
A APPENDIX: Proofs

A.1 Expositional Model

Here, we detail some of the calculations of the expositional model in the text which is based

on exogenous nominal spending. We have the following key equations

∆D̂t = ρ∆D̂t−1 + εDt

πt = κŶt + βEtπt+1

Dt = PtYt.

The latter implies

∆D̂t = πt + Ŷt − Ŷt−1.

The system has a solution of the following form

Ŷt = Yd∆D̂t + YyŶt−1

πt = πd∆D̂t + πyŶt−1.

Some algebra using the method of undetermined coefficients implies that

Ŷt =
(1− ρβ)

(1 + κ− ρβ + β (1− Yy))
∆D̂t + YyŶt−1

where Yy is the root less than one of the quadratic equation

Y 2
y −

(1 + κ+ β)

β
Yy +

1

β
= 0.

Focussing on ρ = 0 for simplicity, this directly implies

V AR(Yt) =

[
1

(1+κ+β(1−Yy))

]2

[1− YY 2]
V AR

(
∆D̂t

)
= Γ ∗ V AR

(
∆D̂t

)
.

We have verified analytically that Γ is decreasing in κ and numerically that the same holds

true for any value of ρ between 0 and 1.
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A.2 Proofs of Propositions 1-5

In the following, to keep clutter to a minimum, we only keep track of At and ψt since ηt

shows up in the same way as σ−1(ψt−Etψt+1) and µt and τwt as At. Then, under endogenous

nominal demand and Taylor rule, the following equations hold:

Ŷt = EtŶt+1 − σ(̂ıt − Etπt+1) + ψt − Etψt+1

πt = κŶt − κγAAt + βEtπt+1

ît = φππt + φyŶt + ηt

where demand and technology shocks evolve first-order auto-regressively as ψt = ρψψt−1+

εψt and At = ρAAt−1 + εψt , and γA = 1+φ
σ−1+φ

.

First, only consider demand shocks ψt. The system has a solution of the following form:

Yt = Yψψt, πt = πψψt and it = iψψt which implies that EtYt+1 = Yψρψψt and Etπt+1 =

πψρψψt.

Matching coefficients yields the following expressions:

Yψ =

[
σ(1− βρψ) (1− ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ (φπ − ρψ)

]
πψ =

[
κσ (1− ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ (φπ − ρψ)

]
This implies the following expression for the variance of output and inflation:

var(Ŷt/ψt) =

(
σ(1− βρψ)(1− ρψ)

(1− ρψ + σφy)(1− βρψ) + σκ[φπ − ρψ]

)2

var(ψt)

var(πt/ψt) =

(
κσ (1− ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ (φπ − ρψ)

)2

var(ψt)

Then, the derivative of the variance of output with respect to κ is:

∂V AR(Ŷt/ψt)

∂k
= −2σ2 σ(φπ − ρψ)(1− βρψ)2(1− ρψ)2

((1− ρψ + σφy)(1− βρψ) + σκ[φπ − ρψ])3
var(ψt)

If (φπ − ρψ) > 0, then this derivative is always negative. The sign of the derivative flips iff

(φπ − ρψ) < 0. Note that the denominator is always positive which follows from the bounds

implied by the determinacy condition.
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Next, consider a demand shock at the ZLB. The expression for the derivative of output

with respect to κ is given by:

∂ŶS
∂κ

= − (1− ρψ)(1− βµ)µσ

[(1− µ)(1− βµ)− µσκ]2
< 0

Now, only consider technology shocks At. The system has a solution of the following

form: Yt = YAAt, πt = πAAt and it = iAAt which implies that EtYt+1 = YAρAAt and

Etπt+1 = πAρAAt.Matching coefficients yields the following expressions:

YA =
κσ[φπ − ρA]

[(1− ρA + σφy)(1− βρA) + κσ[φπ − ρA]]
γA

πA =
κγA(1− ρA + σφy)

[(1− ρA + σφy)(1− βρA) + κσ(φπ − ρA]]
γA

This implies the following expression for the variance of output and inflation:

var(Ŷt/At) =

(
κσγA[φπ − ρA]

[(1− ρA + σφy)(1− βρA) + κσ[φπ − ρA]]
γA

)2

var(At)

var(πt/At) =

(
−κσγA(1− ρA + σφy)

[(1− ρA + σφy)(1− βρA) + κσ(φπ − ρA]]
γA

)2

var(At)

Then, the derivative of the variance of output with respect to κ is:

∂var(Yt)

∂κ
= 2YA

∂YA
∂κ

= 2γA

[
κσ (φπ − ρA)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

]
γA

[
σ (φπ − ρA) (1− βρA)(1− ρA + σφy)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)2

]
> 0

since the denominator is always positive which follows from the bounds implied by the

determinacy condition.

Next, notice that the shock ηt appears exactly in the same way as ψt−Etψt+1. Hence, the

derivative of output has the same sign with respect to κ, depending on φη−ρη : ∂var(Yt/ηt)
∂κ

< 0

if φη−ρη < 0 and ∂var(Yt/ηt)
∂κ

> 0 if φη−ρη > 0. The coefficients in the case of an idiosyncratic
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monetary policy shock ηt are:

Yη =
−σ(1− βρη)

1− ρη + σφy + σκ(φπ − ρη)

πη =
κ

1− βρη
−σ(1− βρη)

1− ρη + σφy + σκ(φπ − ρη)

Finally, consider a markup shock µ̂t – shocks to labor taxes τ̂wt have isomorphic deriva-

tions. First, note that we have Y n
t = Y n

t − Y e
t = − 1

σ−1+φ
µ̂t. Then, applying the method of

undetermined coefficients in a setup analogous to the above yields the following coefficients:

Yµ = −
(

1

σ−1 + φ

)[
κσ
(
φπ − ρµ

)
(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]

πµ = − κ

(1− βρµ)

(
1

σ−1 + φ

)[
− (1− βρµ) (1− ρµ + σφy)

(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]
This directly implies that the variance of output is

var (Yt) =

[(
1

σ−1 + φ

)[
κσ
(
φπ − ρµ

)
(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]]2

var(µt)

Taking derivatives of the variance of output with respect to kappa yields:

∂var(Yt)

∂κ
= 2Yµ

∂Yµ
∂κ

= 2

(
1

σ−1 + φ

)[
κσ
(
φπ − ρµ

)
(1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ)

]
(

1

σ−1 + φ

)
(1− ρµ + σφy)(1− βρµ)σ(φπ − ρµ)

((1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ))2

= 2
(1− ρµ + σφy)(1− βρµ)

κ ((1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ))
var (Yt)

> 0

Note that the denominator is always positive which follows from the bounds implied by the

determinacy condition.
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A.3 Welfare - Proofs of Propositions 6-11

Proof of Proposition 6 For the technology shock, first note the for Y e
t = 1+φ

σ−1+φ
Ât, we have

that

var (Yt − Y e
t ) =

[(
1 + φ

σ−1 + φ

)[
− (1− βρA) (1− ρA + σφy)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

]]2

Second, we take derivatives of the weighted variance term:

∂ θ
κ
var(πt)

∂κ
= −θ 1

κ2
var(π) + θ

1

κ

∂var(πt)

∂κ

= θ

[
1

(1− βρA)

]2

var (Yt − Y e
t )

(
(1− ρA + σφY )(1− βρA)− κσ (φπ − ρA)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

)
> 0 if φπ − ρA < ΓA =

(1− ρA + σφy)(1− βρA)

κσ

< 0 if φπ − ρA > ΓA =
(1− ρA + σφy)(1− βρA)

κσ

For the demand shock, Y e
t = Yt. Since var(πt) = κ2

(1−βρψ)2
var(Yt), some algebra directly

implies that

∂ θ
κ
var(πt)

∂κ
= −θ 1

κ2
var(πt) + θ

1

κ

∂var(πt)

∂κ

=
θ

κ2
var (Yt)

[
κ

(1− βρψ)

]2 [
−1 + 2

(1− ρψ + σφy) (1− βρψ)

(1− ρψ + σφy) (1− βρψ) + σκ (φπ − ρψ)

]
=

θ

κ2
var (Yt)

[
κ

(1− βρψ)

]2(
(1− ρψ + σφy)(1− βρψ)− κσ(φπ − ρψ)

(1− ρψ + σφy)(1− βρψ) + κσ(φπ − ρψ)

)
> 0 iff φπ − ρψ < Γψ =

(1− ρψ + σφy)(1− βρψ)

κσ

< 0 iff φπ − ρψ > Γψ =
(1− ρψ + σφy)(1− βρψ)

κσ
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For the markup shock, some algebra directly implies that

∂ θ
κ
var(πt)

∂κ
=

θ

κ2

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

var(Yt)

(
(1− ρµ + σφy)(1− βρµ)− κσ(φπ − ρµ)

(1− ρµ + σφy)(1− βρµ) + κσ(φπ − ρµ)

)
< 0 iff φπ − ρµ > Γµ =

(1− ρµ + σφy)(1− βρµ)

κσ

> 0 if φπ − ρµ < Γµ =
(1− ρµ + σφy)(1− βρµ)

κσ

Proof of Proposition 7 Noting that for the demand shock ψt it holds true that Y e
t = Yt,

we take derivatives of W with respect to κ :

∂W

∂κ
= −

(
φ+ σ−1

) [∂ θ
κ
var (πt)

∂κ
+
∂var (Yt)

∂κ

]

=
(φ+ σ−1) var(Yt)

(1− ρψ + σφy)(1− βρψ) + κσ(φπ − ρψ)

(− θ

(1− βρψ)2 ((1− ρψ + σφy)(1− βρψ)− κσ(φπ − ρψ)) + 2σ(φπ − ρψ))

