) (1 — (12 — Em)),
~ sD(1—~z9 —ysD (my — Emy) — (my — Ema)) (B.50)

where in the last row we have dropped quadratic terms in xo and 7. Solving for o gives the
optimal no-commitment inflation policy:

<a + (SD)Q + sD) my = sD(1—ywa)+ (SD + (SD)2) Ems. (B.51)

Because lenders’ expectations are rational (B.51) implies that Emo = % and therefore that:

sD sD sD + Y (sl_?)2

Ty = (1 —~yxe) + — —
o+ (SD)2+SD o

O (B.52)
a+v(sD)” +sD

We keep only the lowest-order terms in the debt-to-GDP ratio D in the expression (B.52).
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Using the first-order Taylor approximations

L L Liow (B.53)
a+v(sD)"+sD o
D sD D)? _
D _sD¥1(sD) 0+0(D?) (B.54)
oz—l—’y(sD) +sD «

shows that up to second- and higher-order terms in D the inflation policy function (B.52) has the
following simple form:

sD  sD
7.(.36 [ ? —7?132. (B-55)

Government with Commitment
We log-linearize the first-order condition for the commitment government around co = 0 and
79 = 0. Substituting in for 22 from Eqn. (B.43) and

o
1 _dQtc iy

m% = —exp(—7§(X2))E [M;5&| Xo| from Eqn. (27), the first-order condition for the

inflation problem of a government with commitment is given by:

omy = b E[U(Cy)exp(—m)| X —E[U’ (Cy) a(z;zc]exp(—Trg)IE[]\@"SﬂXg](.B.56)

Note that Eqn. (26) is exact and is the starting point for our log-linearization. In the special
case with no real exchange rate shocks (g2 = 0) and only one output shock (zo = z3), Eqn. (14)
can be written as:

E[M3&| Xo] = 0" exp(—7"xa), (B.57)
1 1
= o OXP (-’)/*1172 ~5 (v*)? rff,) : (B.58)

Taking the partial derivative of Eqn. (B.42) with respect to the LC bond price gives the exact
expression:

0Cy  sDexp(—m)

oQLC  —  Rx (QLC)Q' (B:59)

Substituting Eqn. (B.58) and Eqn. (B.59) into Eqn. (B.56), the commitment government’s first-
order condition can be written as:

D
amy = —RjQLC U (Cy) exp (—m2)
;D
~wgept U (@ epm]ew (-ma—rea -5 072e2).

(B.60)

The conditional expectations drop out of Eqn. (B.60) because we are considering the special case
with only one shock. We again use the log-linear expression Eqn. (B.48) and log-linearize the last
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term in Eqn. (B.60) to obtain:

SD . 1 2 9
_—(R*QLC)2E [U" (Cy) exp (—m2)] exp (—m — w25 (v*) o'x> ,
_ _ ) L
~ —sDE [(1 -~z — vsD (73 — Emy)) exp (—m2)] exp(2Ems — mp — v @y — 5 (v*)? 02),

B B * 1 * p
~ —sDE [1 -~z — ysD (73 — Ema) — m2] exp(2Emy — w2 — v 22 — = (v )2 02),

2
~ —sD(1—~*xg — (m — Em)).

The remaining terms in the commitment government’s first-order condition (B.60) are identical
to the no-commitment case, so the log-linear approximation to Eqn. (B.60) (and hence Eqn. (26))
is given by:

amy = SD (1 — Yro — ’}/SD (7‘1’2 — ]E7T2) — (7‘1’2 — ]E7T2))
—SD (1 — “/*1‘2 - (7‘(2 - ET('Q)) . (B61)

Taking expectations of the left-hand side and right-hand side of Eqn. (B.61) and imposing that
lenders’ expectations are rational shows that Emrg = 0, so optimal log inflation for a government
with commitment equals:

sD "
™ = —— (7" =) 22. (B.62)
a+y (SD)

Using the first-order Taylor approximation

D Doy (B.63)
a+y (SD) o

shows that up to second- and higher-order terms in D the inflation policy function (B.62) has
the following simple form:

T~ %(7*_7)@ (B.64)
B.5 Numerical Solution

We solve the model numerically using global projection methods. Our strategy for the numerical
solution uses the following strategy:

No-Commitment

1. For any given LC debt share s, we choose the no-commitment inflation function 74¢ (z3) to
minimize the error in the government’s inflation first-order condition while holding constant

the LC debt share using the MATLAB function fminsearch.

