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B Derivation of the Policy Functions of the `Upper Level'

Our `upper level' speci�cation is very similar to Hercowitz and Sampson (1991) (we omit the
country indexes in order to economize on the notational burden):

Ut =
∞∑
t=0

βt ln(Ct), (A1)

Kt+1 = K1−δ
t Ωδ

t , (A2)

yt = ptAtL
1−α
t Kα

t , (A3)

yt = PtCt + PtΩt, (A4)

K0 given. (A5)

As discussed in detail in Heer and Mauÿner (2009, chapter 1), this speci�c set-up with loga-
rithmic utility and log-linear adjustment costs has the advantage of obtaining an analytical
solution. To solve for the policy functions of capital and consumption, we iterate over the
value function. For ease of notation, we skip indices for current periods and denote next
period variables by ′. Further, we de�ne φ = 1/δ. The value of the value function at step 0,
v0, is equal to 0. The value of the value function at step 1, v1, is given by:

v′ = max
K′

lnC = max
K′

ln (y/P − Ω)

= max
K′

ln
(
pAL1−αKα/P − (K ′φ/Kφ−1)

)
.

The associated �rst order condition is:

1

pAL1−αKα/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1
= 0.

It follows that K ′ = 0. Hence, v′ = ln (pAL1−αKα/P ) and, in the next step, we have to
solve:

v2 = max
K′

ln
(
pAL1−αKα/P − (K ′φ/Kφ−1)

)
+ β ln

(
pAL1−αK ′α/P

)
.

The �rst order condition becomes:

1

pAL1−αKα/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1
+
αβ

K ′
= 0,

αβ

φ

(
pAL1−αKα/P − (K ′φ/Kφ−1)

)
=

K ′φ

Kφ−1
,

αβ

φ

(
pAL1−αKα/P

)
=

(
αβ

φ
+ 1

)
K ′φ

Kφ−1
,

αβ

αβ + φ
pAL1−αKα+φ−1/P = K ′φ,(

αβ

αβ + φ
pAL1−α/P

) 1
φ

K(α+φ−1)/φ = K ′. (A6)
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Plugging in the expression for K ′ given in equation (A6), we end up with:

v2 = ln

pAL1−αKα/P −

((
αβ

αβ + φ
pAL1−α/P

) 1
φ

K(α+φ−1)/φ

)φ

/Kφ−1


+β ln

(
pAL1−α

((
αβ

αβ + φ
pAL1−α/P

) 1
φ

K(α+φ−1)/φ

)α

/P

)
,

= ln

((
pAL1−α/P − αβ

αβ + φ
pAL1−α/P

)
Kα

)
+β ln

(
pAL1−α

(
αβ

αβ + φ
pAL1−α/P

)α
φ

K(α+φ−1)α/φ/P

)
,

= α ln(K) + βθα ln(K) + const,

where θ ≡ (α+ φ− 1)/φ and const collects all terms not depending on K. The next step is:

v3 = max
K′

ln
(
pAL1−αKα/P − (K ′φ/Kφ−1)

)
+ αβ ln (K ′) + β2θα ln(K ′)

+βconst.

The �rst order condition is given by:

1

pAL1−αKα/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1
+
αβ

K ′
+
αθβ2

K ′
= 0,

αβ

φ
(1 + βθ)

(
pAL1−αKα/P − (K ′φ/Kφ−1)

)
=

K ′φ

Kφ−1
,

αβ

φ
(1 + βθ)pAL1−αKα/P =

(
αβ

φ
(1 + βθ) + 1

)
K ′φ

Kφ−1
,

K ′ =

(
αβ
φ

(1 + βθ)pAL1−α/P
αβ
φ

(1 + βθ) + 1

) 1
φ

Kθ. (A7)

Plug in the solution of K ′ given in equation (A7) to obtain:

v3 = α ln (K) + αβθ ln (K) + β2θ2α ln(K) + βconst.

The resulting value of the value function is:

v4 = max
K′

ln
(
pAL1−αKα/P − (K ′φ/Kφ−1)

)
+ αβ ln (K ′)

[
1 + βθ + β2θ2

]
+βconst,
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and the accompanying �rst order condition becomes:

1

pAL1−αKα/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1
+
αβ [1 + βθ + β2θ2]

K ′
= 0,

αβ

φ

(
1 + βθ + β2θ2

) (
pAL1−αKα/P − (K ′φ/Kφ−1)

)
=

K ′φ

Kφ−1
,

αβ

φ

(
1 + βθ + β2θ2

)
pAL1−αKα/P =

(
αβ

φ

(
1 + βθ + β2θ2

)
+ 1

)
K ′φ

Kφ−1
,

K ′ =

(
αβ
φ

(1 + βθ + β2θ2) pAL1−α/P
αβ
φ

(1 + βθ + β2θ2) + 1

) 1
φ

Kθ.

Note now that the general pattern can be described as:

vm ⇒ K ′ =

[
αβ
φ

(pAL1−α/P )
∑m

i=0(βθ)i

1 + αβ
φ

∑m
i=0(βθ)i

] 1
φ

Kθ,

where m denotes the mth-step. When m→∞, we end up with:[
αβ
φ

(pAL1−α/P )
∑m

i=0(βθ)i

1 + αβ
φ

∑m
i=0(βθ)i

] 1
φ

=

[
αβ
φ

(pAL1−α/P ) 1
1−βθ

1 + αβ
φ

1
1−βθ

] 1
φ

.

Replace θ ≡ (α + φ− 1)/φ in the above expression to obtain:[
αβ
φ

(pAL1−α/P ) 1
1−β(α+φ−1)/φ

1 + αβ
φ

1
1−β(α+φ−1)/φ

] 1
φ

=

[
(pAL1−α/P ) αβ

φ−β(α+φ−1)

1 + αβ
φ−β(α+φ−1)

] 1
φ

=

[
(pAL1−α/P ) αβ

φ−β(α+φ−1)

φ−βφ+β
φ−β(α+φ−1)

] 1
φ

=

[
(pAL1−α/P )αβ

φ− βφ+ β

] 1
φ

.

Apply the de�nition of φ = 1/δ:[
(pAL1−α/P )αβ

1/δ − β/δ + β

]δ
=

[
(pAL1−α/P )αβδ

1− β + βδ

]δ
.

The resulting expression is our policy function for the capital stock in the next period, K ′:

K ′ =

[
αβδpAL1−α

(1− β + βδ)P

]δ
Kαδ+1−δ. (A8)

Intuitively, (A8) reveals that, alongside parameters, capital accumulation depends on current
capital stock, labor endowments, technology, factory-gate prices, and the aggregate price
index. A higher labor endowment, a higher current capital stock and a higher technology
level translate into higher next-period capital stocks. The relationship between capital stock
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and factory-gate prices is also positive. As noted in the main text, the intuition is that an
increase in the factory-gate price leads to an increase in the value of marginal product of
capital and, therefore, investment. The relationship between investment and the aggregate
price index is inverse. The intuition is that a higher price of investment and a higher
price of consumption increase the direct cost and the opportunity cost of investment. A
higher current goods price means that output today is more valuable or that more output
can be produced today. Hence, consumers are willing to transfer part of their wealth to
the next period by capital accumulation. On the other hand, if the current price index is
high, consumption is expensive today. Therefore, a higher share of income will be spend on
consumption today and less will be saved and transferred for future consumption via capital
accumulation.

Note that with K ′ and K at hand, one can determine the level of investment as:

Ω =

(
K ′

K1−δ

) 1
δ

=


[
pAL1−ααβδ
P (1−β+βδ)

]δ
Kαδ+1−δ

K1−δ


1
δ

=

[
αβδpAL1−α

(1− β + βδ)P

]
Kα.

In addition, the optimal level of current consumption can be obtained by using the policy
function for capital and reformulating y = PC + PΩ, i.e.,

C =
y

P
− Ω =

pAL1−αKα

P
−
[

αβδpAL1−α

(1− β + βδ)P

]
Kα

=

[
1− αβδ

1− β + βδ

]
pAL1−αKα

P

=

[
1− β + βδ − αβδ

1− β + βδ

]
pAL1−αKα

P
. (A9)

C Transition

An important contribution of our paper is that we do not only focus on the steady-state,
but we also characterize the transition path. In fact, as emphasized in the main text, all
growth e�ects in our framework are transitional, and there is no steady-state growth. A nice
feature of the theoretical framework is that the assumptions of an intertemporal log-utility
function and the log-linear transition function for capital enable us to obtain a closed-form
solution for the transition path in the model. In order to do that, we �rst calculate the
policy function for capital by value function iteration as described in Online Appendix B,
where consumers take the variety price pt and the consumer price Pt as given. It should be
noted that pt and Pt are both general equilibrium indexes that consistently aggregate the
decisions of all countries in the world, which are transmitted through changes in trade costs.
See discussion in main text for further details. Thus, our policy function gives the optimal
decision of consumers for the capital stock tomorrow as a function of prices and the capital
stock today, and it is consistent with rational expectations as long as we can determine
current prices and have an initial capital stock.