< 0 iff (φπ − ρψ) < Λψ =
θ(1− βρψ)(1− ρψ + σφy)

σ(2(1− βρψ)2 + κθ)

> 0 iff (φπ − ρψ) > Λψ =
θ(1− βρψ)(1− ρψ + σφy)

σ(2(1− βρψ)2 + κθ)

Proof of Proposition 8

First, consider the derivative of the weighted inflation term with respect to κ:

∂ θ
κ
var(πt)

∂κ
= −θ 1

κ2
var(π) + θ

1

κ

∂var(πt)

∂κ

=
θ

κ2

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

var(Yt)

(
(1− ρµ + σφy)(1− βρµ)− κσ(φπ − ρµ)

(1− ρµ + σφy)(1− βρµ) + κσ(φπ − ρµ)

)
< 0 iff φπ − ρµ > Γµ =

(1− ρµ + σφy)(1− βρµ)

κσ

> 0 iff φπ − ρµ < Γµ =
(1− ρµ + σφy)(1− βρµ)

κσ
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Second, since Y e
t = 0, taking derivatives of welfare with respect to κ yields after some algebra:

∂W

∂κ
= −

(
φ+ σ−1

) 1

κ ((1− ρµ + σφy)(1− βρµ) + κσ (φπ − ρµ))
var (Yt)

(
θ

κ

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

(1− ρµ + σφy)(1− βρµ)− κσ(φπ − ρµ) + 2(1− ρµ + σφy)(1− βρµ))

< 0 if
θ

κ

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

(1− ρµ + σφy)(1− βρµ)

−κσ(φπ − ρµ) + 2(1− ρµ + σφy)(1− βρµ) > 0

> 0 if
θ

κ

[
(1− ρµ + σφy)

σ
(
φπ − ρµ

) ]2

(1− ρµ + σφy)(1− βρµ)

− κσ(φπ − ρµ) + 2(1− ρµ + σφy)(1− βρµ) < 0

A sufficient but not necessary condition for ∂W
∂κ

< 0 is (φπ − ρµ) < 0.

Proof of Proposition 9

For technology shocks, Y e
t = 1+φ

σ−1+φ
Ât. This implies that

var (Yt − Y e
t ) =

[(
1 + φ

σ−1 + φ

)[
− (1− βρA) (1− ρA + σφy)

(1− ρA + σφy)(1− βρA) + κσ (φπ − ρA)

]]2

so that

∂var(Yt − Y e
t )

∂κ
= −2

(
1 + φ

σ−1 + φ

)2
σ(φπ − ρA)((1− βρA) (1− ρA + σφy))

2

((1− ρA + σφy)(1− βρA) + κσ (φπ − ρA))3

= −2
σ(φπ − ρA)

((1− ρA + σφy)(1− βρA) + κσ (φπ − ρA))
var(Yt − Y e

t )

> 0 iff (φπ − ρA) < 0

< 0 iff (φπ − ρA) > 0

Proof of Proposition 10
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We combine results of Propositions 6 and 9, which directly yields after some algebra:

∂W

∂κ
= −

(
φ+ σ−1

) [∂ θ
κ
var (πt)

∂κ
+
∂var (Yt − Y e

t )

∂κ

]
(− θ

(1− βρA)2 ((1− ρA + σφy)(1− βρA)− κσ(φπ − ρA)) + 2 σ(φπ − ρA))

< 0 if (φπ − ρA) < ΛA =
θ(1− βρA)(1− ρA + σφY )

σ(2(1− βρA)2 + κθ)

> 0 if (φπ − ρA) > ΛA =
θ(1− βρA)(1− ρA + σφY )

σ(2(1− βρA)2 + κθ)

ZLB

When ψt becomes negative enough, the ZLB binds. We assume, like in Eggertsson and

Woodford (2003) and Eggertsson (2008) that the shock to ψt = ψS < 0 in period 0 and

which reverts back to steady state ψS = ψ̄ > 0 with a fixed probability 1 − µ every period

thereafter. Under discretion, out of the trap, optimal policy is able to achieve Yt−Y e
t , πt = 0.

At the ZLB, we have it = β − 1.

First, consider the Phillips curve (no shock to Y n
t now) where we denote by S the time

in the trap:

πS = κYS + βµπS.

Next, consider the IS equation (no shock to Y n
t now)

YS = µYS + σµπS + (1− µ)ψS

Some algebra directly implies that

YS =
(1− βµ)

(1− µ) (1− βµ)− κσµ
ψS

and

πS =
κ

(1− µ) (1− βµ)− κσµ
ψS

Note that here Y e
t = 0. Consider each derivative of the welfare function with respect to κ.

First, some algebra directly implies that

∂var(YS)

∂κ
=

2σµ

(1− µ) (1− βµ)− κσµ
var (YS) > 0
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Next, since πS = κ
1−βµYS, we have that

∂var(πS)

∂κ
= 2

(
κ

1− βµ

)
1

1− βµ
var (YS) +

(
κ

1− βµ

)2
∂var(YS)

∂κ

=

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2κ

(1− βµ)2var (YS) > 0

This implies that the derivative of the weighted variance of inflation is

∂ θ
κ
var (πS)

∂κ
= −var (πS)

θ

κ2
+
θ

κ

∂var(πS)

∂κ

=

[
(1− µ) (1− βµ) + κσµ

(1− µ) (1− βµ)− κσµ

]
θ

(1− βµ)2var (YS) > 0

Therefore, the derivative of welfare with respect to κ is negative:

∂W

∂κ
< 0.

since all loss components have a positive derivative with respect to κ and are multiplied by

−1.

A.4 Optimal policy

Optimal policy under discretion can be characterized easily here since there are no state

variables. The problem is just a static one of minimizing

Lt =
(
φ+ σ−1

) [ θ
κ
π2
t + (Yt − Y e

t )2

]
subject to

πt = κYt − κY n
t + βEtπt+1.

Lets reformulate it as minimizing

Lt =

[
θ

κ
π2
t + (Yt − Y e

t )2

]
subject to

πt = κ (Yt − Y e
t ) + κ (Y e

t − Y n
t ) + βEtπt+1.
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The FOC of this problem leads to the simple, well-known targeting rule

θπt + (Yt − Y e
t ) = 0.

Now we have to work with two equations only to pin down the solution of the model

θπt + (Yt − Y e
t ) = 0

πt = κ (Yt − Y e
t ) + κ (Y e

t − Y n
t ) + βEtπt+1

Replace the first into the second

πt = −κθπt + κ (Y e
t − Y n

t ) + βEtπt+1

Now replace for

Y e
t − Y n

t =
1

σ−1 + φ
µ̂t

Then get

πt = −κθπt + κ
1

σ−1 + φ
µ̂t + βEtπt+1

This gives the following first-order forward looking difference equation in πt

(1 + κθ)πt = βEtπt+1 +
κ

σ−1 + φ
µ̂t

Guess

πt = πµµ̂t

which gives

Etπt+1 = πµρµµ̂t

Replace above and match coeffcients to get

πµ =
κ

(σ−1 + φ) (1 + κθ − βρµ)

Thus,

πt =
1

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t.
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This implies that

(Yt − Y e
t ) = −θπt = − θ

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t.

We first start with establishing what happens to the variance of output when prices

become more flexible. First note that two cases are particularly easy. For demand shocks,

output does not respond at all as long as the ZLB does not bind. That is, in that case, we

have

Yt = 0.

So variance of output does not depend on price stickiness.

For technology shocks, output responds one-to-one since we have

πt = (Yt − Y e
t ) = 0.

This means

Yt = Y e
t =

1 + φ

σ−1 + φ
Ât.

Again, variance of output does not depend on price stickiness.

For markup shocks, we have as the solution for output (since Y e
t = 0)

Yt = − θ

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t.

var (Yt) = θ2

(
κ

(1 + κθ − βρµ)

)2

.

Then
∂var (Yt)

∂κ
=

θ2 (1− βρµ) 2κ

(1 + κθ − βρµ)3 > 0.

Now, lets look at the effects of increased price flexibility on welfare. As is well-known

with technology shocks only, both πt and (Yt − Y e
t ) can be put to zero and one gets to first-

best. Thus, there is no interesting relationship between price flexibility and welfare. With

mak-up shocks, there is a trade-off as can be seen above.
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For mark-up shocks, we want to evaluate

W = −
(
φ+ σ−1

) [ θ
κ
var (πt) + var (Yt − Y e

t )

]
We have as the targeting rule

θπt + (Yt − Y e
t ) = 0

which gives

θ2var (πt) = var (Yt − Y e
t ) .

Then, welfare is given by

W = −
(
φ+ σ−1

)
θ

[(
1

κ
+ θ

)
var (πt)

]
.

We have as the solution of the model

πt =
1

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)
µ̂t

or

var (πt) =

[
1

(σ−1 + φ)

(
κ

(1 + κθ − βρµ)

)]2

.

We can then establish how variance of inflation depends on price flexibility.

∂var(πt)

∂κ
=

(1− βρµ) 2κ

(1 + κθ − βρµ)3 > 0.

Then, we can establish how the welfare relevant variance of inflation depends on price flexi-

bility
∂ θ
κ
var (πt)

∂κ
=

1− κθ − βρµ
(1 + κθ − βρµ)3 > 0 if 1− κθ > βρµ.

