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Microfoundation of the function form of the bank-run probability

In the paper we have assumed that the probability of a bank-run, q, is a decreasing function of θ≡
LIQ1 +ξ · I
DR(1+ rD

2 )
. The purpose of the online appendix is to present the microfoundations that justify our

assumption. We follow the of Goldstein and Pauzner (2005) who apply the global game techniques

of Carlsson and van Damme (1993) and Morris and Shin (1998) in bank-run models. Section 1

derives q, while section 2 discusses existence and uniqueness. We show how our framework satisfies

the assumptions underlying the existence and uniqueness of a threshold equilibrium, and refer the

reader to the aforementioned papers for details.

1 Derivation of threshold equilibrium

Assume that the probability of the state of the world, which is realized at t = 3, is driven by a state

variable zτ, τ ∈ {1,2}. Define a function ω3s : zτ→ [0,1] such that
∂ω3g(zτ)

∂zτ

> 0,
∂ω3m(zτ)

∂zτ

≥ 0 and
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∂ω3b(zτ)

∂zτ

< 0. All agents have common priors z1 at t = 1. Also, assume that z2 = z1 +η at t = 2,

where η∼U [−η̄, η̄]. Also, E(ω3s(z2)|z1) = ω3s(z1). We assume that η is realized at the beginning

of period 2, but it is not publicly revealed. Rather, each depositor obtains a signal xi = η+ εi,

where εi are small error terms that are independently and uniformly distributed over [−ε,ε]. The

signal provides information regarding the expected outcomes in period 3: The higher the signal,

the higher is the posterior probability attributed by the agent to the event that the bank will not go

bankrupt and that deposits will be paid in full, and the lower the incentive to run on the bank. In

addition, an agent’s signal provides information about other agents’ signals, which forms the basis

for an inference regarding their actions. Observing a high signal makes the agent believe that other

agents obtained high signals as well. Consequently, if R receives a high signal, he attributes a low

likelihood to the possibility of a bank-run. This makes the incentive to run even smaller.

Consider portfolio decisions to be predetermined. While all impatient depositors demand early

withdrawal, patient ones need to compare the expected payoffs from going to the bank in period

2 or 3. The ex-post payoff of a patient agent from these two options depends on both η and the

proportion m of agents demanding early withdrawal (defined below).

We are interested in a threshold equilibrium in which a patient depositor with signal xi withdraws

his deposits at t = 2 when the signal is below a common threshold, i.e., xi ≤ x∗. Otherwise, he

withdraws at t = 3. This implies also a threshold for the fundamentals, i.e., a run will occur when

η≤ η
∗.

The analysis proceeds in two steps:

1. Calculate η
∗ given x∗.

2. Calculate x∗ given η
∗.

Denote by m(η,x∗) the total proportion of withdrawals at t = 2 when fundamentals are η and

the signal threshold is x∗.

Step 1

The liquidation value of the bank’s assets at t = 2 is LIQ1 + ξ · I, while the total promised deposit

repayment is DR(1+ rD
2 ). The bank is liquidated at t = 2 if m(η,x∗)DR(1+ rD

2 ) ≥ LIQ1 + ξ · I.

Recall that θ =
LIQ1 +ξ · I
DR(1+ rD

2 )
is the probability of being paid if all depositors run on the bank. Thus,
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a bank-run occurs if

m(η,x∗)≥ θ. (1)

The next step is to derive the distribution of m(η,x∗). If η < x∗− ε all agents receive signals

below the threshold x∗ and everyone runs. If η > x∗+ ε, all agents receive signals above the thresh-

old, all patient depositors wait and only impatient depositors withdraw. In the intermediate range

for fundamentals, the proportion of patient depositors who withdraw depends on the probability that

they receive a signal below threshold, which is equal to Prob(xi ≤ x∗) =
x∗−η+ ε

2ε
. Thus,

m(η,x∗) =


1 if η < x∗− ε

δ+(1−δ)
x∗−η+ ε

2ε
if x∗− ε≤ η≤ x∗+ ε

δ if η > x∗+ ε

. (2)

For η = η
∗, m(η∗,x∗) = θ and

η
∗ = x∗+ ε

(
1−2

θ−δ

1−δ

)
. (3)

The previous equation solves for η
∗ as a function x∗.