We take the following steps in order to characterize the transition path analytically.
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First, we calculate the initial capital stock by assuming that we are in a steady-state. In
particular, we solve our equation system given by equations (19)-(24) simultaneously for all
N -countries at steady-state. By construction, the steady-state is consistent with all prices
and steady-state capital stocks for all countries. We take this steady-state as our baseline
values at time 0. Then, we consider a non-anticipated and permanent change, e.g. a change
in bilateral trade costs among Canada, Mexico and the United States due to the formation of
NAFTA. Given the current capital stock (which was determined yesterday), we use equations
(20)-(23) to solve for new current prices and current GDPs for the new vector of bilateral
trade costs. As soon as we have these prices and GDPs, we can calculate the optimal choice
of consumption and investment by using the policy function (24). With a new capital stock
in the next period, we can again use equations (20)-(23) to solve for next periods prices and
GDPs. We then iterate until convergence, i.e. until we reach the new steady-state.

It is important to note that equations (20)-(23) solve for prices and income simultaneously
for all N -countries in our model. In order to ensure that our calculations are correct, we
take two steps. First, we compare the steady-state from the iterative procedure with a new
steady-state that we obtain in one shot, ignoring transition, by simply solving our theoretical
system directly with the new vector of trade costs. The two steady-states are identical. This
is encouraging, but tells us nothing about the transition path. In order to validate the
correctness of the transition path calculations, we set-up a system of �rst-order conditions
which we then solve using Dynare. Speci�cally, we use our utility function (we skip country
indices without loss of generality):

Ut =
∞∑
t=0

βt ln(Ct),

and combine the budget constraint with the production function:

PtCt + PtΩt = ptAtL
1−α
t Kα

t .

In order to end up with only one constraint, we also use the de�nition of Ωt:

Ωt =

(
Kt+1

K1−δ
t

) 1
δ

,

leading to the following budget constraint:

PtCt + Pt

(
Kt+1

K1−δ
t

) 1
δ

= ptAtL
1−α
t Kα

t .

The corresponding expression for the Lagrangian is:

L =
∞∑
t=0

βt

[
ln(Ct) + λt

(
ptAtL

1−α
t Kα

t − PtCt − Pt
(
Kt+1

K1−δ
t

) 1
δ

)]
.

Take derivatives with respect to Ct, Kt+1 and λt to obtain the following set of �rst-order
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conditions:

∂L
∂Ct

=
βt

Ct
− βtλtPt

!
= 0 for all t.

∂L
∂Kt+1

= βt+1λt+1pt+1At+1L
1−α
t+1 αK

α−1
t+1 − βtλtPt

(
1

K1−δ
t

) 1
δ 1

δ
K

1
δ
−1

t+1

−βt+1λt+1Pt+1K
1
δ
t+2

δ − 1

δ
K
− 1
δ

t+1
!

= 0 for all t.

∂L
∂λt

= ptAtL
1−α
t Kα

t − PtCt − Pt
(
Kt+1

K1−δ
t

) 1
δ

!
= 0 for all t.

Use the �rst-order condition for consumption to express λt as:

λt =
1

CtPt
.

Replace this in the �rst-order condition for capital:

∂L
∂Kt+1

= βt+1 1

Ct+1Pt+1

pt+1At+1L
1−α
t+1 αK

α−1
t+1 − βt

1

Ct

(
1

K1−δ
t

) 1
δ 1

δ
K

1
δ
−1

t+1

−βt+1 1

Ct+1

K
1
δ
t+2

δ − 1

δ
K
− 1
δ

t+1
!

= 0 for all t.

Simplify and re-arrange to obtain:

βpt+1At+1L
1−α
t+1 αK

α−1
t+1

Ct+1Pt+1

=
1

Ct

(
1

K1−δ
t

) 1
δ 1

δ
K

1
δ
−1

t+1 +
(δ − 1) β

δCt+1

K
1
δ
t+2K

− 1
δ

t+1 for all t.

Use the de�nition of yt to re-write the left-hand side of the above expression as:

αβyt+1

Kt+1Ct+1Pt+1

=
1

δCt

K
1
δ
−1

t+1

K
1−δ
δ

t

+
β (δ − 1)

δCt+1

(
Kt+2

Kt+1

) 1
δ

for all t.

As expected, we end up with the standard consumption Euler-equation. Note that we have
four forward-looking variables for each country: yt, Kt, Ct, and Pt, i.e. we have 4N forward-
looking variables in our system. These are the endogenous variables we have to solve for. In
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order to do that, we feed the following set of equations into Dynare:

yj,t =
(yj,t/yt)

1
1−σ

γjPj,t
Aj,tL

1−α
j,t Kα

j,t for all j and t, (A10)

yt =
∑
j

yj,t for all t, (A11)

yj,t = Pj,tCj,t + Pj,t

(
Kt+1

K1−δ
t

) 1
δ

for all j and t, (A12)

Pj,t =

[∑
i

(
tij,t
Pi,t

)1−σ
yi,t
yt

] 1
1−σ

for all j and t, (A13)

αβyj,t+1

Kj,t+1Cj,t+1Pj,t+1

=
1

δCj,t

K
1
δ
−1

j,t+1

K
1−δ
δ

j,t

+
β (δ − 1)

δCj,t+1

(
Kj,t+2

Kj,t+1

) 1
δ

for all j and t. (A14)

We then take as initial and end values the baseline and the counterfactual steady-state and we
let Dynare solve for the transition of our deterministic model assuming perfect foresight. The
algorithm for our case is described in Adjemian, Bastani, Juillard, Karamé, Maih, Mihoubi,
Perendia, Pfeifer, Ratto, and Villemot (2011) in Section 4.12. Comparison between the
transition path from Dynare and the transition path that we solved for analytically reveals
that those are identical.

D ACR formula

This section obtains the ACR-equivalent formula in our dynamic setting. Before we start,
we note that in ACR the formula is based on real income, which is equivalent to welfare in
their setting. However, this is no-longer the case in our framework as not all of the income
is used for consumption because part of it is used to build up capital. Accordingly, our
welfare measure should be based on consumption. In order to derive the ACR equivalent,
we start with consumption as given by equation (A9) and use the production function yj =
pjAjL

1−α
j Kα

j as given in equation (A3) to express welfare as (we skip time indices without
loss of generality):

Wj ≡ Cj =

(
1− β + βδ − αβδ

1− β + βδ

)
yj
Pj
.

Taking the log-derivative leads to:

d lnWj = d ln yj − d lnPj.

Taking Aj and Lj as constant, we can express d ln yj as:

d ln yj = d ln pj + αd lnKj. (A15)
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Note that Pj is given by:

Pj =

[
N∑
i=1

(γipitij)
1−σ

] 1
1−σ

.

Then:

d lnPj =
1

Pj
dPj,

=
1

Pj

1

1− σ

[
N∑
i=1

(γipitij)
1−σ

] 1
1−σ−1

×
N∑
i=1

(
(1− σ)γ1−σ

i p−σi t1−σij dpi + (1− σ)γ1−σ
i p1−σ

i t−σij dtij
)

=

[
N∑
i=1

(γipitij)
1−σ

]− 1
1−σ
[

N∑
i=1

(γipitij)
1−σ

] 1
1−σ−1

×
N∑
i=1

(
γ1−σ
i p−σi t1−σij dpi + γ1−σ

i p1−σ
i t−σij dtij

)
= P

−(1−σ)
j

N∑
i=1

(
γ1−σ
i p−σi t1−σij dpi + γ1−σ

i p1−σ
i t−σij dtij

)
=

N∑
i=1

((
γipitij
Pj

)1−σ

d ln pi +

(
γipitij
Pj

)1−σ

d ln tij

)
.

Use xij =
(
γipitij
Pj

)1−σ
yj and de�ne λij = xij/yj =

(
γipitij
Pj

)1−σ
, to simplify:

d lnPj =
N∑
i=1

λij (d ln pi + d ln tij) . (A16)

Combine terms:

d lnWj = d ln yj − d lnPj = d ln pj + αd lnKj −
N∑
i=1

λij (d ln pi + d ln tij) .

Take the ratio of λij and λjj:

λij
λjj

=

(
γipitij
γjpjtjj

)1−σ

.
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Consider a foreign shock that leaves the ability to serve the own market, tjj, unchanged as
in ACR. The change of this ratio is given by:

d

(
λij
λjj

)
=

1− σ
(γjpjtjj)

1−σ (γipitij)
−σ (γipidtij + γitijdpi)

− 1− σ
(γjpjtjj)

2−σ (γipitij)
1−σ γjtjjdpj.

Express as log-change:

d
(
λij
λjj

)
λij
λjj

= d ln

(
λij
λjj

)
= d lnλij − d lnλjj = (1− σ) (d ln tij + d ln pi − d ln pj) .

Use this expression with equation (A16):

d lnPj =
N∑
i=1

λij (d ln pi + d ln tij)

=
N∑
i=1

λij

(
1

1− σ
(d lnλij − d lnλjj) + d ln pj

)

=
1

1− σ

(
N∑
i=1

λijd lnλij − d lnλjj

N∑
i=1

λij

)
+ d ln pj

N∑
i=1

λij.