Thus, while with a low ρµ this variance of welfare relevant inflation term is increasing with

greater price flexibility, it can decrease for a high enough ρµ. Third, we can consider how

the variance of welfare relevant output gap depends on increased price flexibility (this is

basically the same as the variance of output since Y e
t = 0)

∂var (Yt − Y e
t )

∂κ
= θ2 (1− βρµ) 2κ

(1 + κθ − βρµ)3 > 0.
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Now, lets finally move to welfare. Replace the expression for inflation above, along with

the relationship between to get πt and (Yt − Y e
t ) to get

W = − 1

(σ−1 + φ)
θ

[
κ (1 + θκ)

(1 + κθ − βρµ)2

]

For simplicity, first consider ρµ = 0. Then, we have

W = − 1

(σ−1 + φ)
θ

[
κ

(1 + κθ)

]
.

It is easy to see that in such a case
∂W

∂κ
< 0.

When we consider a general ρµ however, note that this is not always the case. In particular,

for a high enough ρµ, it can be the case that increased price flexibility leads to higher welfare.

Generally,
∂W

∂κ
= −1 + κθ − βρµ (1 + 2κθ)

(1 + κθ − βρµ)3

The denominator is always positive, but the numerator can take either positive or negative

value. Thus,
∂W

∂κ
< 0 if

1 + κθ

1 + 2κθ
> βρµ.

There are two forces at work: the variance of the welfare relevant output gap is always

increasing in price flexibility, but the variance of the welfare relevant inflation can decrease

with higher flexibility if ρµ is big enough.

Finally, we take into account the zero lower bound on interest rates explicitly. This

happens when rnt becomes negative enough so that the ZLB binds. We assume, like in

Eggertsson and Woodford (2003) and Eggertsson (2008) that the shock to rnt = rnS < 0 in

period 0 and which reverts back to steady state rS = r̄ > 0 with a fixed probability 1−µ every

period thereafter.

Under discretion, out of the trap, optimal policy is able to achieve Yt − Y e
t , πt = 0. At

ZLB, we have it = β − 1.We have to consider two cases: when the economy is in a ZLB

situation and when it is out of it. Out of the trap, as discussed above, in this simple model

under discretion, both Yt−Y e
t and πt are equal to zero when the shock that hits the economy

is a shock to rnt such as a preference shock. In the trap, it = β − 1.
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Now, consider the Phillips curve (no Y n
t shock now)

πt = κYt + βEtπt+1

which we rewrite as

πS = κYS + βµπS.

Next, consider the IS equation (no Y n
t shock now)

Yt = EtYt+1 − σ(it − Etπt+1 − rnt )

which we rewrite as

YS = µYS + σµπS + σrnS

Lets manipulate these two expressions

πS =

(
κ

1− βµ

)
YS

πS =
(1− µ)YS − σrnS

σµ

and combine them to get (
κ

1− βµ

)
YS =

(1− µ)YS − σrnS
σµ

or [(
1− µ
σµ

)
−
(

κ

1− βµ

)]
YS =

1

µ
rnS

[
(1− µ) (1− βµ)− κσµ

σµ (1− βµ)

]
YS =

1

µ
rnS

YS =
σ (1− βµ)

(1− µ) (1− βµ)− κσµ
rnS

and then

πS =

(
κ

1− βµ

)
YS

πS =

(
κ

1− βµ

)
σ (1− βµ)

(1− µ) (1− βµ)− κσµ
rnS
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πS =
σκ

(1− µ) (1− βµ)− κσµ
rnS.

For welfare, we want to evaluate

W = −
(
φ+ σ−1

) [ θ
κ
var (πt) + var (Yt − Y e

t )

]
which here is

W = −
(
φ+ σ−1

) [ θ
κ
var (πt) + var (Yt)

]
First, we have

var (πS) =

(
κ

1− βµ

)2

var (YS)

and

var (YS) =

[
σ (1− βµ)

(1− µ) (1− βµ)− κσµ

]2

so

W = −
(
φ+ σ−1

) [ θ
κ
var (πS) + var (YS)

]

W = −
(
φ+ σ−1

) [ θ
κ

(
κ

1− βµ

)2

var (YS) + var (YS)

]

W = −
(
φ+ σ−1

) [( θ
κ

(
κ

1− βµ

)2

+ 1

)
var (YS)

]

W = −
(
φ+ σ−1

) [( θκ

(1− βµ)2 + 1

)
var (YS)

]
.

Now

∂var(YS)

∂κ
= 2

[
σ (1− βµ)

(1− µ) (1− βµ)− κσµ

]
σ (1− βµ)

((1− µ) (1− βµ)− κσµ)2σµ > 0

which also gives
∂var(YS)

∂κ
=

2σµ

(1− µ) (1− βµ)− κσµ
var (YS) .

Next
∂var(πS)

∂κ
= 2

(
κ

1− βµ

)
1

1− βµ
var (YS) +

(
κ

1− βµ

)2
∂var(YS)

∂κ

15



∂var(πS)

∂κ
= 2

(
κ

1− βµ

)
1

1− βµ
var (YS) +

(
κ

1− βµ

)2
2σµ

(1− µ) (1− βµ)− κσµ
var (YS)

∂var(πS)

∂κ
=

[
1

κ
+

σµ

(1− µ) (1− βµ)− κσµ

]
2

(
κ

1− βµ

)2

var (YS)

∂var(πS)

∂κ
=

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2κ

(1− βµ)2var (YS) > 0

Finally, the weighted variance of inflation term

∂ θ
κ
var (πS)

∂κ
= −var (πS)

θ

κ2
+
θ

κ

∂var(πS)

∂κ

∂ θ
κ
var (πS)

∂κ
= −

(
κ

1− βµ

)2

var (YS)
θ

κ2
+
θ

κ

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2κ

(1− βµ)2var (YS)

∂ θ
κ
var (πS)

∂κ
= − θ

(1− βµ)2var (YS) +

[
(1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]
2θ

(1− βµ)2var (YS)

∂ θ
κ
var (πS)

∂κ
=

[
−1 +

[
2 (1− µ) (1− βµ)

[(1− µ) (1− βµ)− κσµ]

]]
θ

(1− βµ)2var (YS)

∂ θ
κ
var (πS)

∂κ
=

[
(1− µ) (1− βµ) + κσµ

(1− µ) (1− βµ)− κσµ

]
θ

(1− βµ)2var (YS) > 0

So,
∂W

∂κ
< 0.

We can also study optimal monetary policy under commitment, which means specifying a

fully state-contingent path at t = 0 for the endgeonous variables to minimize the loss-function

subject to

πt = κYt − κY n
t + βEtπt+1.
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Lets then define the Lagrangian

L =
1

2
E0

∞∑
t=0

βt
[
θ

κ
π2
t + (Yt − Y e

t )2

]
+ E0

∞∑
t=0

βtq1,t {πt − κ (Yt − Y e
t )− κ (Y e

t − Y n
t )− βEtπt+1.}

where {q1,t} is the sequence of Lagrange multiplier.

First order conditions are given as:

∂πt : 0 =
θ

κ
πt + q1,t − q1,t−1

∂ (Yt − Y e
t ) : 0 = (Yt − Y e

t )− κq1,t

Consequently, the equilibrium time path of{
Ŷt, πt, q1,t

}∞
t=0

is characterized by the following 3 equations

πt = κ (Yt − Y e
t )− κ (Y e

t − Y n
t )− βEtπt+1

0 =
θ

κ
πt + q1,t − q1,t−1

0 = (Yt − Y e
t )− κq1,t

given exogenous processes and initial conditions. We assume that all the variables are in the

steady state initially: q−1 = 0.

So assuming the ”time-less perspective” we have as the ”targeting rule”

θπt + (Yt − Y e
t )−

(
Yt−1 − Y e

t−1

)
= 0.
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B APPENDIX: Wage and Price Flexibility

B.1 General model

Woodford (2003) presents a simple model with wage and price stickiness that can be sum-

marized under a Taylor rule as

Ŷt = EtŶt+1 − σ(̂ıt − Etπpt+1 − ret ) (1)

πpt = κp(Yt − Y n
t ) + ξp(ŵt − ŵnt ) + βEtπ

p
t+1 (2)

πwt = κw(Yt − Y n
t )− ξw(ŵt − ŵnt ) + βEtπ

w
t+1 (3)

ı̂t = φππ
p
t + φyŶt (4)

ŵt = ŵt−1 + πwt − π
p
t (5)

where we have that ŵnt = (1 + ωp)at − ωpŶ n
t and Ŷ n

t = 1+ω
σ−1+ω

at − 1
σ−1+ω

µ̂t + 1
σ−1+ω

τ̂wt . Also,

the welfare- objective around the efficient steady state is given by

Lt = λp(π
p
t )

2 + λw(πwt )2 + λx(Ŷt − Ŷ e
t )2.

Here, we have ξw = (1−αw)(1−αwβ)
αw(1+νθw)

, ξp = (1−αp)(1−αpβ)

αp(1+ωpθp)
, κw = ξw (ωw + σ−1) , κp = ξpωp, κw =

(1−αw)(1−αwβ)
αw

(ωw+σ−1)
(1+νθw)

, κp = (1−αp)(1−αpβ)

αp

ωp
(1+ωpθp)

, λp =
θpξ
−1
p

θpξ
−1
p +θwφ

−1
h ξ−1

w
> 0, λw =

θwφ
−1
h ξ−1

w

θpξ
−1
p +θwφ

−1
h ξ−1

w
>

0, and λx = σ−1+ω
θpξ
−1
p +θwφ

−1
h ξ−1

w
> 0. Moreover, ν ≡ vhhh

vh
, φh ≡ f(h)

hf ′(h)
, ωw = νφh, and ω = ωw+ωp.

Assume the production function yt(i) = Atht(i)
γ to get φh = 1/γ, ωw = ν/γ, and

ωp = 1−γ
γ
.