2. In an outer loop, we maximize expected domestic consumer utility with respect to the LC
debt share, s. For this step, we use the MATLAB function fminbnd over the interval [0, 1.001].
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The maximization is over optimal expected domestic consumer utility conditional on the LC
debt share, s, which we obtain by repeating step 1. above for every value of s.

Commitment

1. For any given LC debt share s, we choose the commitment policy function 7§ (z2) to maximize
expected domestic utility conditional on the LC debt share using the MATLAB function
fminsearch.

2. In an outer loop, we maximize expected domestic consumer utility with respect to the LC
debt share, s. For this step, we use the MATLAB function fminbnd over the interval [0, 1.001].
The maximization is over optimal expected domestic consumer utility conditional on the LC
debt share, s, which we obtain by repeating step 1. above for every value of s.

B.5.1 Functional Form

Our numerical procedure considers inflation functions that can be written as a third-order polyno-
mial in x9:

w5 (w2) = bi(s) + ba(s)ra + b3(s)23 + ba(s)a3, (B.65)

m5(x2) = c1(s) + ca(s)zo + c3(s)a3 + ca(s)xs. (B.66)

All coefficients may depend on the LC debt share, s. We use the following vectors as the starting
point for our optimization routine:

b = [0.0183, —0.5363,7.9462, —60) (B.67)
¢ = [0.0028,0.2061, —5.8417, 20]. (B.68)

B.5.2 Bond Pricing Function

For any given inflation function, we need to solve for bond prices numerically. To facilitate numerical
integration, we first project all exogenous random variables onto zo and a shock that is orthogonal
to x9 but is correlated with real exchange rates. We re-write international log real consumption as
a component correlated with domestic output plus and an independent shock:

x5 = Nzo+mns, (B.69)
where we define:
)2
N = AW@, (B.70)
o
o L@, (B.71)
* 2 * *
(07)" = ()= (\)?02 (B.72)

Note that writing the relation between domestic and international endowments as (B.69) is consis-
tent with assumptions (18) through (19) in the main paper. That 75 is uncorrelated with z is not
a new assumption and indeed follows from (18), (19), and the definition A*.
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For the numerical solution, we use the notation p* = A5, so with Eqn. (B.69) the log real
exchange rate can be written as:

g9 = pasten (B.73)
*y % * %\ 2
o7 = ol—(p"\) o —(p")? (o)), (B.74)

where o, is the standard deviation of the real exchange rate and e, is uncorrelated with 3 and z».
We can then write the real exchange rate as a component correlated with log domestic log output
plus a shock, €3, that is uncorrelated with domestic output:

Eo = (,0*)\*)1‘24-6;, (B75)
ey = ex+p'n,
(07) = o —(p*\)? 02

We next use that 1/R* = §*exp (% (7*0*)2>. The ratio of LC bond prices to 1/R* then equals:

QILC * %k 1 * _*\2 * % 1 2
R Evse562m5 [0XP | =722 — 5 (v707)" = ma+ pTay +e2 — S0t
1 1
= ]Exg,e;,fg,n; [eXp <_7*‘T§ — 5 (7*0'*)2 — 9 —+ p*{]jé — 5 (UE2 — U§)>:| (B76)
_ —(6* — p*)\* _ * K\ ok _lﬁ* *2_1 2 2
= Epge o | =07 =p\) o= (" = p ) —m— 5 (v0") = 5 (02 —o7) | | (BTT)

* * \ 1 * * %\ 2 1 * % 1
= Euyes [GXP (— (07 = p" Az —ma+ 5 (7" = ) (o0)” — 5 (0 )2 — 5 (02 —0123))] :
where we define the international lenders’ effective risk aversion over domestic output as:
0* =~ (B.78)

For any given inflation policy 7o (z2) it is then relatively convenient to evaluate the following
ratio numerically:

Qe
‘ 2 ¢
1R exp (§ (v = p7)? (03)° =  (170%)? = (02 = 02))

Ee, lexp (= (0% — p"A%) 22 — ma (BJY)

We evaluate the expectation (B.79) numerically using Gauss-Legendre quadrature with 30 node
points, truncating the interval at -6 and 46 standard deviations of xs.