Assuming balanced trade, as in ACR, implies yj =
∑N

i=1 xij. Hence,
∑N

i=1 λij = 1 and

d
∑N

i=1 λij =
∑N

i=1 dλij = 0. Further,
∑N

i=1 λijd lnλij =
∑N

i=1 dλij = 0. Using these facts,
the above expression simpli�es to:

d lnPj =
1

1− σ

(
N∑
i=1

λijd lnλij − d lnλjj

N∑
i=1

λij

)
+ d ln pj

= − 1

1− σ
d lnλjj + d ln pj. (A17)

Using this relationship in the welfare change expression leads to:

d lnWj = d ln yj − d lnPj = d ln pj + αd lnKj +
1

1− σ
d lnλjj − d ln pj

= αd lnKj +
1

1− σ
d lnλjj.
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Integrate between an initial situation (base case) and a counterfactual situation (counter-
factual): ∫ W c

W b

d lnWj =

∫ Kc
j

Kb
j

αd lnKj +

∫ λcjj

λbjj

1

1− σ
d lnλjj,

lnWj + C1|W
c

W b = α lnKj + C2|
Kc
j

Kb
j

+
1

1− σ
lnλjj + C3

∣∣∣∣λcjj
λbjj

,

lnW c
j + C1 − lnW b

j − C1 = α lnKc
j + C2 − α lnKb

j − C2 +
1

1− σ
lnλcjj + C3

− 1

1− σ
lnλbjj − C3.

Use `hat' to denote the ratio of any counterfactual and base case variable, i.e. v̂ = vc/vb:

ln Ŵj = α ln K̂j +
1

1− σ
ln λ̂jj.

Take the exponent on the left- and right-hand side:

Ŵj = K̂α
j λ̂

1
1−σ
jj . (A18)

Note that this expression for welfare holds in and out-of steady-state.

D.1 ACR Formula In Steady-State

In steady-state, we can use the expression for Kj as given in equation (25) as starting point.
First, we replace yj by the expression given in equation (23):

Kj =
αβδpjAjL

1−α
j Kα

j

(1− β + βδ)Pj
.

Solve for Kj:

Kj =

[
αβδpjAjL

1−α
j

(1− β + βδ)Pj

] 1
(1−α)

.

Next, calculate the change of Kj. To do so, �rst calculate the log-derivative of the left- and
right-hand side:

d lnKj =
1

1− α
(d ln pj − d lnPj) .

Replace d lnPj by − 1
1−σd lnλjj + d ln pj:

d lnKj =
1

(1− α)

1

(1− σ)
d lnλjj.
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Note that d ln pj cancels out. Integrating the left- and right-hand side between the baseline
and the counterfactual and denoting K ′/K with hats, where K ′ denotes the change from
the baseline to the counterfactual, leads to:

ln K̂j =
1

(1− α)

1

(1− σ)
ln λ̂jj.

Take the exponent on the left- and right-hand to obtain:

K̂j = λ̂
1

(1−α)(1−σ)
jj .

Plug this expression into equation (A18):

Ŵj = λ̂
α

(1−α)(1−σ)
jj λ̂

1
1−σ
jj = λ̂

1
(1−α)(1−σ)
jj .

Note that this expression is very similar to the ACR formula for intermediates with perfect
competition, which also just adds the share of intermediates in production to the exponent
(see page 115 in ACR). Hence, in steady-state, capital accumulation acts pretty much as
adding intermediates. The key di�erence between our setting and a model with intermediates
is the dynamics and the transition path. We characterize in Section C the transition path,
and discuss the extension to allow for intermediates in Section A.4.

D.2 ACR Formula Out-of Steady-State

In Subsection D.1 we assume that we are in a steady-state. In this section, we investigate
the properties of our model with respect to ACR out of steady-state. To do this, we go back
and depart from equation (A18), which holds in and out-of steady-state:

Ŵj,t = K̂α
j,tλ̂

1
1−σ
jj,t .

Starting with this expression, we have to determine K̂j,t. Take the capital equation as given
by equation (24) and replace pj,tAj,t using equation (22):

Kj,t+1 =

[
yj,tβαδ

Pj,t (1− β + δβ)

]δ
K1−δ
j,t .

Let us next write this equation in log-derivatives:

d lnKj,t+1 = δ(d ln yj,t − d lnPj,t) + (1− δ)d lnKj,t.

Using equation (A15)
d ln yj,t = d ln pj,t + αd lnKj,t,

and (A17)

d lnPj,t = − 1

1− σ
d lnλjj,t + d ln pj,t,
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we end up with:

d lnKj,t+1 = δ(αd lnKj,t +
1

1− σ
d lnλjj,t) + (1− δ)d lnKj,t ⇒

d lnKj,t+1 =
1

1− σ
d lnλjj,t + (1− δ(1 + α))d lnKj,t.

Integrate between an initial situation (base case) and a counterfactual situation (counter-
factual): ∫ Kc

j,t+1

Kb
j,t+1

d lnKj,t+1 =

∫ λcjj

λbjj

1

1− σ
d lnλjj,t +

∫ Kc
j,t

Kb
j,t

(1− δ(1 + α))d lnKj,t,

(lnKj,t+1 + C1) |K
c
j,t+1

Kb
j,t+1

=

(
1

1− σ
lnλjj,t + C2

)
|λ
c
jj

λbjj

+ ((1− δ(1 + α)) lnKj,t + C3) |K
c
j,t

Kb
j,t
,(

lnKc
j,t+1 + C1 − lnKb

j,t+1 − C1

)
=

(
1

1− σ
lnλcjj,t + C2 −

1

1− σ
lnλbjj,t − C2

)
+
(
(1− δ(1 + α)) lnKc

j,t + C3

−(1− δ(1 + α)) lnKb
j,t − C3

)
.

Use `hat' to denote the ratio of any counterfactual and base case variable, i.e. v̂ = vc/vb:

ln K̂j,t+1 =
1

1− σ
ln λ̂jj,t + (1− δ(1 + α)) ln K̂j,t.

Take the exponent on the left- and right-hand side:

K̂j,t+1 = K̂
1−δ(1+α)
j,t λ̂

1
1−σ
jj,t .

In combination with Ŵj = K̂α
j λ̂

1
1−σ
jj and noting that in period zero K̂j,0 = 1, we can express

welfare as an iterative formula which only depends on λ̂jj,t and changes of the capital stock:

Ŵj,t = K̂α
j,tλ̂

1
1−σ
jj,t ,

K̂j,t+1 = K̂
1−δ(1+α)
j,t λ̂

1
1−σ
jj,t ,

K̂j,0 = 1.

To show that welfare can be expressed as function of λ̂jj and parameters alone, we iteratively

plug in K̂j,t+1. In period 0 we have:

Ŵj,0 = λ̂
1

1−σ
jj,0 ,

K̂j,1 = λ̂
1

1−σ
jj,0 .
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In period 1 we have:

Ŵj,1 = λ̂
1

1−σ
jj,0 λ̂

1
1−σ
jj,1 ,

K̂j,2 = λ̂
1−δ(1+α)

1−σ
jj,0 λ̂

1
1−σ
jj,1 .

In period 2 we have:

Ŵj,2 = λ̂
1−δ(1+α)

1−σ
jj,0 λ̂

1
1−σ
jj,1 λ̂

1
1−σ
jj,2 ,

K̂j,3 = λ̂
(1−δ(1+α))2

1−σ
jj,0 λ̂

1−δ(1+α)
1−σ

jj,1 λ̂
1

1−σ
jj,2 .

Hence, in period n we have:

Ŵj,n = λ̂
1

1−σ
jj,n

n−1∏
i=0

λ̂
(1−δ(1+α))n−1−i

1−σ
jj,i ,

K̂j,n+1 =
n∏
i=0

λ̂
(1−δ(1+α))n−i

1−σ
jj,i ,

which are both functions of λ̂jj and parameters only.
So far the out-of steady-state formulae give welfare when not taking into account the

discounting. Note that Ŵj,t = Ĉj,t. Hence, we can calculate welfare with discounting by
using equation (47):

λ =

(
exp

[
(1− β)

( ∞∑
t=0

βt ln (Cj,t,c)−
∞∑
t=0

βt ln (Cj,t)

)]
− 1

)
× 100

=

(
exp

[
(1− β)

( ∞∑
t=0

βt ln
(
Ĉj,t

))]
− 1

)
× 100

=

(
exp

[
(1− β)

( ∞∑
t=0

βt ln

(
K̂α
j,tλ̂

1
1−σ
jj,t

))]
− 1

)
× 100 (A19)

Hence, out-of steady-state, welfare can also be expressed as a function of the changes in λjj,t.
However, we have to trace the change of λjj only driven by the counterfactual change over
the transition. As we will typically not be able to observe these changes, this expression is
more for gaining theoretical insights into the working of the system than for practical use.

E Counterfactual Procedure

The counterfactuals are performed in four steps.
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Step 1: Obtain trade cost estimates by estimating equations (29) and (30). Then calculate
bilateral trade costs for the baseline setting:

(
t̂RTAij,t

)1−σ
= exp

[
η̂1RTAij,t +

5∑
m=2

η̂m lnDISTij,m−1 + η̂6BRDRij + η̂7LANGij

+η̂8CLNYij

]
. (A20)

For the counterfactual, additional trade costs may have to be calculated. For example, in
the case of our NAFTA counterfactual, we set RTAij,t to zero for the NAFTA countries after

1994, resulting in RTAcij,t. Then we recalculate
(
t̂RTAij,t

)1−σ
by replacing RTAij,t with RTA

c
ij,t

in equation (A20). The di�erences between the values for the key variables of interest are
obtained as a response to the change in the trade costs vector from RTAij,t to RTA

c
ij,t.