B.2 Simplified Approximate model

Next, we make the assumption that simplifies the model and leads to sharp insights. We

assume that κp = κw = κ. After some manipulation and using that ∆ŵt = πwt − πpt , we

obtain

∆wt = −(ξw + ξp)(wt − wnt ) + βEt∆wt+1

18



and the solution for wt can then be written as

wt = Γwwt−1 + Γnw
n
t

where Γw is the root less than 1 of the polynomial µ2 −
(
β+κ

(
1

ωw+σ−1 + 1
ωp

)
+1

)
β

µ + 1
β

= 0 and

Γn = Γw
1−βΓwρA

κ
(

1
ωw+σ−1 + 1

ωp

)
.

As our second result, in this simplified case, the rest of the model equations reduce to

three equations as given by

πpt = κ(Yt − Y n
t ) + βEtπ

p
t+1 + κ

1

ωp
(wt − wnt )

Ŷt = EtŶt+1 − σ(it − Etπpt+1 − ret )

it = φππ
p
t + φyŶt

This then implies that our previous result on demand shocks will go through fully in this

case.

For productivity shocks, it is tedious to analytically show how the variance of output

varies with κ. The solution of the model however can be shown in closed-form. For simplicity,

assume log-utility (σ = 1) and i.i.d. technology shocks (ρA = 0). Then,

Ŷt = YAat + Ywwt

where

YA =
κ
(

1 + 1
ωp

)
κ+ (φy+1)

φπ

;Yw = − κ (φπ − Γw)

ωp [κ (φπ − Γw)− (Γw − 1− φy) (1− βΓw)]
.

This together with

wt = Γwwt−1 + Γnw
n
t

and

wnt = at

completes the solution.
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B.3 Discretion

The objective function is given by the following:

Lt = λp(π
p
t )

2 + λw(πwt )2 + λx(Ŷt − Ŷ e
t )2

λp =
θpξ
−1
p

θpξ−1
p + θwφ

−1
h ξ−1

w

> 0, λw =
θwφ

−1
h ξ−1

w

θpξ−1
p + θwφ

−1
h ξ−1

w

> 0, λx =
σ−1 + ω

θpξ−1
p + θwφ

−1
h ξ−1

w

> 0

Y e
t =

1 + ω

σ−1 + ω
at

Given our specific assumptions, wt is an exogenous process and hence there are no endogenous

state variables in the model. This greatly simplifies things as the discretion problem just

reduces to a period by period minimization problem.Also, note that our assumptions ξw =
1

ωw+σ−1κ, ξp = 1
ωp
κ and ∆ŵt = πwt − πpt and the assumption of log utility (for expository

reasons only) allow us to write the following Lagrangian after some manipulation:

Lt =
1

2

[
λp(π

p
t )

2 + λw(∆ŵt + πpt )
2 + λx(Ŷt − Ŷ e

t )2
]

+ q1,t

{
πpt − κ(Ŷt − Ŷ e

t )− βEtπpt+1 + κ
1

ωp
at − κ

1

ωp
wt

}
where the central bank will take expectation functions as given since there are no endogenous

state variables and we use the fact that the IS equation is not binding. This yields the

following FOCs:

∂L
∂πpt

= λpπ
p
t + λw (∆ŵt + πpt ) + q1,t = 0

∂L

∂
(
Ŷt − Ŷ e

t

) = λx(Ŷt − Ŷ e
t )− κq1,t = 0

with the exogenous processes

wt = Γwwt−1 +
βΓw

1− βΓwρA
κ

(
1

ωw + 1
+

1

ωp

)
at

Ŷ e
t = at

Now combine the two FOCs to get the targeting rule, which is our main result here

(λp + λw) πpt + λw∆ŵt +
λx
κ

(Ŷt − Ŷ e
t ) = 0.
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Assuming i.i.d. shock for simplicity, one can derive the solution of the model in closed

form:

πpt = πw1ŵt−1 + πwŵt + πAat

πw1 =

κ
(1+ω)

θwφ
−1
h (ωw + 1)(

1 +
κ(θpωp+θwφ

−1
h (ωw+1))

(1+ω)

)

πw =

 1(
1 +

κ(θpωp+θwφ
−1
h (ωw+1))

(1+ω)

)
− βΓw


β κ

(1+ω)
θwφ

−1
h (ωw + 1)(

1 +
κ(θpωp+θwφ

−1
h (ωw+1))

(1+ω)

) − κ

(1 + ω)
θwφ

−1
h (ωw + 1) + κ

1

ωp



πA =
1(

1 +
κ(θpωp+θwφ

−1
h (ωw+1))

(1+ω)

) [−κ 1

ωp

]

For the output gap, we have

(
θpωp + θwφ

−1
h (ωw + 1)

)
πpt + θwφ

−1
h (ωw + 1) ∆ŵt + (1 + ω) (Ŷt − Ŷ e

t ) = 0

which gives

(Ŷt − Ŷ e
t ) = −

(
θpωp + θwφ

−1
h (ωw + 1)

)
(1 + ω)

πpt −
θwφ

−1
h (ωw + 1)

(1 + ω)
(ŵt − ŵt−1)

and for output, since Ŷ e
t = at

Ŷt = −
(
θpωp + θwφ

−1
h (ωw + 1)

)
(1 + ω)

πpt −
θwφ

−1
h (ωw + 1)

(1 + ω)
(ŵt − ŵt−1) + at
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B.4 Commitment

In the case of commitment, we have:

L =
1

2
E0

∞∑
t=0

βt
[
λp(π

p
t )

2 + λw(∆ŵt + πpt )
2 + λx(Ŷt − Ŷ e

t )2
]

+ E0

∞∑
t=0

βtq1,t

{
πpt − κ(Ŷt − Ŷ e

t )− βEtπpt+1 + κ
1

ωp
at − κ

1

ωp
wt

}

where the central bank can commit and hence does not take Etπ
p
t+1 as given

∂L
∂πpt

= λpπ
p
t + λw (∆ŵt + πpt ) + q1,t − q1,t−1 = 0

∂L

∂
(
Ŷt − Ŷ e

t

) = λx(Ŷt − Ŷ e
t )− κq1,t = 0

with the exogenous processes

wt = Γwwt−1 +
βΓw

1− βΓwρA
κ

(
1

ωw + 1
+

1

ωp

)
at

∆ŵt = (Γw − 1)wt−1 +
βΓw

1− βΓwρA
κ

(
1

ωw + 1
+

1

ωp

)
at

Ŷ e
t = at

Now combine the two FOCs to get the targeting rule

(λp + λw) πpt + λw∆ŵt +
λx
κ

(Ŷt − Ŷ e
t )− λx

κ
(Ŷt−1 − Ŷ e

t−1) = 0.

The closed-form solution of the model is not very instructive, although possible.
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C APPENDIX: Smets-Wouters Model

We refer the reader to the original Smets and Wouters (2007) paper for a detailed description

of the model. Here we present the log-linearized equilibrium conditions in line with the

notation in their paper (for the expressions for the reduced-form parameters below as a

function of the structural parameters, please see Smets and Wouters (2007) and its appendix).

ĉt = c1ĉt−1 + (1− c1)Etĉt+1 − c2{r̂t − Etπ̂t+1 + εbt} − c3 (Etn̂t+1 − n̂t)

ı̂t = i1ı̂t−1 + (1− i1)Etı̂t+1 + i2q̂t + εqt

q̂t = −
(
r̂t − Etπ̂t+1 + εbt

)
+ q1Etr̂

k
t+1 + (1− q1)Etq̂t+1

ŷt = cy ĉt + iy ı̂t + ĝt + vyv̂t

π̂t − ιpπ̂t−1 = β̄γ̄ (Etπ̂t+1 − ιpπ̂t)− π1

(
−
(
αr̂kt + (1− α)ŵt − at

)
− µ̂pt

)

π̂wt −ιwπ̂t−1 = β̄γ̄
(
Etπ̂

w
t+1 − ιwπ̂t

)
−λw

(
ŵt −

((
1

1− h/γ̄

)
ĉt −

(
h/γ̄

1− h/γ̄

)
ĉt−1 + σln̂t

)
− µ̂wt

)

̂̄kt = k1
̂̄kt−1 + (1− k1) ı̂t + k2ε

q
t

k̂t = v̂t + ̂̄kt−1

v̂t =

(
1

(ψ/1− ψ)

)
r̂kt

k̂t = ŵt − r̂kt + n̂t

rt = ρrt−1 + (1− ρ)
(
rππt + ryŷgapt

)
+ r∆y∆̂ygapt + εrt
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D APPENDIX: Solution and Estimation Method

We use a Bayesian framework for estimation. The first-order approximation to the equilib-

rium conditions of the model can be written as

Γ0 (θ) st = Γ1 (θ) st−1 + Γε(θ)εt + Γη(θ)πt

where st is a vector of model variables and εt is a vector of shocks to the exogenous processes.

πt is a vector of rational expectations forecast errors, which implies Et−1πt = 0 for all t, and

θ contains the structural model parameters. The solution to this system is given by

st = Ω1(θ)st−1 + Ωε(θ)εt.

which can be obtained using standard methods in the literature. Finally, the model variables

are related to the observables by the measurement equation

yt = Bst

where yt is the vector of observables.

Let Y = {y}Tt=1 be the data. In a Bayesian framework, the likelihood function L(Y | θ) is

combined with a prior density p(θ) to yield the posterior density

p(θ | Y ) ∝ p(θ)L(Y | θ).

Assuming Gaussian shocks, it is straightforward to evaluate the likelihood function using the

Kalman filter. A numerical optimization routine is used to maximize p(θ | Y ) and find the

posterior mode. Then, we can generate draws from p(θ | Y ) using the Metropolis-Hastings

algorithm where we use a Gaussian proposal density in the algorithm, using a inverse of a

scaled Hessian computed at the posterior mode as the covariance matrix.