Step 2

x∗ is the signal threshold at which a patient depositor is indifferent between withdrawing and waiting

in period 2. We need to compute the utility differentials between waiting and running as a function of

η and m(η,x∗). If m(η,x∗) = δ there is no liquidation of the long-term investment. If m(η,x∗)> δ,

early withdrawals equal m(η,x∗)DR(1+ rD
2 ), which is satisfied by liquidating some of the risky

project. In particular, let 0≤ y≤ 1 be the fraction of the risky project that is liquidated. Thus, for a

given value of η, the amount of long-term investment that needs to be liquidated is given by

m(η,x∗)DR(1+ rD
2 ) = LIQ1 +ξ · y(η,x∗) · I

⇒y(η,x∗) =
m(η,x∗)DR(1+ rD

2 )−LIQ1

ξ · I
. (4)

Observe that for m(η,x∗) = δ, y(η,x∗) = 0 and that for m(η,x∗) = θ, y(η,x∗) = 1.

First, suppose that δ≤ m(η,x∗)≤ θ = m(η∗,x∗), which means that the bank survives to period
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3. A patient depositor who withdraws faces the following budget constraint in period 2,

PsecxR,no-run,withdraw
sec +LIQR,no-run,withdraw

2 ≤ PsecxR
eq +DR(1+ rD

2 )+LIQR
1 + eR

2 , (5)

and in period 3,

cR,no-run,withdraw
3s ≤ xR,no-run,withdraw

sec DPS3s +LIQR,no-run,withdraw
2 . (6)

Similarly, the constraints for a patient depositor who waits are

PsecxR,no-run,wait
sec +LIQR,no-run,wait

2 ≤ PsecxR
eq +LIQR

1 + eR
2 , (7)

and in period 3,

cR,no-run,wait
3s ≤ xR,no-run,wait

sec DPS3s +V D
3sDR(1+ rD

3 )+LIQR,no-run,wait
2 . (8)

From market clearing, it follows that

(m(η,x∗)−δ)xR,no-run,withdraw
sec +(1−m(η,x∗))xR,no-run,wait

sec = xR
eq. (9)

The dividends per share (DPS) are given by

DPS3s =
1

xR
eq +EB

[
(1− y(η,x∗)) ·V I

3sI(1+ rI)+LIQ2− (1−m(η,x∗))V D
3sDR(1+ rD

3 )
]
, (10)

where

V D
3s = min

[
1,
(1− y(η,x∗)) ·V I

3sI(1+ rI)+LIQ2

(1−m(η,x∗))DR(1+ rD
3 )

]
. (11)

For θ≤m(η,x∗)≤ 1, the bank is liquidated. With probability
θ

m(η,x∗)
, a patient depositor that

withdraws early receives

cR,run,paid
3s ≤ DR(1+ rD

2 )+LIQR
1 + eR

2 , (12)
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and with probability 1− θ

m(η,x∗)
, he gets

cR,run,unpaid
3s ≤ LIQR

1 + eR
2 , (13)

which is equal to the consumption of a patient depositor that does not withdraw.

We assume that the decision on whether or not to withdraw is taken before the secondary market

for equity meets and, thus, before depositors have the opportunity to learn the true state η, since the

secondary market would aggregate private information. Rochet and Vives (2004) make a similar

assumption. See Atkeson (2000) for a general discussion and Angeletos and Werning (2006) for a

coordination game with incomplete information where financial prices can transmit the dispersed

private information.

Note that given that the bank is liquidated, there will be no trade and the price of equity is

Psec = 0. For δ≤m(η,x∗)≤ θ, the price in the secondary market depends on the proportion of early

withdrawals, which determine DPS3s, and is given by

Psec =
∑s ω3s(z1 +η)UR′(cR,no-run,wait

3s )DPS3s

∑s ω3s(z1 +η)UR′(cR,no-run,wait
3s )

=
∑s ω3s(z1 +η)UR′(cR,no-run,withdraw

3s )DPS3s

∑s ω3s(z1 +η)UR′(cR,no-run,withdraw
3s )

. (14)

Together with the market clearing condition (9), this condition determines the equity purchases

in the secondary equity market, xR,no-run,wait
sec and xR,no-run,withdraw

sec , for a given level of early with-

drawals m(η,x∗) or fundamentals η.