Step 2: Using the estimates for trade costs described in Step 1, and estimates for the
capital share α̂, the elasticity of substitution σ̂, and the capital depreciation rate δ̂ obtained
from equations (34) and (39), a value for β taken from the literature, and data for Lj,t and
yj,t, and assuming that we are in a steady-state, i.e., Kj,t+1 = Kj,t, we can calculate Pj using
equations (20) and (21) and recover (from equation (24)) country-speci�c, theory-consistent
steady-state capital stocks as follows:

KSS
j =

αβδyj
Pj (1− β + βδ)

.

We use KSS
j as our capital stock in period zero, i.e., K0 = KSS

j .
We also recover preference-adjusted technology Aj/γj in the baseline setting by noting

that the `lower level' can be solved without knowledge of Aj/γj and then using Πj and
combining (22) and (23), leading to:

Aj
γj

=
yjΠj

(yj/y)
1

1−σ L1−α
j

(
KSS
j

)α .
As we recover KSS

j and Aj/γj from data and estimated parameters, we ensure that our
baseline setting is perfectly consistent with our GDP and employment data. However, our
model allows us to perform one validation check. Speci�cally, we correlate our theory-
consistent steady-state capital stocks and observed capital stocks as reported in the Penn
World Tables 8.0. The correlation coe�cient is 0.98. Figure 1 of the main text o�ers a
visual representation of this relationship by plotting the log of the two series against each
other, showing the strong log-linear correlation, which validates our estimates and gives us
con�dence to proceed with the policy counterfactual analysis as described in the next steps.

Step 3: Using the values obtained in Steps 1 and 2, we solve our system given by equations
(19)-(24) in the baseline and in the counterfactual starting from year 0 until convergence to
the new steady-state.
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Step 4: After solving the model, we calculate the e�ects on trade, on the MRs, on welfare,
and on capital accumulation. We report the results for all countries individually, as well
as aggregates for the world, NAFTA, and the non-NAFTA countries (labeled �Rest Of the
World�, ROW).

Trade e�ects: Trade e�ects are calculated as percentage changes in overall exports for
each country between the baseline and the counterfactual values:

∆xi,t% =

(∑
j 6=i x

c
ij,t −

∑
j 6=i xij,t

)
∑

j 6=i xij,t
× 100,

where xij,t is calculated according to equation (19), and xcij,t are the counterfactual trade
�ows. Note that, in the case of NAFTA, we calculate the change of trade from the case
without NAFTA to the case with NAFTA in place, as a share of trade in the case without
NAFTA, even though we have to counterfactually solve for the case without NAFTA. The
e�ects for the world as a whole are calculated by summing over all countries, i.e. ∆xWorld,t% =(∑

i

∑
j 6=i x

c
ij,t −

∑
i

∑
j 6=i xij,t

)
/
(∑

i

∑
j 6=i xij,t

)
×100. For the trade e�ects within NAFTA,

we only sum over the six within-NAFTA trade relationships (CAN-USA, CAN-MEX, MEX-
CAN, MEX-USA, USA-CAN, USA-MEX). For ROW, we sum all remaining bilateral trade
relationships.

MR e�ects: The MR e�ects are also calculated as the percentage change of Pi,t and Πi,t

for each country i and year t between the baseline and the counterfactual values. Note that
with balanced trade and with symmetric trade costs Pi,t = Πi,t, hence we only have to report
one e�ect for every country in this case:

∆Pi,t% =

(
P c
i,t − Pi,t

)
Pi,t

× 100,

where Pi is given by equation (20), and P c
i,t are the counterfactual MRs. The e�ects for

the world are calculated as simple means over the changes for all countries, i.e. ∆PWorld,t =
1/N

∑
i ∆Pi,t%. For NAFTA, we only take the mean over the three NAFTA members, while

the results for ROW are calculated as the mean over the remaining 79 countries.

Welfare e�ects: In the `Conditional GE' and in the `Full Static GE' cases, welfare is
given by real GDP per capita.57 Using equation (23), yi = piAiL

1−α
i Kα

i , and equation (22),
(γipiΠi)

1−σ = yi/y, to replace pi, we can express real GDP per capita as:

ỹi =
yi
PiLi

=
piAiL

1−α
i Kα

i

PiLi
=

(yi/y)1/(1−σ)AiL
−α
i Kα

i

γiΠiPi
,

57Note that in our setting P can also be interpreted as an ideal price index. C/P therefore corresponds
to indirect utility.
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and, similarly, the counterfactual real GDP per capita as:

ỹci =
yci
P c
i L

c
i

=
pciAi (Li)

1−α (Kc
i )
α

P c
i Li

=
(yci/y

c)1/(1−σ)Ai (Li)
−α (Kc

i )
α

γiΠc
iP

c
i

.

The change in welfare e�ects is then given by:

∆ỹi% =
(ỹci − ỹi)

ỹi
× 100.

In the `Full Dynamic GE, SS' and `Full Dynamic GE, trans.' scenarios, welfare is calculated
according to equation (47). The results for the world are calculated as weighted sums of
the welfare e�ects over all countries. We use GDPs as weights. Hence, the reported world

welfare e�ects are calculated as: ∆ỹWorld% =
∑

i

(
∆ỹi%× yi∑

j yj

)
. For NAFTA, we only

take the GPD weighted sum over the three NAFTA members, while the results for ROW
are calculated as the GDP weighted sums over the remaining 79 countries.

Capital e�ects: The e�ects on capital are also calculated as the percentage changes
between the baseline and the counterfactual values:

∆Ki,t% =

(
Kc
i,t −Ki,t

)
Ki,t

× 100,

where Ki,t is given by equation (24), and Kc
i,t are the counterfactual capital stocks in the

new steady-state. The results for the world are calculated by summing over all countries,
i.e. ∆KWorld,t% =

(∑
iK

c
i,t −

∑
iKi,t

)
/ (
∑

iKi,t) × 100. For NAFTA, we only sum capital
stocks over the three NAFTA members in the baseline and counterfactual and calculate the
change of this sum, while the results for ROW are calculated as the change of the sum of
capital stocks for the remaining 79 countries.

F Our System in Changes

In this appendix, we derive our system in changes using the exact hat algebra as introduced
by Dekle, Eaton, and Kortum (2007, 2008). We �rst derive the system in changes out-of
steady-state followed by the system in changes in steady-state.

Denote counterfactual values with a prime (′), and de�ne the change for variable z, as
ẑ = z′/z. Start with the capital equation as given by equation (24) and replace pj,tAj,t using
equation (22):

Kj,t+1 =

[
yj,tβαδ

Pj,t (1− β + δβ)

]δ
K1−δ
j,t .

This relationship holds in the baseline and counterfactual, so that we can write the change
as:

K̂j,t+1 =

[
ŷj,t

P̂j,t

]δ
K̂1−δ
j,t .
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To derive an expression for the changes of prices we use equation (22) to write:

p̂j,t =
(ŷj,t/ŷt)

1
1−σ

Π̂j,t

,

with

ŷt =

∑
i y
′
i,t∑

i yi,t
⇒ ytŷt =

∑
i

yi,tŷit.

Next we derive an equation for Π̂j,t. We use equation (21) to write:

Π1−σ
i,t Π̂1−σ

i,t =
∑
j

(
tij,tt̂ij,t

Pj,tP̂j,t

)1−σ
yj,tŷj,t
ytŷt

.

Similarly, we can write the change for Pj,t using equation (20):

P 1−σ
j,t P̂ 1−σ

j,t =
∑
i

(
tij,tt̂ij,t

Πi,tΠ̂i,t

)1−σ
yi,tŷi,t
ytŷt

.

The change in GDP is derived by using equation (23), and assuming that technology and
labor stay constant:

ŷj,t = p̂j,tK̂
α
j,t.

This completes our system in changes:

x̂ij,t =
ŷi,tŷj,t
ŷt

(
t̂ij,t

Π̂i,tP̂j,t

)1−σ

,

Π1−σ
i,t Π̂1−σ

i,t =
∑
j

(
tij,tt̂ij,t

Pj,tP̂j,t

)1−σ
yj,tŷj,t
ytŷt

,

P 1−σ
j,t P̂ 1−σ

j,t =
∑
i

(
tij,tt̂ij,t

Πi,tΠ̂i,t

)1−σ
yi,tŷi,t
ytŷt

,

p̂j,t =
(ŷj,t/ŷt)

1
1−σ

Π̂j,t

,

ytŷt =
∑
i

yi,tŷit,

ŷj,t = p̂j,tK̂
α
j,t,

K̂j,t+1 =

[
ŷj,t

P̂j,t

]δ
K̂1−δ
j,t .

This system needs only data on GDPs (yi,t) and trade costs (tij,t), and knowledge about α,
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σ and δ. In other words, knowledge about Aj,t, γj, and β is not necessary. The change in
tij,t, t̂ij,t, are exogenous, i.e. they form the basis of our counterfactual NAFTA experiment.
Further, with given GDPs and trade costs, we can solve for the Πi,t's and Pj,t's. Hence, we

are left with seven equations for each t in the seven unknown changes x̂ij,t, ŷi,t, ŷt, Π̂i,t, P̂j,t,

p̂j,t, K̂j,t.
Note that the capital equation in changes does not determine the level of capital. How-

ever, this is also not necessary. We merely have to note that K̂j,0 = 1, i.e. that there are
no capital adjustments in the �rst iteration. Hence, we can write and solve our system in
changes and solve for all counterfactual values of all endogenous variables with given K0.
The solutions are identical to the solutions of our system in levels. This shows that our
reported changes from the system in levels are also invariant to the values of Aj,t, γj, and
β. The reason is that they all enter multiplicative and are assumed to be constant between
baseline and counterfactual.