The Metropolis-Hastings algorithm works as follows. Let the posterior mode computed

from the numerical optimization routine be θ̃. Let the inverse of the Hessian computed at

θ̃ be Σ̃.

(a) Choose a starting value θ0. Then use a loop over the following steps (b)-(d).

(b) For d = 1, ..., D, draw a θ∗ from the proposal distribution N(θd−1, cΣ̃).

(c) Accept θ∗, that is θd = θ∗, with probability min{1, r(θd−1, θ∗)}. Reject θ∗, that is

θd = θd−1, otherwise.
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(d) r(θd−1, θ∗) is given by:

r(θd−1, θ∗) =
p(θ∗)L(Y | θ∗)

p(θd−1)L(Y | θd−1)

The scale parameter c is chosen to lead to acceptance rates of around 30%.

To settle on a model specification, we do Bayesian model comparison using the marginal

data densities of the models. In comparing models A and B we are interested in the relative

posterior probabilities of the models given the data. That is, p(A|Y )
p(B|Y )

= p(A) p(Y |A)
p(B) p(Y |B)

where

p(A) and p(B) are the prior probabilities of the models A and B. Since we do not specifying

different prior probabilities over the models, we just compare the marginal data densities

given by p(Y | A) and p(Y | B). The marginal data density of a model is given by

p(Y ) =

∫
p(θ)L(Y | θ) dθ.

Note that this measure penalizes overparameterized models.

The marginal data density is approximated by the Geweke (1998) modified harmonic-

mean estimator. First note that we can write

1

p(Y )
=

∫
f(θ)dθ

p(θ)L(Y | θ)
dθ

where f is a probability density function such that
∫
f(θ)dθ = 1. Then, we can use the

following estimator

p̂(Y ) =

[
1

D

D∑
d=1

f(θd)

p(θd)L(Y | θd)

]−1

where d denotes the posterior draws obtained using the Metropolis-Hastings algorithm. For

f , Geweke (1998) proposed a truncated multivariate normal distribution.

E APPENDIX: Gali-Smets-Wouters Model

E.1 Log-linearized equilibrium

We refer the reader to the original Gali, Smets, and Wouters (2012) paper for a detailed

description of the model and its notation. Compared to the model in Smets and Wouters

(2007), the model here features log-utility as well as no Kimball demand in wages. Moreover,

the model features unemployment. Here we present the log-linearized equilibrium conditions
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in line with the notation in their paper and the priors and posterior estimates of the model

parameters.

ĉt = c1ĉt−1 + (1− c1)Etĉt+1 − c
′

2{r̂t − Etπt+1 + εbt}

where c1 = (h/τ) / (1 + h/τ) and c
′
2 = 1−h/τ

1−h/τ .

ı̂t = i
′

1ı̂t−1 + (1− i′1)Etı̂t+1 + i
′

2q̂t + εqt

where i
′
1 = 1

1+β
, i
′
2 = i

′
1/ (τ 2Ψ) , and εqt is the investment specific shock .

q̂t = −
(
r̂t − Etπ̂t+1 + εbt

)
+ q1Etr̂

k
t+1 + (1− q1)Etq̂t+1

where q1 = rk/
(
rk + (1− δ

)
).

yt = cy ĉt + iy ı̂t + ĝt + vyv̂t

= Mp

(
αk̂t + (1− α)n̂t + εat

)
where cy = (C/Y ) , iy = (I/Y ) ,and vy = RkK/Y. Mp is the price markup in steady state.

π̂t − γpπ̂t−1 = β (Etπ̂t+1 − γpπ̂t)− π
′

1

(
−
(
αr̂kt + (1− α)ŵt − at

)
− µ̂Pt

)
where π

′
1 = (1−βθp)(1−θp)

θp
1

[1+(M ′p−1)ςp]
.

π̂wt − γwπ̂t−1 = β
(
Etπ̂

w
t+1 − γwπ̂t

)
− λw (ŵt − (ẑt + εxt + φn̂t)− µ̂wt )

where λw = (1−βθw)(1−θw)
θw

1
[θw(1+(Mw/Mw−1)ϕ))]

with Mw as the wage markup in steady state, εxt

is the labor supply shock, and

ẑt = (1− ν)ẑt−1 + v

[(
1

1− h/τ

)
ĉt −

(
h/τ

1− h/τ

)
ĉt−1

]
.

Note that

ŵt − (ẑt + εxt + φn̂t) = ϕût

where ût is unemployment. By using the unemployment rate ût as an additional observable,

Gali-Smets-Wouters can identify the labor supply shock and the usual labor markup shock

separately:
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l̂t = n̂t + ût

where l̂t is the labor force.

̂̄kt = k1
̂̄kt−1 + (1− k1) ı̂t + k

′

2ε
q
t

where k1 = 1−
(
I/K̄

)
and k

′
2 =

(
ı̄
k̄

)
(1 + β) τ 2Ψ.

k̂t = v̂t + ̂̄kt−1

v̂t =

(
1− ψ
ψ

)
r̂kt

where r̄k = 1−Ψ.

k̂t = ŵt − r̂kt + n̂t

rt = ρrrt−1 + (1− ρr)
(
rππt + ryŷgapt

)
+ r∆y∆̂ygapt + εrt

where ŷgapt is the deviation of actual output from the flexible price level in the absence of

the price and wage markups shocks. Unless noted otherwise, the notation for the shocks is

the same as reported in the main text of our paper for the Smets-Wouters model, except for

the new labor supply shock, which follows

εxt = 0.999 ∗ εxt−1 + εεxt

and has measurement error component as described below.

E.2 Estimation

We use the same data as in Gali, Smets, and Wouters (2012) (including unemployment as an

observable) as well as the same strategy as them regarding measurement errors on the wage

series (with two wage series used: compensation per employee (refered to as wc below) and

average weekly earnings (refered to as wE below)). Thus, we use the notation σwC for the

standard deviation of the measurement error on one wage series and σwE for the standard

deviation of the measurement error on the other. The average weekly earnings series is
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allowed to have a different trend growth from the common economy-wide trend, given by

τwE. Also, the price and wage markup shocks are normalized by a factor of 100 during the

estimation as in Gali, Smets, and Wouters (2012).

E.3 Prior distribution

Table 1: Parametrization of Priors in Gali-Smets-Wouters, Structural Parameters

Parameters Density Prior Mean Prior Standard Deviation

Ψ Normal 4.00 1.00
h Beta 0.70 0.10
θw Beta 0.50 0.15
ϕ Normal 2.00 1.0
ν Beta 0.50 0.20
θp Beta 0.50 0.15
γw Beta 0.50 0.15
γp Beta 0.50 0.15
ψ Beta 0.50 0.15
Mp Normal 1.25 0.12
rπ Normal 1.50 0.25
ρr Beta 0.75 0.10
ry Normal 0.12 0.05
r∆y Normal 0.12 0.05
π Gamma 0.62 0.10

100(β−1 − 1) Gamma 0.25 0.10

l Normal 0.00 2.00
τ Normal 0.40 0.10
τWE Normal 0.20 0.10
Mw Normal 1.5 0.25
α Normal 0.30 0.05
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Table 2: Parametrization of Priors in Gali-Smets-Wouters, Shock Processes

Parameters Density Prior Mean Prior Standard Deviation

ρa Beta 0.5 0.2
ρb Beta 0.5 0.2
ρg Beta 0.5 0.2
ρq Beta 0.5 0.2
ρr Beta 0.5 0.2
ρp Beta 0.5 0.2
ρw Beta 0.5 0.2
ρga Normal 0.5 0.25
µp Beta 0.5 0.2
µw Beta 0.5 0.2
σa Uniform 2.5 1.44
σ
b

Uniform 2.5 1.44

σg Uniform 2.5 1.44
σr Uniform 2.5 1.44
σr Uniform 2.5 1.44
σp Uniform 2.5 1.44
σw Uniform 2.5 1.44
σx Uniform 2.5 1.44
σwc Uniform 2.5 1.44
σwE Uniform 2.5 1.44
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E.4 Posterior estimates

Our posterior estimates are basically the same as in Gali, Smets, and Wouters (2012), with

some minor differences from the different number of draws.