The utility differential for a patient depositor between waiting and withdrawing as a function of

the fundamental and the signal threshold is given by

ν(η,m(η,x∗))=


∑

s
ω3s(z1 +η)

[
UR(cR,no-run,wait

3s )−UR(cR,no-run,withdraw
3s )

]
if δ≤ m(η,x∗)≤ θ

θ

m(η,x∗)

[
UR(cR,run,unpaid

3s )−UR(cR,run,paid
3s )

]
if θ≤ m(η,x∗)≤ 1

.

(15)

Define as ∆(xi,x∗) the utility differential between waiting and withdrawing for threshold x∗ and

signal xi. To compute ∆(xi,x∗) note that since η and the error terms εi are uniformly distributed,

the agent’s posterior distribution of η is uniformly distributed over [xi− εi,xi + εi]. Thus, ∆(xi,x∗)
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is simply the average of the expectation of ν(η,m(η,x∗)) over m, Emν(η,m(η,x∗)), over this range,

i.e.,

∆(xi,x∗) =
1
2ε

∫ xi+ε

xi−ε

Emν(η,m(η,x∗))dη

=
1
2ε

∫ xi+ε

xi−ε

∫ 1

m=δ

ν(η,m(η,x∗))dFη(m)dη. (16)

For ∆(xi,x∗)> 0, a patient depositor will wait, while for ∆(xi,x∗)< 0 he will withdraw at t = 2.

A patient depositor who receives signal x∗ is indifferent between waiting and withdrawing, i.e.,

∆(x∗,x∗) = 0.

As η goes from x∗− ε to x∗+ ε, m decreases linearly from δ+(1− δ)
x∗+ ε− x∗+ ε

2ε
= 1 to

δ+(1−δ))
x∗+ ε− x∗− ε

2ε
= δ, because both the fundamentals and noise are uniformly distributed.

Also, inverting equation (2), we get η = x∗+ ε

(
1−2

m−δ

1−δ

)
Thus, ∆(x∗,x∗) = 0 implies that:

∫
θ

m=δ
∑

s
ω3s

(
z1 + x∗+ ε

(
1−2

m−δ

1−δ

))
UR(cR,no-run,wait

3s )dm+
∫ 1

m=θ

θ

m
UR(cR,run,unpaid

3s )dm =∫
θ

m=δ
∑

s
ω3s

(
z1 + x∗+ ε

(
1−2

m−δ

1−δ

))
UR(cR,no-run,withdraw

3s )dm+
∫ 1

m=θ

θ

m
UR(cR,run,paid

3s )dm.

(17)

Solving equation (17) yields the signal threshold x∗ as a function of η
∗. Finally, the simultaneous

solution of (3) and (17) determines x∗ and η
∗. At the limit when noise collapses to zero, i.e., ε→ 0,

η
∗→ x∗ from equation (3).

The probability of a bank run is thus computed as q = Prob(η ≤ η
∗) =

η∗+ η̄

2η̄
. In order to

compute η
∗, equations (3) and (17) need to be solved simultaneously with all the equilibrium con-

ditions defined in the paper plus equations (9) and (14) which yield the out-of-equilibrium trades

in the secondary equity market. In our results in the paper, we assume that the probability of a run

is a decreasing function of θ. If one believes that bank-runs are driven by payoff relevant variables

rather than sunspots, it is hard to imagine a plausible model that would not have this property. By

inspection one can tell that η
∗ will be a complicated function of most of the exogenous parameters

in the economy, including ξ, and that θ will also be one of the factors that determines q. Hence,

our assumption can be rationalized by appealing to a first-order Taylor approximation of the func-
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tion that determines q. Finally, the functional form for ω3s needs to be specified, which allow for

additional flexibility in calibrating the probability of a bank-run in the initial equilibrium.

2 Existence and uniqueness of threshold equilibrium

∆(xi,x∗) is continuous in xi because it is an integral in which the limits of integration are continuous

in xi and the integrand is bounded. From the intermediate value theorem, it suffices to show that

there exist xi and xi such that ∆(xi,x
∗) < 0 and ∆(xi,x∗) > 0. This is guaranteed if we assume the

existence of lower (and upper) dominance region where fundamental are bad (good) enough that

every agents runs (or waits) independent of his belief concerning other patient agents’ behavior.