In steady-state, the capital equation in changes simpli�es to:

K̂j =

[
ŷj

P̂j

]δ
K̂1−δ
j ⇒ K̂j =

ŷj

P̂j
.

All other equations stay the same without time index.

G Additional Results for the NAFTA Counterfactual

In this appendix we provide detailed results for our NAFTA counterfactual. Speci�cally,
we report the changes in trade, MR, welfare, and capital stocks for all countries, as well as
summary statistics for the NAFTA members, the non-NAFTA members and the world as a
whole. All changes are calculated as described in Online Appendix E, Step 4.

Table A1: Evaluation of NAFTA

Trade e�ects MR e�ects Welfare e�ects Capital
Cond. Full Full Cond. Full Full Cond. Full Full Full

Country GE Static Dynamic GE Static Dynamic GE Static Dynamic Dynamic
GE GE, trans. GE GE, trans. GE GE, trans. GE, trans.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
AGO -0.018 -0.180 -0.290 0.293 0.327 0.377 -0.292 -0.490 -0.562 -0.655
ARG -0.176 -0.581 -0.775 0.746 0.682 0.569 -0.741 -1.121 -1.177 -1.268
AUS -0.115 -0.354 -0.511 0.425 0.446 0.456 -0.423 -0.702 -0.790 -0.907
AUT -0.004 0.009 0.062 0.051 0.106 0.222 -0.051 -0.093 -0.121 -0.156
AZE -0.007 -0.049 -0.074 0.115 0.176 0.282 -0.115 -0.218 -0.280 -0.351
BEL -0.002 0.032 0.104 0.021 0.079 0.203 -0.021 -0.045 -0.068 -0.097
BGD -0.076 -0.148 -0.172 0.181 0.226 0.310 -0.180 -0.309 -0.367 -0.439
BGR -0.011 -0.070 -0.089 0.149 0.198 0.288 -0.149 -0.258 -0.307 -0.369
BLR -0.011 -0.068 -0.096 0.140 0.195 0.291 -0.140 -0.252 -0.310 -0.380
BRA -0.285 -0.501 -0.578 0.465 0.465 0.454 -0.463 -0.736 -0.806 -0.902
CAN 0.780 13.053 39.278 -13.363 -13.344 -13.377 15.424 29.608 44.204 60.021
CHE -0.000 0.044 0.118 0.004 0.067 0.198 -0.004 -0.022 -0.048 -0.078
CHL -0.043 -0.261 -0.409 0.383 0.404 0.426 -0.382 -0.628 -0.709 -0.811
CHN -0.444 -0.473 -0.385 0.191 0.236 0.315 -0.190 -0.327 -0.385 -0.458
COL -0.216 -0.582 -0.749 0.697 0.644 0.550 -0.692 -1.054 -1.115 -1.207
CZE -0.007 -0.008 0.024 0.063 0.123 0.238 -0.063 -0.123 -0.163 -0.208
DEU -0.058 -0.060 -0.021 0.066 0.126 0.241 -0.065 -0.129 -0.171 -0.218

Continued on next page
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Table A1 � Continued from previous page

Trade e�ects MR e�ects Welfare e�ects Capital
Cond. Full Full Cond. Full Full Cond. Full Full Full

Country GE Static Dynamic GE Static Dynamic GE Static Dynamic Dynamic
GE GE, trans. GE GE, trans. GE GE, trans. GE, trans.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
DNK -0.012 -0.029 -0.013 0.087 0.144 0.253 -0.087 -0.162 -0.206 -0.257
DOM -0.138 -0.457 -0.633 0.577 0.558 0.509 -0.574 -0.901 -0.974 -1.078
ECU -0.050 -0.371 -0.553 0.563 0.538 0.491 -0.560 -0.866 -0.929 -1.018
EGY -0.051 -0.126 -0.147 0.181 0.224 0.305 -0.181 -0.306 -0.358 -0.424
ESP -0.093 -0.228 -0.283 0.283 0.312 0.358 -0.282 -0.462 -0.522 -0.595
ETH -0.020 -0.286 -0.483 0.440 0.459 0.464 -0.438 -0.725 -0.814 -0.934
FIN -0.012 -0.050 -0.062 0.112 0.171 0.275 -0.112 -0.209 -0.265 -0.328
FRA -0.057 -0.103 -0.095 0.145 0.191 0.280 -0.145 -0.246 -0.287 -0.343
GBR -0.165 -0.240 -0.240 0.204 0.246 0.320 -0.203 -0.345 -0.399 -0.471
GHA -0.015 -0.316 -0.530 0.497 0.502 0.487 -0.495 -0.802 -0.888 -1.005
GRC -0.034 -0.075 -0.078 0.125 0.178 0.277 -0.124 -0.223 -0.272 -0.333
GTM -0.335 -1.021 -1.331 1.259 1.091 0.797 -1.244 -1.842 -1.893 -1.989
HKG -0.220 -0.280 -0.269 0.180 0.230 0.315 -0.180 -0.316 -0.379 -0.457
HRV -0.021 -0.139 -0.200 0.238 0.274 0.336 -0.237 -0.395 -0.450 -0.524
HUN -0.019 -0.062 -0.060 0.129 0.179 0.273 -0.129 -0.223 -0.266 -0.321
IDN -0.179 -0.276 -0.288 0.250 0.283 0.341 -0.250 -0.410 -0.467 -0.540
IND -0.195 -0.385 -0.476 0.383 0.403 0.423 -0.382 -0.625 -0.701 -0.803
IRL -0.003 -0.008 0.006 0.065 0.128 0.247 -0.065 -0.133 -0.181 -0.238
IRN -0.061 -0.190 -0.251 0.266 0.296 0.350 -0.265 -0.435 -0.493 -0.569
IRQ -0.011 -0.117 -0.173 0.218 0.257 0.326 -0.217 -0.363 -0.421 -0.493
ISR -0.066 -0.346 -0.565 0.455 0.484 0.490 -0.453 -0.770 -0.884 -1.017
ITA -0.095 -0.130 -0.109 0.132 0.182 0.276 -0.132 -0.229 -0.273 -0.330
JPN -0.856 -0.812 -0.578 0.163 0.211 0.297 -0.163 -0.282 -0.334 -0.399
KAZ -0.001 0.000 0.000 0.047 0.120 0.250 -0.047 -0.118 -0.180 -0.247
KEN -0.038 -0.303 -0.496 0.442 0.461 0.466 -0.440 -0.729 -0.819 -0.939
KOR -0.227 -0.279 -0.244 0.198 0.236 0.309 -0.197 -0.327 -0.375 -0.438
KWT -0.179 -0.242 -0.238 0.181 0.229 0.313 -0.181 -0.315 -0.374 -0.449
LBN -0.014 -0.142 -0.194 0.263 0.286 0.335 -0.262 -0.416 -0.454 -0.522
LKA -0.054 -0.164 -0.217 0.235 0.271 0.336 -0.234 -0.390 -0.449 -0.524
LTU -0.009 -0.081 -0.124 0.157 0.212 0.304 -0.157 -0.284 -0.348 -0.422
MAR -0.031 -0.142 -0.194 0.230 0.267 0.331 -0.229 -0.382 -0.435 -0.508
MEX 2.646 9.812 24.343 -8.316 -8.317 -8.346 9.070 17.071 25.015 33.309
MYS -0.015 -0.063 -0.077 0.133 0.185 0.281 -0.133 -0.234 -0.286 -0.348
NGA -0.009 -0.305 -0.518 0.488 0.494 0.482 -0.485 -0.788 -0.874 -0.991
NLD -0.019 -0.011 0.031 0.053 0.113 0.231 -0.053 -0.106 -0.143 -0.185
NOR -0.013 -0.068 -0.090 0.137 0.192 0.288 -0.137 -0.247 -0.303 -0.368
NZL -0.041 -0.313 -0.515 0.452 0.471 0.474 -0.450 -0.746 -0.841 -0.964
OMN -0.017 -0.152 -0.237 0.256 0.294 0.354 -0.255 -0.430 -0.495 -0.580
PAK -0.019 -0.141 -0.235 0.228 0.277 0.352 -0.228 -0.400 -0.479 -0.574
PER -0.042 -0.297 -0.438 0.458 0.451 0.440 -0.456 -0.712 -0.773 -0.856
PHL -0.084 -0.310 -0.462 0.400 0.423 0.440 -0.399 -0.661 -0.747 -0.858
POL -0.020 -0.047 -0.030 0.109 0.159 0.259 -0.109 -0.189 -0.227 -0.277
PRT -0.020 -0.068 -0.097 0.121 0.183 0.288 -0.121 -0.232 -0.298 -0.371
QAT -0.039 -0.138 -0.193 0.207 0.253 0.328 -0.207 -0.356 -0.419 -0.499
ROM -0.026 -0.128 -0.164 0.225 0.256 0.319 -0.224 -0.363 -0.408 -0.469
RUS -0.244 -0.358 -0.374 0.288 0.318 0.366 -0.288 -0.474 -0.535 -0.619
SAU -0.073 -0.189 -0.247 0.241 0.281 0.345 -0.240 -0.407 -0.470 -0.552
SDN -0.008 -0.143 -0.220 0.261 0.293 0.348 -0.260 -0.428 -0.486 -0.562
SER -0.013 -0.131 -0.197 0.235 0.273 0.336 -0.234 -0.392 -0.449 -0.525
SGP -0.140 -0.224 -0.247 0.205 0.251 0.327 -0.204 -0.353 -0.416 -0.496
SVK -0.007 -0.042 -0.035 0.117 0.167 0.265 -0.117 -0.203 -0.243 -0.295
SWE -0.018 -0.061 -0.070 0.122 0.177 0.277 -0.122 -0.221 -0.274 -0.335
SYR -0.003 -0.069 -0.102 0.154 0.205 0.296 -0.153 -0.271 -0.327 -0.395
THA -0.200 -0.268 -0.255 0.210 0.248 0.320 -0.209 -0.349 -0.403 -0.472
TKM -0.006 -0.100 -0.162 0.192 0.241 0.322 -0.192 -0.335 -0.399 -0.478
TUN -0.016 -0.154 -0.203 0.284 0.299 0.339 -0.283 -0.440 -0.472 -0.534
TUR -0.078 -0.174 -0.197 0.228 0.260 0.323 -0.227 -0.370 -0.417 -0.481
TZA -0.004 -0.205 -0.352 0.345 0.374 0.409 -0.344 -0.573 -0.653 -0.756
UKR -0.029 -0.084 -0.110 0.138 0.194 0.292 -0.138 -0.252 -0.311 -0.383
USA 3.047 4.240 6.870 -0.774 -0.893 -1.097 0.780 1.731 2.748 4.213
UZB -0.027 -0.138 -0.206 0.222 0.265 0.337 -0.221 -0.379 -0.444 -0.526