Table 3: Posterior Estimates of Gali-Smets-Wouters, Structural Parameters

Parameters Posterior Mean Probability Interval (90%)

Ψ 3.8895 [2.0728 5.6435]
h 0.7437 [0.6258 0.8468]
θw 0.5563 [0.4402 0.6738]
ϕ 4.3831 [3.3576 5.3685]
ν 0.0244 [0.0096 0.0381]
θp 0.6310 [0.5349 0.7339]
γw 0.1812 [0.0723 0.2876]
γp 0.4856 [0.1938 0.7738]
ψ 0.5554 [0.3605 0.7506]
Mp 1.7452 [1.6121 1.8785]
rπ 1.8863 [1.6162 2.1517]
ρr 0.8573 [0.8259 0.8894]
ry 0.1675 [0.1090 0.2264]
r∆y 0.2553 [0.2013 0.3081]
π 0.6642 [0.4917 0.8340]

100(β−1 − 1) 0.3054 [0.1734 0.4382]

l -1.6492 [-3.9587 0.6353]
τ 0.3347 [0.2957 0.3745]
τWE 0.0748 [0.0256 0.1210]
Mw 1.2224 [1.1479 1.2968]
α 0.1712 [0.1416 0.2004]

F APPENDIX: Two-Sector Model

We present in detail below a two-sector model in the spirit of de Walque, Smets and Wouters

(2006).
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Table 4: Posterior Estimates of Gali-Smets-Wouters, Shock Processes

Parameters Posterior Mean Probability Interval (90%)

ρa 0.9782 [0.9676 0.9893]
ρb 0.4305 [0.1934 0.7053]
ρg 0.9723 [0.9556 0.9905]
ρq 0.7521 [0.6202 0.8861]
ρr 0.1000 [0.0211 0.1742]
ρp 0.4519 [0.0879 0.8123]
ρw 0.9831 [0.9654 0.9991]
ρga 0.6916 [0.5532 0.8314]
µp 0.5969 [0.2569 0.9668]
µw 0.6393 [0.3585 0.9295]
σa 0.4156 [0.3709 0.4583]
σ
b

1.5743 [0.4540 2.4475]

σg 0.4780 [0.4341 0.5216]
σq 0.4207 [0.3397 0.4944]
σr 0.2159 [0.1946 0.2366]
σp 0.1214 [0.0328 0.2221]
σw 0.0679 [0.0131 0.1307]
σx 1.1823 [0.8896 1.4640]
σwC 0.4559 [0.4073 0.5040]
σwE 0.3625 [0.3137 0.4114]
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F.1 Households

There is a continuum of households on the unit interval. Each household specializes in the

supply of a particular type of labor. A household that supplies labor of type-j maximizes

the utility function:

E0

{
∞∑
t=0

βtδt

[
log
(
Cj
t − ηCt−1

)
−$

(
Hj
t

)1+ϕ

1 + ϕ

]}
,

where Hj
t denotes the hours of type-j labor services, Ct is aggregate consumption, and Cj

t

is consumption of household j. The parameters β, ϕ, and η are, respectively, the discount

factor, the inverse of the (Frisch) elasticity of labor supply, and the degree of external habit

formation, while δt represents an intertemporal preference shock that follows:

δt = δρδt−1 exp(εδ,t),

where εδ,t ∼ i.i.d. N (0, σ2
δ ).

Household j’s flow budget constraint is:

PtC
j
t + PtI

j
t +Bj

t + Et
[
Qt,t+1V

j
t+1

]
= Wt(j)H

j
t + V j

t +Rt−1B
j
t−1 − Pta(ut)K̄

j
t−1 + Πt,

where Pt is the price level, Bj
t is the amount of one-period risk-less nominal government

bond held by household j, Rt is the interest rate on the bond, Wt(j) is the nominal wage

rate for type-j labor, Πt denotes profits of intermediate firms. In addition to the government

bond, households trade at time t one-period state-contingent nominal securities V j
t+1at price

Qt,t+1, and hence fully insure against idiosyncratic risk.

Moreover, Ijt is investment, RK
t is the rental rate of effective capital Kj

t = utK̄
j
t−1 where

ut is the variable capacity utilization rate, and a(ut) is the cost of capital utilization. In

steady-state, u = 1 and a(1) = 0. Moreover, in the first-order approximation of the model,

the only parameter that matters for the dynamic solution of the model is the curvature

χ ≡ a
′′

(1)

a′ (1)
. The capital accumulation equation is then given by:

K̄j
t = (1− d) K̄j

t−1 + µt

(
1− S

(
Ijt

Ijt−1

))
Ijt ,
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where d is the depreciation rate and S(.) is the adjustment cost function. In steady-state,

S = S
′
= 0 and S

′′
> 0. µt represents an investment shock that follows:

µt = µ
ρµ
t−1 exp(εµ,t),

where εµ,t ∼ i.i.d. N
(
0, σ2

µ

)
.

Each household monopolistically provides differentiated labor. There are competitive

employment agencies that assemble these differentiated labor into a homogenous labor in-

put that is sold to intermediate goods firms. The assembling technology is a Dixit-Stiglitz

production technology Ht =

(∫ 1

0

(
Hj
t

) θW,t−1

θW,t dj

) θW,t
θW,t−1

, where θW,t denotes the time-varying

elasticity of substitution between differentiated labor. The corresponding wage index for the

homogenous labor input is Wt =
(∫ 1

0
Wt(j)

1−θW,tdj
) 1

1−θW,t and the optimal demand for Hj
t

is given by Hj
t = (Wt(j)/Wt)

−θW,t Ht. The elasticity of substitution θW,t follows:(
θW,t

θW,t − 1

)
=

(
θ̄W

θ̄W − 1

)1−ρH ( θW,t−1

θW,t−1 − 1

)ρ
H

exp(εW,t − υW εW,t−1)

where εW,t ∼ i.i.d. N (0, σ2
W ).

Each household resets its nominal wage optimally with probability 1− αW every period.

Households that do not optimize adjust their wages according to the simple partial dynamic

indexation rule:

Wt(j) = Wt−1(j) [πt−1at−1]γW [π̄ā]1−γW ,

where γW measures the extent of indexation and π̄ is the steady-state value of the gross in-

flation rate πt ≡ Pt/Pt−1. All optimizing households choose a common wage W ∗
t to maximize

the present discounted value of future utility:

Et

∞∑
k=0

αkWβ
k

[
−δt+k$

(
Hj
t+k

)1+ϕ

1 + ϕ
+ Λt+k

(
1− τHt+k

)
W ∗
t XW,t,kH

j
t+k

]
,

where Λt+k is the marginal utility of nominal income and

XW,t,k ≡

{
(πtπt+1 · · · πt+k−1atat+1 · · · at+k−1)γW [π̄ā](1−γW )k , k ≥ 1

1, k = 0
.

Maximization is subject to the sequence of labor demand function effective while W ∗
t remains
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in place:

Hj
t+k =

(
W ∗
t XW,t,k

Wt+k

)−θW,t+k
Ht+k

Finally, due to the wage rigidity assumption, the nominal aggregate wage evolves accord-

ing to:

Wt =
[
(1− αW )W

∗1−θW,t
t + αW

{
Wt−1 [πt−1at−1]γW [π̄ā]1−γW

}1−θW,t
] 1

1−θW,t .

F.2 Firms

The final good Yt, which is consumed by the government and households as well as used

to invest, is a Cobb-Douglas aggregate of the flexible price and sticky price sectoral goods

(YF,t and YS,t respectively)

Yt = (YS,t)
ξ (YF,t)

1−ξ

which gives the following relative demand and price index expressions

YS,t
YF,t

=

(
ξ

1− ξ

)
PF,t
PS,t

YS,t
Yt

= ξ
Pt
PS,t

Pt =
1

ξξ (1− ξ)1−ξ (PS,t)
ξ (PF,t)

1−ξ .

These sectoral goods YF,t and YS,t are produced by perfectly competitive firms assembling

intermediate goods, YF,t(i) and YS,t(i), with a Dixit-Stiglitz production technology YF,t =(∫ 1

0
YF,t(i)

θP−1

θP di

) θP
θP−1

and YS,t =

(∫ 1

0
YS,t(i)

θP−1

θP di

) θP
θP−1

, where θP denotes the elasticity

of substitution between intermediate goods. The corresponding price indices for the sec-

toral consumption goods are PF,t =
(∫ 1

0
PF,t(i)

1−θP di
) 1

1−θP and PS,t =
(∫ 1

0
PS,t(i)

1−θP di
) 1

1−θP ,

where PF,t(i) and PS,t(i) are the prices of the intermediate goods i. The optimal demand for

YF,t(i) and YS,t(i) are given by YF,t(i) = (PF,t(i)/PF,t)
−θP YF,t and YS,t(i) = (PS,t(i)/PS,t)

−θP YS,t re-

spectively.

Monopolistically competitive firms produce intermediate goods using the production
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function in the sticky price sector:

YS,t(i) = (AtHS,t(i))
1−λKS,t(i)

λ,

where HS,t(i) and KS,t(i) denote the homogenous labor and capital employed by firm i and

At represents exogenous economy-wide technological progress. The gross growth rate of

technology at ≡ At/At−1 follows:

at = ā1−ρaaρat−1 exp(εa,t),

where ā is the steady-state value of at and εa,t ∼ i.i.d. N (0, σ2
a).

Similarly, monopolistically competitive firms produce intermediate goods using the pro-

duction function in the flexible price sector:

YF,t(i) = AF,t (AtHF,t(i))
1−λKF,t(i)

λ,

where HF,t(i) and KF,t(i) denote the homogenous labor and capital employed by firm i and

At represents exogenous economy-wide technological progress. The gross growth rate of

technology at ≡ At/At−1 follows:

at = ā1−ρaaρat−1 exp(εa,t),

where ā is the steady-state value of at and εa,t ∼ i.i.d. N (0, σ2
a). In addition, there is a

flexible price sector specific technology shock AF,t that follows:

AF,t = A
ρA,F
F,tt−1 exp(εAF,t),

where εAF,t ∼ i.i.d. N (0, σ2
AF ).

In the sticky price sector, a firm resets its price optimally with probability 1− αP every

period. Firms that do not optimize adjust their price according to the simple partial dynamic

indexation rule:

PS,t(i) = PS,t−1(i)πγPS,t−1π̄
1−γP ,

where γP measures the extent of indexation and π̄ is the steady-state value of the gross

inflation rate πS,t ≡ PS,t/PS,t−1. All optimizing firms choose a common price P ∗S,t to maximize
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the present discounted value of future profits:

Et

∞∑
k=0

αkPβ
kΛt+k

Λt

[
P ∗S,tXP,t,kYS,t+k(i)−Wt+kHS,t+k(i)−RK

t+kKS,t+k(i)
]
,

where

XP,t,k ≡

{
(πS,tπS,t+1 · · · πS,t+k−1 )γP π̄(1−γP )k, k ≥ 1

1, k = 0
.