Denote by η
LD the value of fundamentals such that

∑
s

ω3s(z1 +η
LD)
[
UR(cR,no-run,wait

3s )−UR(cR,no-run,withdraw
3s )

]
= 0 for m = δ and refer to the interval[

−η̄,ηLD] as the lower dominance region. Consider a realization of η≥−η̄ such that ω3b = 1. Then

a patient agent will withdraw rather than wait if UR(cR,no-run,wait
3s )<UR(cR,no-run,withdraw

3s ). Assume

for simplicity that LIQR
1 = 0 and that the bank holds enough liquidity to serve early withdrawals for

impatient agents, i.e. LIQ1 = δ ·DR. After substituting, patient agents will unambiguously run if
V3bI(1+ rI)

1−δ
< DR or V3b(1+ rI) < (1− δ)(1+LR−CR). All variables in the previous inequality

are predetermined. The inequality holds in the competitive equilibrium we examine in the paper,

but we need to verify that it holds for all θ ≤ 1 to guarantee the existence of a lower dominance

region when q > 0. We discuss the case of capital regulation, but the analysis is the same for other

tools which reduce the probability of a bank run. As the capital ratio (CR) increases the liquidity

ratio (LR) decreases and the left hand side of the previous inequality becomes smaller. Thus, we

need to guarantee that it holds as θ approaches 1 or equivalently as CR and LR approach 1−ξ and
δ

1−δ
respectively. The inequality can then be written as V3b(1+ rI) < ξ, which intuitively says

that patient agents will unambiguously run if the long-term payoffs of the project in the bad state is

lower than the early liquidation value. By continuity, the inequality will hold for higher values of

η such that ω3b is an open interval bounded above by 1, and there exists a lower dominance region

defined by the interval
[
−η̄,ηLD] for small enough noise such that η

LD >−η̄+2ε.

Regarding the upper dominance region
[
η

UD, η̄
]

with η
UD < η̄− 2ε, we need to modify the

investment technology as is done in Goldstein and Pauzner (2005). In practice, this requires the liq-
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uidation value to be contingent on the state realization η, such that θ(ηUD) =
LIQ1 +ξ(ηUD)I

DR(1+ rD
2 )

= 1

and ξ
′(η)> 0 for η > η

UD. In other words, when fundamentals are very strong the liquidation value

of the bank is sufficient to serve all deposit withdrawals and a patient agent will unambiguously wait

until the third period and receive a higher return on his deposits. Note that ξ can endogenously de-

pend on the state realization if the model is extended to consider an outside investor buying the

liquidated loans given his expectations about future delivery.

With respect to the uniqueness of the threshold equilibrium, observe that the second compo-

nent of (15) is always negative and increasing in m as in Goldstein and Pauzner (2005). The first

component is decreasing in m and crosses zero once, since for m = δ the expression is reduced to

the incentive compatibility constraint when there is not a run, which is always satisfied, and for

m = θ equity is worthless and all risky investment is liquidated to serve early withdrawals. Hence

depositors who wait get nothing and the utility of the ones that withdraw is higher. To see that the

first component in (15) is strictly decreasing, note that the depositors who wait will receive a lower

repayment on deposits in the bankruptcy state as m increases (equation (11)). Thus, they will be

less willing to purchase equity in the secondary marker and would rather invest their wealth in the

safe asset. Consequently, they will receive a lower income in the good (and potentially medium)

state of the world compared to the depositors who withdraw early. The dividend payments will be

lower for both, but the utility of the ones who wait will decrease by more. This can be seen from

equation (14). The marginal utility of depositors who wait increases in the bad state as m increases.

This requires an bigger increase in the marginal utility in the good/medium state for depositors who

wait than for those who withdraw. Given that the income for the former is higher that for the latter

(otherwise a run would occur all the time) and due to the concavity of the utility function, the util-

ity of the depositors who wait will decrease more than the utility of the ones who withdraw as m

increases. Hence, there are one-sided strategic complementarities, i.e., ν is decreasing whenever it

is positive, and the proof of Goldstein and Pauzner (2005) goes through.
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