B.5.3 No-Commitment Policy Function

For a given LC debt share s, we choose the coefficients (b1, b, b3, bs) to set the government’s
inflation first-order condition as close as possible to zero. For any set of coefficients, we evaluate
the first-order condition error:

Error(ra) = Ee {(—angc(m) + (CF) ™ Zgﬁc) ‘ ng] . (B.80)
2

The expectation (B.80) is averaged over e3 but conditional on domestic output z2. At any value
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of r9 and €3, no-commitment consumption is evaluated via:

1/R
QLC

= Xexp(zs/X) - ((1 — 5)exp (— (P"\*) 2y — €5 + ;0 ) +s

Ch¢ = Xexp(zg/X) — ((1 —s)exp( €9+ ;O’ ) + s—/——

(). (B
1/R”

.C
Q1
and the partial derivative of no-commitment consumption with respect to no-commitment inflation
is evaluated via:

exp(-}“(22) ) .

acye _ 1/R*
s = DSQLC exp(—

o). (B.82)

Because lenders have rational expectations the LC bond price is evaluated via Eqn. (B.79). We
evaluate the expectation in Eqn. (B.80) over €5 numerically using Gauss-Legendre quadrature with
30 nodes and truncation at -6 and +6 standard deviations. We choose the vector of coefficients
(b1, b2, b3, by) to minimize the expected squared Euler equation error averaged over possible realiza-
tions of 2, that is we minimize E,, [Error(:ng)Q] . That is, we minimize the weighted average of the
squared Euler equation errors, where each realization of xo is weighted by its probability. To take
the expectation over zo, we again use Gauss-Legendre quadrature with 30 nodes and truncation at
-6 and +6 standard deviations.

(&7 nc

nec,1—-~
In the outer loop, we then maximize expected utility Eq, es [(—— (mhe)? + & — )} in Eqn.

2 1

(B.80) over s, where for any s the coefficients (b1, b2, b3, bs) are found as described above.

B.5.4 Commitment Policy Function

For a given LC debt share s, we choose the commitment inflation policy function coefficients
(c1,c2,c3,¢4) to maximize the expectation:

o c,1—y
EI%BE [(—5 (7'['5)2 + Ci_ >] s (B83)

where we evaluate commitment consumption numerically:

1/R*
QLC

08 = Xexpla/X) — ((l—s)exp (—(p*)\*) 2—62+1oz> exp(—wg(xg)))

(B.84)

and LC bond prices update with the commitment inflation policy function through (B.79). All
expectations are again evaluated numerically using Gauss-Legendre quadrature using the same
grid points as before.

Cg,l—v

In the outer loop, we maximize E, e {(—% (m$)? + ﬁ)] over s, where for any s the coef-

ficients (¢, c2, ¢3, ¢4) are found as described above.
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B.5.5 Model Moments

We use Gauss-Legendre quadrature to evaluate inflation moments numerically. For both z and e3,
we use 30 nodes and truncate the interval at -6 and +6 standard deviations. We evaluate average
inflation, the bond-stock beta and the LLC bond risk premium numerically as:

IEmodelﬂ,2 — Exz,eﬁﬂ'% (B85)
o —1 Egyex [(me — Emg) x
B4 (hond;, stock;) ey [T 3 2) 2], (B.86)
Am,x O_.I’
RPEEOMOAL = og Ry, o [exp(—m)] —log Q7 —r*. (B.87)

B.6 Plotting the Inflation Policy Functions

Figure B.1 shows inflation as a function of period 2 log domestic output. Consistent with the
intuition from Proposition 1, DM inflation decreases in the worst states of the world, thereby
providing international lenders with safe assets. A government with commitment optimally adopts
pro-cyclical inflation, selling insurance to international lenders and earning the risk premium. This
is similar to the problem studied in Farhi and Maggiori (2018) with a risk-neutral government and
risk-averse lenders. By contrast, EM inflation increases in the worst states of the world. Intuitively,
EM governments cannot commit to limiting their own consumption smoothing and instead have
an incentive to use inflation in the worst states of the world to smooth domestic consumption
fluctuations.

B.7 Calibration Robustness
B.7.1 Separate EM and DM Local-International Endowment Loadings

We now verify that calibration results are unchanged if we match the domestic-international endow-
ment loadings to the data separately for emerging and developed markets. We set A™*" = 0.87 for
EMs and A**" = 0.97 for DMs to match the average slope coefficients of domestic output growth
with respect to US consumption growth averaged separately for EM and DM data. All other pa-
rameter values are as listed in Table 5. Table B.1 shows that the model moments are qualitatively
and quantitatively unchanged compared to Table 6 in the main paper.