In the flexible price sector, all firms choose a common price P ∗F,t to maximize profits:

P ∗F,tYF,t(i)−Wt+kHF,t(i)−RK
t+kKF,t(i).

F.3 Government

F.3.1 Monetary Policy

The central bank sets the nominal interest rate according to a Taylor-type rule:

Rt

R̄
=

(
Rt−1

R̄

)ρR [( πt
π∗

)φπ ( Yt
Y ∗t

)φY ]1−ρR (
Yt/Yt−1

Y ∗t /Y
∗
t−1

)dφY
exp (εR,t) ,

which features interest rate smoothing and systematic responses to deviation of GDP from

its target level Y ∗t and deviation of inflation from steady-state π∗ = π̄. As in Smets and

Wouters (2007) there is also a dependence of the interest rate on the growth rate of deviation

of output from the target level. We set the target level of output Y ∗t equal to the flex-price

output as in Smets and Wouters (2007) (here, the flex-price output is defined as the output

that would prevail in the presence of flexible prices and absence of the wage markup shock and

the flex-price sector-specific shock). R̄ is the steady-state value of Rt and the non-systematic

monetary policy shock εR,t is assumed to follow an i.i.d. N (0, σ2
R).

F.3.2 Fiscal Policy

Government spending follows an exogenous AR(1) process

G̃t − G̃ = ρG

(
G̃t−1 − G̃

)
+ εG,t,

where G̃t is government spending-to-output ratio, G̃ is its steady-state value, and εG,t ∼
i.i.d. N (0, σ2

G). Lump-sum taxes are available and hence we abstract from government debt

36



dynamics completely.

F.4 Equilibrium

Equilibrium is characterized by the prices and quantities that satisfy the households’ and

firms’ optimality conditions, the government budget constraint, monetary and fiscal policy

rules, and the clearing conditions for the product, labor, capital rental and asset markets:∫ 1

0

Cj
t dj +Gt +

∫ 1

0

Ijt dj + a(ut)

∫ 1

0

K̄j
t−1dj = Yt,∫ 1

0

HF,t(i)di+

∫ 1

0

HS,t(i)di = Ht,∫ 1

0

V j
t dj = 0,∫ 1

0

KF,t(i)di+

∫ 1

0

KS,t(i)di = Kt,∫ 1

0

Bj
t dj = 0.

Note that Cj
t = Ct, I

j
t = It, and K̄j

t−1 = K̄t−1 due to the complete market assumption and

the separability between consumption and leisure. The capital accumulation equation in the

aggregate is then given by:

K̄t = (1− d) K̄t−1 + µt

[
1− S

(
It
It−1

)]
It.

and the aggregate resource constraint then takes the form:

Ct + It +Gt + a(ut)K̄t−1 = Yt.

F.5 Stationary equilibrium

F.5.1 De-trending

The technology process At induces a common trend in output, consumption, real wage,

government purchases, investment, and capital. In addition, introducing non-zero steady

state inflation also creates a trend in nominal prices. The trend in nominal prices is the

same across sectors and in the aggregate. We will also define a relative price term. We
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detrend the variables as follows:

Ỹt ≡
Yt
At
, C̃t ≡

Ct
At
, Ĩt ≡

It
At
, K̃t ≡

Kt

At
, ˜̄Kt ≡

K̄t

At
, ỸF,t ≡

YF,t
At

, ỸS,t ≡
YS,t
At

w̃t ≡
Wt

PtAt
, rKt ≡

RK
t

Pt
, p∗F,t =

P ∗F,t
PF,t

, p∗S,t =
P ∗S,t
PS,t

, mcF,t ≡
MCF,t
PF,t

, mcS,t ≡
MCS,t
PS,t

,

pR,t =
PF,t
PS,t

, w̃St ≡
Wt

PS,tAt
, w̃Ft ≡

Wt

PF,tAt
, rK,St ≡ RK

t

PS,t
, rK,Ft ≡ RK

t

PF,t

G̃t ≡
Gt

Yt

Λ̃t ≡ AtPtΛt, Φ̃t ≡ AtΦt

F.5.2 Equilibrium conditions

Aggregator of the sectoral outputs is given by

Ỹt =
(
ỸS,t

)ξ (
ỸF,t

)1−ξ
(6)

while the sector specific production functions are given by

ỸS,t(i) = HS,t(i)
1−λK̃S,t(i)

λ (7)

ỸF,t(i) = AF,tHF,t(i)
1−λK̃F,t(i)

λ. (8)

The relative demand equations are given by

ỸS,t

ỸF,t
=

(
ξ

1− ξ

)
pR,t

where

pR,t =
PF,t
PS,t

. (9)

Moreover,

Pt
Pt−1

=

(
PS,t
PS,t−1

)ξ (
PF,t
PF,t−1

)1−ξ

or

πt = (πS,t)
ξ (πF,t)

1−ξ .
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Also note the definition that gives the law of motion for pR,t is

pR,t
pR,t−1

=
πF,t
πS,t

.

The capital-labor ratios evolves as

K̃S,t(i)

HS,t(i)
=
w̃t
rKt

λ

1− λ
(10)

K̃F,t(i)

HF,t(i)
=
w̃t
rKt

λ

1− λ
(11)

while the nominal marginal costs evolev as

mcS,t = λ−λ (1− λ)−(1−λ)
(
rK,St

)λ
w̃S1−λ
t (12)

mcF,t = λ−λ (1− λ)−(1−λ)
(
rK,Ft

)λ
w̃F1−λ
t

1

AF,t
(13)

with the following relationships holding by definition

w̃St
w̃Ft
≡ pR,t,

rK,St

rK,Ft

= pR,t

w̃t =
1

ξξ (1− ξ)1−ξ

(
w̃St
)ξ (

w̃Ft
)1−ξ

rKt =
1

ξξ (1− ξ)1−ξ

(
rK,St

)ξ (
rK,Ft

)1−ξ

.

Optimal price setting equation for sticky price firms is given by

0 = Et

∞∑
k=0

αkPβ
kΛ̃t+kỸSt,t+k

(
p∗S,t

XP,t,k∏k
s=1 πS,t+s

− xPmcS,t+k

)
. (14)

where

ỸSt,t+k =

[
p∗S,t

XP,t,k∏k
s=1 πS,t+s

]−θP
Ỹt+k.

Optimal price setting equation for flexible price firms is given by

0 = (1− xPmcF,t) . (15)
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Relatedly, aggregate price index.for the sticky price sector is given by

1 =

[
(1− αP ) p∗1−θPS,t + αP

(
π̄

πS,t

(πS,t−1

π̄

)γP)1−θP
] 1

1−θP

(16)

while the aggregate price index for the flexible price sector is given by

p∗F,t = 1. (17)

The marginal utility of income can be expressed as

Λ̃t =
atδt(

atC̃t − ηC̃t−1

) (18)

which implies a euler equation of the form

Λ̃t = βRtEt

[
Λ̃t+1

at+1πt+1

]
. (19)

Optimal condition for capital utilization is given by

rKt = a
′
(ut) (20)

while the optimality condition for capital is given by

Φ̃t = βEt

[
1

at+1

Λ̃t+1

{
rKt+1ut+1 − a(ut+1)

}]
+ (1− d) βEt

[
1

at+1

Φ̃t+1

]
. (21)

Moreover, the optimal choice of investment is governed by

Λ̃t = Φ̃tµt

[
1− S

(
at

Ĩt

Ĩt−1

)
− at

Ĩt

Ĩt−1

S
′

(
at

Ĩt

Ĩt−1

)]
(22)

+ βEt

 1

at+1

Φ̃t+1µt+1

(
at+1

Ĩt+1

Ĩt

)2

S
′

(
at+1

Ĩt+1

Ĩt

) .
Definition of effective capital is then

K̃t =
1

at
ut
˜̄Kt−1 (23)
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while the law of motion of capital is

˜̄Kt = (1− d)
1

at
˜̄Kt−1 + µt

(
1− S

(
at

Ĩt

Ĩt−1

))
Ĩt. (24)

Optimal wage setting is governed by

0 = Et

∞∑
k=0

αkWβ
kΛ̃t+kHt,t+k

[
w̃∗t

XW,t,k∏k
s=1 πt+sat+s

− xW,t+kδt+k$
Hϕ
t,t+k

Λ̃t+k

]
, (25)

where

Ht,t+k =

(
w̃∗t

XW,t,k∏k
s=1 πt+sat+s

1

w̃t+k

)−θW,t+k
Ht+k.

Aggregate wage then evolves as

w̃t =

[
(1− αW ) w̃

∗1−θW,t
t + αW

{
w̃t−1

(
π̄ā

πtat

)(πt−1at−1

π̄ā

)γW}1−θW,t
] 1

1−θW,t

. (26)

The aggregate resource constraint takes the form

C̃t + Ĩt + G̃tỸt + a(ut)
1

at
˜̄Kt−1 = Ỹt. (27)

Finally, the monetary policy rule is

Rt

R̄
=

(
Rt−1

R̄

)ρR ( πt
π∗

)φπ ( Ỹt

Ỹ ∗t

)φY
1−ρR (

Ỹt/Ỹt−1

Ỹ ∗t /Ỹ
∗
t−1

)dφY

exp (εR,t) (28)

and the law of motion of government spending is

G̃t − G̃ = ρG

(
G̃t−1 − G̃

)
+ εG,t. (29)

F.5.3 Steady state

Recall that in steady-state, we assume

ū = 1, a(1) = 0, and S̄ = S̄
′
= 0.