Continued on next page
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Table A1 � Continued from previous page

Trade e�ects MR e�ects Welfare e�ects Capital
Cond. Full Full Cond. Full Full Cond. Full Full Full

Country GE Static Dynamic GE Static Dynamic GE Static Dynamic Dynamic
GE GE, trans. GE GE, trans. GE GE, trans. GE, trans.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
VEN -0.099 -0.430 -0.611 0.591 0.563 0.508 -0.588 -0.911 -0.978 -1.072
VNM -0.019 -0.118 -0.164 0.212 0.250 0.320 -0.212 -0.352 -0.405 -0.474
ZAF -0.068 -0.286 -0.439 0.381 0.408 0.433 -0.379 -0.635 -0.721 -0.834
ZWE -0.019 -0.201 -0.332 0.322 0.354 0.396 -0.321 -0.537 -0.615 -0.715
World 0.503 1.105 2.306 -0.021 0.009 0.059 0.556 1.155 1.842 2.213
NAFTA 34.848 48.764 78.183 -7.484 -7.518 -7.607 2.554 5.073 7.671 10.024
ROW -1.413 -1.308 -0.914 0.262 0.295 0.350 -0.220 -0.368 -0.423 -0.485
Notes: This table reports results from our NAFTA counterfactual. It is based on observed data on labor endowments
and GDPs for our sample of 82 countries. Further, it uses our estimated trade costs based on equation (32) and recovered
theory-consistent, steady-state capital stocks according to the capital accumulation equation (24). We calculate baseline
preference-adjusted technology Aj/γj according to the market-clearing equation (22) and the production function equation
(23). Finally, the counterfactual is based on our own estimates of the elasticity of substitution σ̂ = 5.1, the share of capital

in the Cobb-Douglas production function α̂ = 0.55, and the capital depreciation rate δ̂ = 0.052. The consumers' discount
factor β is set equal to 0.98. Column (1) gives the country abbreviations. Columns (2) to (4) report the percentage change
in exports for the NAFTA counterfactual for each country, for the world as a whole, the NAFTA and the non-NAFTA
countries (summarized as Rest Of the World, ROW) for three di�erent scenarios. The �Conditional GE� scenario takes into
account the direct and indirect trade cost changes but holds GDPs constant, the �Full Static GE� scenario additionally takes
general equilibrium income e�ects into account, and the �Full Dynamic GE, trans.� scenario adds the capital accumulation
e�ects. For the latter, we report the results from the steady-state taking into account that gains take time to materialize.
Columns (5) to (7) report the percentage change in the multilateral resistance terms for each country for the same three
scenarios. Similarly, columns (8) to (10) give the welfare e�ects. The last column shows the percentage change in capital
stocks for each country for the �Full Dynamic GE, trans.� scenario. Further details to the counterfactuals can be found in
Section 5 and Online Appendix E.

H Linear Capital Accumulation Function

In this appendix we investigate the consequences of the convenient log-linear capital accu-
mulation function by deriving our system under the assumption that capital accumulation
is subject to the more standard linear transition function (we skip country indices without
loss of generality):

Kt+1 = Ωt + (1− δ)Kt.

The utility function is:

Ut =
∞∑
t=0

βt ln(Ct).

Combine the budget constraint with the production function:

PtCt + PtΩt = ptAtL
1−α
t Kα

t .

Use the linear transition function for capital to express Ωt as:

PtCt + Pt (Kt+1 − (1− δ)Kt) = ptAtL
1−α
t Kα

t .

Set up the Lagrangian:

L =
∞∑
t=0

βt
[
ln(Ct) + λt

(
ptAtL

1−α
t Kα

t − PtCt − Pt (Kt+1 − (1− δ)Kt)
)]
.
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Take derivatives with respect to Ct, Kt+1 and λt:

∂L
∂Ct

=
βt

Ct
− βtλtPt

!
= 0 for all t.

∂L
∂Kt+1

= βt+1λt+1pt+1At+1L
1−α
t+1 αK

α−1
t+1 − βtλtPt

+βt+1λt+1Pt+1(1− δ) !
= 0 for all t.

∂L
∂λt

= ptAtL
1−α
t Kα

t − PtCt − Pt (Kt+1 − (1− δ)Kt)
!

= 0 for all t.

Use the �rst-order condition for consumption to express λt as:

λt =
1

CtPt
.

Replace this in the �rst-order condition for capital:

∂L
∂Kt+1

= βt+1 1

Ct+1Pt+1

pt+1At+1L
1−α
t+1 αK

α−1
t+1 − βt

1

Ct

+βt+1 1

Ct+1

(1− δ) !
= 0 for all t.

Simplify and re-arrange:

βpt+1At+1L
1−α
t+1 αK

α−1
t

Ct+1Pt+1

=
1

Ct
− β

Ct+1

(1− δ) for all t.

Use the de�nition of yt to re-write the left-hand side of the above expression:

αβyt+1

Kt+1Ct+1Pt+1

=
1

Ct
− β (1− δ)

Ct+1

for all t.

Rearrange to obtain:

1

Ct
=

β

Ct+1

(
αyt+1

Kt+1Pt+1

+ 1− δ
)

for all t,

which is the familiar and standard consumption Euler-equation. Note that there are three
forward-looking variables for each country in this system: yt, Ct, and Pt (Kt+1 is determined
in t and therefore it is not a forward-looking variable). Thus, overall, we have 3N forward-
looking variables in this system. These are also the endogenous variables we have to solve
for.

Since there exists no analytical solution for this system, we feed the following set of
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equations into Dynare:

yj,t =
(yj,t/yt)

1
1−σ

γjPj,t
Aj,tL

1−α
j,t Kα

j,t for all j and t,

yt =
∑
j

yj,t for all t,

yj,t = Pj,tCj,t + Pj,t (Kj,t+1 − (1− δ)Kj,t) for all j and t,

Pj,t =

[∑
i

(
tij,t
Pi,t

)1−σ
yi,t
yt

] 1
1−σ

for all j and t,

1

Cj,t
=

β

Cj,t+1

(
αyj,t+1

Kj,t+1Pj,t+1

+ 1− δ
)

for all j and t.

As noted in the main text, the Euler-equation is the only di�erence between our main
system and the corresponding system obtained under linear capital accumulation (compare
these equations to the ones we used in Dynare for our original system given in equations
(A10)-(A14)). We also can formulate the original system for the case of a linear capital
accumulation function:

xij,t =
yi,tyj,t
yt

(
tij,t

Πi,tPj,t

)1−σ

, (A21)

P 1−σ
j,t =

∑
i

(
tij,t
Πi,t

)1−σ
yi,t
yt
, (A22)

Π1−σ
i,t =

∑
j

(
tij,t
Pj,t

)1−σ
yj,t
yt
, (A23)

pj,t =
(yj,t/yt)

1
1−σ

γjΠj,t

, (A24)

yj,t = pj,tAj,tL
1−α
j,t Kα

j,t, (A25)

1

Ct
=

β

Ct+1

(
αyt+1

Kt+1Pt+1

+ 1− δ
)
, (A26)

K0 given.