Table B.1: Model Moments with Separate Local-International Endowment Loadings

EN[. DM EM-DM
(no commitment) (commitment)
Data  Model Data Model Data  Model
Average Inflation  3.92% 2.12% 1.73%  0.00%  2.20% 2.11%
Bond-Stock Beta  0.07 0.15 -0.10 -0.06 0.17 0.21
LC Debt Share 0.55 0.38 0.90 0.96 -0.35  -0.58
LC Bond RP 3.15% 4.27% 1.53% 2.03% 1.62% 2.24%

Note: All moments are in annualized natural units. Model parameters for the EM and DM cali-
brations are given in Table 5, except for the local-global endowment loadings, which we set to set
to A% = .87 for EMs and A*®" = 0.97 for DMs. Model average inflation is the unconditional
average of level inflation. The model bond-stock beta is computed according to Eqn. (39).
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Figure B.1: Inflation Policy Functions
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Note: This figure shows log inflation 7o against log output xg, defined in (17), both in annualized percent,
in the calibrated model. The solid blue lines indicate the EM calibration, while the dashed red lines indicate
the DM calibration.

B.7.2 Separate EM and DM Exchange Rate Processes

We now verify that the calibration results are qualitatively and quantitatively unchanged if we
calibrate EM and DM real exchange rate processes separately to the data. To match the data
moments averaged separately over EMs and DMs, we set 0. = 10.4% and A\**" = 1.33 for the EM
calibration and o, = 11.4% and A\>*" = 1.56 for the DM calibration. All other parameter values

are as listed in Table 5. The resulting model moments are shown in Table B.2.
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Table B.2: Model Moments with Separate Exchange Rate Processes

ENI DM EM-DM
(no commitment) (commitment)
Data  Model Data Model Data  Model
Average Inflation  3.92% 2.07% 1.73%  0.00%  2.20% 2.06%
Bond-Stock Beta  0.07 0.15 -0.10 -0.05 0.17 0.20
LC Debt Share 0.55 0.37 0.90 0.91 -0.35 -0.54
LC Bond RP 3.15% 3.95% 1.53% 2.53% 1.62% 1.42%

Note: All moments are in annualized natural units. Model parameters for the EM and DM calibra-
tions are given in Table 5, except for the exchange rate processes, which we calibrate separately to
the data in this table. We set 0. = 10.4% and A\>*" = 1.33 for the EM calibration and o. = 11.4%
and A\>*" = 1.56 for the DM calibration. Model average inflation is the unconditional average of
level inflation. The model bond-stock beta is computed according to Eqn. (39).

B.7.3 Varying the DM Inflation Cost Parameter

We now verify the robustness of our calibration results to choosing different inflation cost parameters
for the DM calibration. In our baseline calibration, the inflation cost parameter, «, is pinned down
by the average difference in inflation between EMs and DMs in the data. In our baseline calibration,
we choose the same inflation cost parameter for EMs and DMs for symmetry and to focus on the
effect of credibility, which also varies across EM and DM calibrations. However, it appears plausible
that the inflation cost of DMs is different from EMs. The DM inflation cost could be higher if DM
policy makers assign a higher cost to inflation. Or it could be lower, if DM institutions are better
able to smooth out frictions caused by inflation.

Here, we verify that the calibration results are similar for a range of values for the DM inflation
cost parameter, oM. We consider a wide range of values for a”M  setting it to one half and twice
the baseline value of a = 4.28. All other parameter values are set to the DM values in Table 5.
The resulting model moments in Table B.3 show that DM model moments are largely insensitive
to oM. Average inflation is equal to zero — the optimal level in the model — for all values of «,
because a government with full commitment always chooses average inflation equal to the optimal
level. The LC debt share is close to 0.90 for a wide range of inflation cost parameters, and the
bond-stock beta varies within a relatively narrow range from —0.03 to —0.09.

Table B.3: Model Robustness to Different Inflation Costs

DM Data Baseline Low Inflation Cost High Inflation Cost

a = 4.28 a=214 a = 8.56
Average Inflation  1.73% 0.00% 0.00% 0.00%
Bond-Stock Beta  -0.10 -0.05 -0.09 -0.03
LC Debt Share 0.90 0.91 0.92 0.90
LC Bond RP 1.53% 2.22% 1.90% 2.46%

Note: All moments are in annualized natural units. Model parameters are given by the DM
calibration in Table 5, except for the inflation cost, «, which is listed in the column header. Model
average inflation is the unconditional average of level inflation. The model bond-stock beta is
computed according to Eqn. (39).
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