41



From (21) and (22), we get

r̄K = ā/β − (1− d) . (30)

Given r̄K , (12), (13), (14), and (15) imply

w̃ =

[
1

1 + x̄P
λλ (1− λ)(1−λ) (r̄K)−λ] 1

1−λ

(note mcS = mcF =
1

1 + x̄P
=
θ̄P − 1

θ̄P
). (31)

Given r̄K and w̃, (10) and (11) imply

K̃

H̄
=
K̃S

H̄S

=
K̃F

H̄F

=
w̃

r̄K
λ

1− λ
(32)

From the production functions, we can obtain

Ỹ S

H̄S

=
Ỹ F

H̄F

=

(
K̃

H̄

)λ

. (33)

From (24) and (27), we can compute

Ĩ

H̄
=
K̃

H̄
[ā− (1− d)] . (34)

C̃

H̄
=
(

1− G̃
) Ỹ
H̄
− Ĩ

H̄
. (35)

Importantly, from (32)-(35), we can easily obtain (note H̄ = 1)

C̃

Ỹ
,

Ĩ

Ỹ
,

K̃

Ỹ
.

The nominal interest rate is obtained from Euler equation

R̄ =
π̄ā

β
. (36)

We can obtain an expression for H̄ from (25) and (18)

H̄ =

[
w̃ā

x̄W (ā− η) C̃
H̄

1

$

] 1
1+ϕ

. (37)
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The steady-state hours H̄ depend on the preference parameter $. We normalize H̄ to unity

by calibrating $ appropriately.

Now, we need to determine the sector specific steady states. From (6) we get

ȲS
ȲF

=
ξ

1− ξ
(38)

while from (F.5.2) we get

p̄R = 1. (39)

Finally, from (7) and (8) we derive

HS

HF

=
KS

KF

=
ξ

1− ξ
. (40)
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F.6 Linear Model and Estimation

F.6.1 Model

̂̃Y t = ξ ̂̃Y S,t + (1− ξ) ̂̃Y F,t̂̃Y S,t = λ ̂̃KS,t + (1− λ) ĤS,t̂̃Y F,t = ÂF,t + λ ̂̃KF,t + (1− λ) ĤF,t̂̃Y S,t − ̂̃Y F,t = p̂R,t

π̂t = ξπ̂s,t + (1− ξ)π̂F,t
p̂R,t − p̂R,t−1 = π̂F,t − π̂S,t

r̂Kt = ̂̃wt − ̂̃KS,t + ĤS,t

r̂Kt = ̂̃wt − ̂̃KF,t + ĤF,t

m̂cS,t = λr̂K,St + (1− λ) ̂̃wSt
m̂cF,t = λr̂K,Ft + (1− λ) ̂̃wFt − ÂF,t̂̃wSt − ̂̃wFt ≡ p̂R,t

r̂K,St − r̂K,Ft = p̂R,t̂̃wt = (ξ) ̂̃wSt + (1− ξ) ̂̃wFt
r̂Kt = (ξ) r̂K,St + (1− ξ) r̂K,Ft

π̂s,t =
β

1 + βγP
Etπ̂S,t+1 +

γP
1 + βγP

π̂S,t−1 + κP m̂cS,t

0 = m̂cF,t̂̃Λt = − ā

ā− η
̂̃Ct +

η

ā− η
̂̃Ct−1 −

η

ā− η
ât +

ā+ η

(1− ρδ) (ā− η)
δ̂∗t̂̃Λt = R̂t + Et

[̂̃Λt+1 − π̂t+1 − ât+1

]
χût = r̂Kt̂̃Φt =

(1− d) β

ā
Et

[̂̃Φt+1

]
+

(
1− (1− d) β

ā

)
Et

[
Λ̃t+1 + r̂Kt+1

]
− Et [ât+1]

̂̃Λt = ̂̃Φt + µ̂t − ā2S
′′
(̂̃I t − ̂̃I t−1 + ât

)
+ βā2S

′′
Et

[̂̃I t+1 − ̂̃I t + ât+1

]
̂̃Kt = ût +

̂̃̄
Kt−1 − ât̂̃̄

Kt =
1− d
a

( ̂̃̄
Kt−1 − ât

)
+

(
1− 1− d

a

)(
µ̂t + ̂̃I t)

̂̃wt =
1

1 + β
̂̃wt−1 +

β

1 + β
Et ̂̃wt+1 − κW

[̂̃wt − (ϕĤt − ̂̃Λt +
ā+ η

(1− ρδ) (ā− η)
δ̂∗t

)]
+

γW
1 + β

π̂t−1 −
1 + βγW

1 + β
π̂t +

β

1 + β
Etπ̂t+1 +

γW
1 + β

ât−1 −
1 + βγW − βρa

1 + β
ât + κW x̂

∗
W,t(

1− G̃
) ̂̃Y t =

C̃

Ỹ

̂̃Ct +
Ĩ

Ỹ

̂̃I t + ̂̃Gt + r̄K
K̃

Ỹ
ût
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Ĥt = ξĤS,t + (1− ξ) ĤF,t̂̃Kt = ξ ̂̃KS,t + (1− ξ) ̂̃KF,t

R̂t = ρRR̂t−1 + (1− ρR)

[
φππ̂s,t + φY

(̂̃Y t − ̂̃Y ∗t)]+ φdY ( ̂̃Y t − ̂̃Y t−1) + εR,t

Finally, exogenous variables evolve as follows:

δ̂∗t = ρδ δ̂
∗
t−1 + εδ,t

µ̂t = ρµµ̂t−1 + εµ,t

ât = ρaât−1 + εa,t

ÂF,t = ρa,F ÂF,t + εaF,t

x̂W,t = ρW x̂W,t−1 + εW,t − υwεw,t−1̂̃Gt = ρG
̂̃Gt−1 + εG,t
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F.7 Estimation

F.7.1 Data

We use the same data as in Smets and Wouters (2007) from 1966:I to 2007:IV.

F.7.2 Prior distribution

We will calibrate d, G̃, and 1/
(
θ̄W − 1

)
at the same values as in Smets and Wouters (2007)

and ξ and ρa,F at the same values as in deWalque, Smets, and Wouters (2006). We also

normalize the wage markup and the flex-price technology shock by a factor of 100.

Table 5: Parametrization of Priors Two-Sector Model, Structural Parameters

Parameter Density Prior Mean Prior Standard Deviation

d calibrated 0.025

G̃ calibrated 0.18
ξ calibrated 0.85
λ Normal 0.30 0.05
γP Beta 0.50 0.15
γW Beta 0.50 0.15
η Beta 0.50 0.1
αP Beta 0.50 0.1
αW Beta 0.50 0.1
1/
(
θ̄P − 1

)
Normal 0.15 0.05

1/
(
θ̄W − 1

)
calibrated 0.5

ϕ Gamma 2.00 0.75
χ Gamma 5.00 1.00

S
′′

Gamma 4.00 1.00
100(ā− 1) Normal 0.54 0.1
100(π̄ − 1) Normal 0.62 0.1
100(β−1 − 1) Gamma 0.25 0.1
φπ Normal 1.5 0.15
φY Normal 0.13 0.03
φdY Normal 0.13 0.03
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Table 6: Parametrization of Priors Two-Sector Model, Shock Processes

Parameters Density Prior Mean Prior Standard Deviation

ρδ Beta 0.60 0.20
ρµ Beta 0.60 0.20
ρa Beta 0.60 0.20
ρa,F calibrated 0.99
ρW Beta 0.60 0.20
υW Beta 0.50 0.20
ρR Beta 0.60 0.20
ρ̃G Beta 0.60 0.20
100σδ InvG 0.50 1.00
100σµ InvG 0.50 1.00
100σa InvG 0.50 1.00
100σa,F InvG 0.5 1.00
100σW InvG 0.5 1.00
100σR InvG 0.10 1.00
100σG InvG 0.50 1.00
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F.7.3 Posterior estimates

Table 7: Posterior Estimates Two-Sector Model, Structural Parameters

Parameter Posterior Mean Probability Interval (90%)

λ 0.1166 [0.0814 0.1534]
γP 0.1030 [0.0370 0.1667]
γW 0.1821 [0.0987 0.2650]
η 0.6766 [0.5790 0.7782]
αP 0.7886 [0.7865 0.7902]
αW 0.5617 [0.5078 0.6172]
1/
(
θ̄P − 1

)
0.1435 [0.0654 0.2198]

ϕ 3.9326 [2.5851 5.2326]
χ 5.6442 [3.9603 7.2807]

S
′′

6.0680 [4.0670 7.9204]
100(ā− 1) 0.5226 [0.4313 0.6133]
100(π̄ − 1) 0.6388 [0.4788 0.8001]
100(β−1 − 1) 0.1754 [0.0813 0.2668]
φπ 1.6356 [1.4402 1.8298]
φY 0.0512 [0.0212 0.0796]
φdY 0.1786 [0.1421 0.2162]

Table 8: Posterior Estimates Two-Sector Model, Shock Processes

Parameter Posterior Mean Probability Interval (90%)

ρδ 0.6136 [0.4748 0.7558]
ρµ 0.7892 [0.7198 0.8571]
ρa 0.0747 [0.0184 0.1276]
ρW 0.8134 [0.7624 0.8663]
υW 0.3188 [0.1386 0.4954]
ρR 0.8008 [0.7642 0.8374]
ρ̃G 0.9815 [0.9675 0.9965]
100σδ 0.1685 [0.1255 0.2097]
100σµ 5.0681 [3.3722 6.7231]
100σa 0.9340 [0.8385 1.0260]
100σa,F 0.0652 [0.0645 0.0662]
100σW 0.1943 [0.1276 0.2575]
100σR 0.2596 [0.2345 0.2843]
100σG 0.4949 [0.4500 0.5393]
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