When we compare the above equations with our original system given by equations (19)-(24),
we see that the only di�ering equation is again the expression for capital accumulation. As
noted above, equation (A26) is the consumption Euler equation, which gives an expression
for the relationship that determines investment and, hence, capital stocks, but it no longer
o�ers an analytical expression for next period capital stocks.

What does this new system imply for our results?

1. Concerning the empirical speci�cation, we see that the trade cost estimates and the
output equation estimates do not change at all. Therefore, trade costs t1−σij , the capital
share α, and the elasticity of substitution σ can be estimated as in the case with
the Cobb-Douglas transition function. However, as we no longer have a closed-form
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solution for our policy function, we can not derive an estimable Capital equation and,
therefore, we are no longer able to back out the depreciation rate δ and test for causal
e�ects of trade on growth.

2. The steady-state version of equation (A26) is:

1

C
=

β

C

( αy
KP

+ 1− δ
)
⇒

K =
αy(

1
β
− 1 + δ

)
P

=
αβy

(1− β + βδ)P
.

Given this solution for the steady-state capital stock, which is again a function of
parameters and y/P , all our analytical insights from Section 3.1 go through. Actually,
the only di�erence is the missing δ in the numerator for the steady-state capital stock.
However, when plugging in y = PC +P (Kt+1 − (1− δ)Kt) = PC + δPK, we see that
δ reappears. From this equation we also can calculate steady-state consumption:

C =
y

P
− δK =

y

P
− αβδy

(1− β + βδ)P
=

=

[
1− β + βδ − αβδ

1− β + βδ

]
y

P
.

This demonstrates that consumption is given by exactly the same function as in the
case of our Cobb-Douglas transition function for capital in steady-state. Similarly,
the level of investment δK is identical. With our estimated parameters of α = 0.55,
β = 0.98, δ = 0.05, we end up with ΩP/y = 0.3943 and CP/y = 0.6057. Note,
however, that the capital stock as a share of GDP is now given by ΩP/(yδ) = 7.886.

3. Finally, for our counterfactuals, we have to back out A/γ. This can be done in the
exact same fashion, given that we can determine the steady-state capital stock.

I Derivation of the Policy Functions of the `Upper Level'

when Accounting for Intermediates

In this appendix we extend our model to allow for intermediates. Intermediates in country
j at time t, Qjt, are assumed as an additional production factor in our Cobb-Dougals pro-
duction function following Eaton and Kortum (2002) and Caliendo and Parro (2015). While
α still denotes the capital share of production, we now introduce ξ as the labor share of
produciton. The share of intermediates is then given by 1−α− ξ. We assume that interme-
diates are CES composites of domestic components (qjj,t) and imported components from

all other countries i 6= j (qij,t), i.e. Qj,t =
(∑

i γ
(1−σ)/σ
i q

(σ−1)/σ
ij,t

)σ/(σ−1)

. With intermediates,

the corresponding `upper level' setting becomes (we omit the country indexes in order to
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economize on the notational burden):

Ut =
∞∑
t=0

βt ln(Ct), (A27)

Kt+1 = K1−δ
t Ωδ

t , (A28)

yt = ptAtK
α
t L

ξ
tQ

1−α−ξ
t , (A29)

yt = PtCt + PtQt + PtΩt, (A30)

K0 given. (A31)

As in Online Appendix B, we skip indices for current periods and denote next period variables
by ′. Further, we again de�ne φ = 1/δ. Due to the Cobb-Douglas production function,
the cost shares for all three inputs are given by their respective Cobb-Douglas coe�cients.
Speci�cally, PtQt is equal to (1−α− ξ)yt. Thus, we can rewrite (A30) as PtCt = (α+ ξ)yt−
PtΩt. The value of the value function at step 0, v0, is equal to 0. In the next step, the value
of the value function is given by:

v′ = max
K′

lnC = max
K′

ln ((α + ξ)y/P − Ω)

= max
K′

ln ((α + ξ)y/P − Ω)

= max
K′

ln
(
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
.

The corresponding �rst order condition is:

1

(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1
= 0.

It follows that K ′ = 0.
Hence, v′ = ln

(
(α + ξ)pAKαLξQ1−α−ξ/P

)
. In the next step, we solve:

v2 = max
K′

ln
(
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
+β ln

(
(α + ξ)pAK ′αLξQ1−α−ξ/P

)
.

A25



The �rst order condition is:

1

(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1
+
αβ

K ′
= 0,

αβ

φ

(
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
=

K ′φ

Kφ−1
,

αβ

φ

(
(α + ξ)pAKαLξQ1−α−ξ/P

)
=

(
αβ

φ
+ 1

)
K ′φ

Kφ−1
,

αβ

φ+ αβ

(α + ξ)pALξQ1−α−ξ

P
Kα+φ−1 = K ′φ,(

αβ

φ+ αβ

(α + ξ)pALξQ1−α−ξ

P

) 1
φ

K(α+φ−1)/φ = K ′. (A32)

Plug in the expression for K ′ given in equation (A32):

v2 = ln

(
(α + ξ)pAKαLξQ1−α−ξ/P

−

((
αβ

φ+ αβ

(α + ξ)pALξQ1−α−ξ

P

) 1
φ

K(α+φ−1)/φ

)φ

/Kφ−1

)

+β ln

(
(α + ξ)pALξQ1−α−ξ

((
αβ

φ+ αβ

(α + ξ)pALξQ1−α−ξ

P

) 1
φ

K(α+φ−1)/φ

)α

/P

)
,

= ln

((
(α + ξ)pALξQ1−α−ξ/P − αβ

φ+ αβ

(α + ξ)pALξQ1−α−ξ

P

)
Kα

)

+β ln

(
(α + ξ)pALξQ1−α−ξ

(
αβ

φ+ αβ

(α + ξ)pALξQ1−α−ξ

P

)α
φ

K(α+φ−1)α/φ/P

)
,

= α ln(K) + βθα ln(K) + const,

where θ ≡ (α+ φ− 1)/φ and const collects all terms not depending on K. The next step is

v3 = max
K′

ln
(
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
+αβ ln (K ′) + β2θα ln(K ′) + βconst.
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The �rst order condition is given by:

1

(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1

+
αβ

K ′
+
αθβ2

K ′
= 0,

αβ

φ
(1 + βθ)

(
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
=

K ′φ

Kφ−1
,

αβ

φ
(1 + βθ)(α + ξ)pAKαLξQ1−α−ξ/P =

(
αβ

φ
(1 + βθ) + 1

)
K ′φ

Kφ−1
,

K ′ =

(
αβ
φ

(1 + βθ)(α + ξ)pALξQ1−α−ξ/P
αβ
φ

(1 + βθ) + 1

) 1
φ

Kθ. (A33)

Plug in the solution of K ′ given in equation (A33):

v3 = α ln (K) + αβθ ln (K) + β2θ2α ln(K) + βconst.

The next value of the value function takes the form:

v4 = max
K′

ln
(
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
+αβ ln (K ′)

[
1 + βθ + β2θ2

]
+ βconst,

with the following �rst order condition:

1

(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)
(−φ)

K ′φ−1

Kφ−1

+
αβ [1 + βθ + β2θ2]

K ′
= 0,

αβ

φ

(
1 + βθ + β2θ2

) (
(α + ξ)pAKαLξQ1−α−ξ/P − (K ′φ/Kφ−1)

)
=

K ′φ

Kφ−1
,

αβ

φ

(
1 + βθ + β2θ2

)
(α + ξ)pAKαLξQ1−α−ξ/P

=

(
αβ

φ

(
1 + βθ + β2θ2

)
+ 1

)
K ′φ

Kφ−1
,

K ′ =

(
αβ
φ

(1 + βθ + β2θ2) (α + ξ)pALξQ1−α−ξ/P
αβ
φ

(1 + βθ + β2θ2) + 1

) 1
φ

Kθ.
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Now we see the general pattern that can be described as:

vm ⇒ K ′ =

[
αβ
φ

(α + ξ)
(
pALξQ1−α−ξ/P

)∑m
i=0(βθ)i

1 + αβ
φ

∑m
i=0(βθ)i

] 1
φ

Kθ,

where m denotes the mth-step. When m→∞, we end up with[
αβ
φ

(α + ξ)
(
pALξQ1−α−ξ/P

)∑m
i=0(βθ)i

1 + αβ
φ

∑m
i=0(βθ)i

] 1
φ

=

[
αβ
φ

(α + ξ)
(
pALξQ1−α−ξ/P

)
1

1−βθ

1 + αβ
φ

1
1−βθ

] 1
φ

.

Replace θ ≡ (α + φ− 1)/φ:[
αβ
φ

(α + ξ)
(
pALξQ1−α−ξ/P

)
1

1−β(α+φ−1)/φ

1 + αβ
φ

1
1−β(α+φ−1)/φ

] 1
φ

=

[
(α + ξ)

(
pALξQ1−α−ξ/P

)
αβ

φ−β(α+φ−1)

1 + αβ
φ−β(α+φ−1)

] 1
φ

=

[
(α + ξ)

(
pALξQ1−α−ξ/P

)
αβ

φ−β(α+φ−1)

φ−βφ+β
φ−β(α+φ−1)

] 1
φ

=

[
(α + ξ)

(
pALξQ1−α−ξ/P

)
αβ

φ− βφ+ β

] 1
φ

.

Apply φ = 1/δ:[
(α + ξ)

(
pALξQ1−α−ξ/P

)
αβ

1/δ − β/δ + β

]δ
=

[
(α + ξ)

(
pALξQ1−α−ξ/P

)
αβδ

1− β + βδ

]δ
.

Obtain the investment equation in the case with intermediates:

K ′ =

[
(α + ξ)αβδpALξQ1−α−ξ

(1− β + βδ)P

]δ
Kαδ+1−δ.

The main di�erence between this policy function for the capital stock in the next period, K ′,
and the one in our main system is the appearance of the term for intermediates. If (α+ξ) = 1,
i.e. if there are no intermediates, we end up with equation (15). As discussed in the main text,
the main implications are that the e�ects of domestic investment in our model are magni�ed
through this term, and that foreign capital now has an indirect impact on domestic output
and investment that is also channeled through the new term for intermediates.
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Finally, once we have pinned down the values for K ′ and K, we can determine the level
of investment:

Ω =

(
K ′

K1−δ

) 1
δ

=


[

(α+ξ)αβδpALξQ1−α−ξ

(1−β+βδ)P

]δ
Kαδ+1−δ

K1−δ


1
δ

=

[
(α + ξ)αβδpALξQ1−α−ξ

(1− β + βδ)P

]
Kα.

In addition, we can obtain the optimal level of current consumption by using the policy
function for capital and reformulating y = PC + PΩ + PQ, i.e.,

C =
y

P
− Ω−Q

=
pAKαLξQ1−α−ξ

P
−
[

(α + ξ)pALξQ1−α−ξαβδ

P (1− β + βδ)

]
Kα

−(1− α− ξ)pAK
αLξQ1−α−ξ

P

= (α + ξ)
pAKαLξQ1−α−ξ

P
−
[

(α + ξ)pALξQ1−α−ξαβδ

P (1− β + βδ)

]
Kα

=

[
1− αβδ

1− β + βδ

]
(α + ξ)pAKαLξQ1−α−ξ

P

=

[
(1− β + βδ)− αβδ

1− β + βδ

]
(α + ξ)pAKαLξQ1−α−ξ

P
.

Note again, that:

Q = (1− α− ξ)pAK
αLξQ1−α−ξ

P
⇒

Q =

[
(1− α− ξ)pAK

αLξ

P

] 1
α+ξ

.

J Iso-Elastic Utility Function

Our log-linear utility function implies an intertemporal elasticity of substitution of 1. The
macro-literature often uses a value of 0.5. Empirical studies seem to support values between
0.25 and 1, cf. Sampson (2014). In order to investigate the sensitivity of our results con-
cerning the log-linear utility function, we generalize our utility function to an iso-elastic one
(we skip country indices without loss of generality):

Ut =
∞∑
t=0

βt
C1−ρ
t − 1

1− ρ
, ρ > 0,
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where 1/ρ denotes the intertemporal elasticity of substitution. Note that this utility function
approaches ln(Ct) for ρ→ 1. We retain all other assumptions of our baseline model.

Combining the budget constraint with the production function leads to:

PtCt + PtΩt = ptAtL
1−α
t Kα

t .

In order to end up with only one constraint, we replace Ωt by using our capital transition
function:

Ωt =

(
Kt+1

K1−δ
t

) 1
δ

.

Replacing Ωt, we end up with the following constraint:

PtCt + Pt

(
Kt+1

K1−δ
t

) 1
δ

= ptAtL
1−α
t Kα

t .

Setting up the Lagrangian leads to:

L =
∞∑
t=0

βt

[
C1−ρ
t − 1

1− ρ
+ λt

(
ptAtL

1−α
t Kα

t − PtCt − Pt
(
Kt+1

K1−δ
t

) 1
δ

)]
.

Taking derivatives with respect to Ct, Kt+1 and λt leads to the following set of �rst-order
conditions:

∂L
∂Ct

= βtC−ρt − βtλtPt
!

= 0 for all t.

∂L
∂Kt+1

= βt+1λt+1pt+1At+1L
1−α
t+1 αK

α−1
t+1 − βtλtPt

(
1

K1−δ
t

) 1
δ 1

δ
K

1
δ
−1

t+1

−βt+1λt+1Pt+1K
1
δ
t+2

δ − 1

δ
K
− 1
δ

t+1
!

= 0 for all t.

∂L
∂λt

= ptAtL
1−α
t Kα

t − PtCt − Pt
(
Kt+1

K1−δ
t

) 1
δ

!
= 0 for all t.

Using the �rst-order condition for consumption, we can express λt as:

λt =
C−ρt
Pt

.

Replacing this in the �rst-order condition for capital leads to:

∂L
∂Kt+1

= βt+1C
−ρ
t+1

Pt+1

pt+1At+1L
1−α
t+1 αK

α−1
t+1 − βtC

−ρ
t

(
1

K1−δ
t

) 1
δ 1

δ
K

1
δ
−1

t+1

−βt+1C−ρt+1K
1
δ
t+2

δ − 1

δ
K
− 1
δ

t+1
!

= 0 for all t.
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Simplifying a bit and re-arranging leads to:

βC−ρt+1pt+1At+1L
1−α
t+1 αK

α−1
t+1

Pt+1

= C−ρt

(
1

K1−δ
t

) 1
δ 1

δ
K

1
δ
−1

t+1 + C−ρt+1

(δ − 1) β

δ
K

1
δ
t+2K

− 1
δ

t+1 for all t.

Using our de�nition of yt, we can further re-write the left-hand side of this expression as:

αβC−ρt+1yt+1

Kt+1Pt+1

=
C−ρt
δ

K
1
δ
−1

t+1

K
1−δ
δ

t

+
β (δ − 1)C−ρt+1

δ

(
Kt+2

Kt+1

) 1
δ

for all t.

This is the standard consumption Euler-equation. Note that we have four forward-looking
variables for each country: yt, Kt, Ct, and Pt. Hence, overall we have 4N forward-looking
variables in our system here. These are also the endogenous variables we have to solve for.
So in Dynare, we use the following set of equations:

yj,t =
(yj,t/yt)

1
1−σ

γjPj,t
Aj,tL

1−α
j,t Kα

j,t for all j and t,

yt =
∑
j

yj,t for all t,

yj,t = Pj,tCj,t + Pj,t

(
Kj,t+1

K1−δ
j,t

) 1
δ

for all j and t,

Pj,t =

[∑
i

(
tij,t
Pi,t

)1−σ
yi,t
yt

] 1
1−σ

for all j and t,

αβC−ρj,t+1yj,t+1

Kj,t+1Pj,t+1

=
C−ρj,t
δ

K
1
δ
−1

j,t+1

K
1−δ
δ

j,t

+
β (δ − 1)C−ρj,t+1

δ

(
Kj,t+2

Kj,t+1

) 1
δ

for all j and t. (A34)

Note that Equation (A34) only gives a relationship for determining the capital stocks, it is
no longer an analytical expression for next period capital stocks, but rather the consumption
Euler-equation.

What does this new system imply for our results:

1. Concerning the empirical speci�cation, we see that the trade cost estimates and the
output equation estimates do not change at all. Hence, trade costs, α and σ would be
estimated as we did so far. However, we could not estimate a capital equation. Hence,
we would not be able to back out δ's and establish a causal relationship between trade
liberalization and capital accumulation.

2. Let us next study the implications for the steady-state (SS). In SS, Equation (A34)
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reads as:

αβC−ρj yj

KjPj
=

C−ρj
δ

K
1
δ
−1

j

K
1−δ
δ

j

+
β (δ − 1)C−ρj

δ

(
Kj

Kj

) 1
δ

⇒

αβyj
KjPj

=
1

δ
+
β (δ − 1)

δ
⇒

Kj =
δ

1 + β (δ − 1)

αβyj
Pj
⇒

Kj =
αβδyj

(1− β + βδ)Pj
.

Given this solution for the steady-state capital stock, which is again a function of
parameters and y/P , all our analytical insights from Sections 2 and 3 of this document
go through. Actually, the expression for the steady-state capital stock is identical to our
expression for the steady-state capital stock in our baseline setting. Also consumption
in steady-state is identical:

C =
y

P
−K =

y

P
− αβδy

(1− β + βδ)P
=

=

[
1− β + βδ − αβδ

1− β + βδ

]
y

P
.

This shows that consumption is given by exactly the same function as in the case of
our log-linear intertemporal utility function.

3. For our counterfactuals, we have to back out A/γ. This can be done in the exact same
fashion, given that we can determine the steady-state capital stock.

Concerning welfare, we have to take care to use the iso-elastic utility function. Additionally,
for our Lucas formula, we now have:

∞∑
t=0

βt
C1−ρ
j,t,c − 1

1− ρ
=
∞∑
t=0

βt
[(

1 + λ
100

)
Cj,t
]1−ρ − 1

1− ρ
⇒

∞∑
t=0

βtC1−ρ
j,t,c =

∞∑
t=0

βt
[(

1 +
λ

100

)
Cj,t

]1−ρ

⇒(
1 +

λ

100

)1−ρ

=

∑∞
t=0 β

tC1−ρ
j,t,c∑∞

t=0 β
tC1−ρ

j,t

⇒

λ =

(∑∞t=0 β
tC1−ρ

j,t,c∑∞
t=0 β

tC1−ρ
j,t

) 1
1−ρ

− 1

× 100.
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