A APPENDIX: Proofs

A.1 Expositional Model

Here, we detail some of the calculations of the expositional model in the text which is based

on exogenous nominal spending. We have the following key equations
Abt = pAEt—l + EtD
™= KY, + BE T

D, = BY;.

The latter implies
Af)t =T+ }A/;t - }A/;t—l-

The system has a solution of the following form
Y, = Y3AD, +Y,Y,

Ty = WdAﬁt + Wth_l.

Some algebra using the method of undetermined coefficients implies that

v (1—ppB)
T (It k—pB+B(1-Y,))

Aﬁt + Yyift—l

where Y, is the root less than one of the quadratic equation

Y;_WY‘U—F%:O'

Focussing on p = 0 for simplicity, this directly implies

2
1
[(1+H+B(1—Yy))]
117

VAR(Y;) = VAR (Af)t> —T*VAR <ADt> .

We have verified analytically that I' is decreasing in x and numerically that the same holds

true for any value of p between 0 and 1.



A.2 Proofs of Propositions 1-5

In the following, to keep clutter to a minimum, we only keep track of A; and 1, since n;
shows up in the same way as o _l(wt — Eybyq) and py and 7 as A;. Then, under endogenous

nominal demand and Taylor rule, the following equations hold:

Y, = Etﬁﬂ —0(iy — Eymypr) + 0y — Exbyn

™= kKY, — KYAAL + BE T

it = Gy + ¢th + M

where demand and technology shocks evolve first-order auto-regressively as ¢, = pyt—1+
14+¢
o~ 1+¢"
First, only consider demand shocks ;. The system has a solution of the following form:
Y, = Yyiby, m = mythy and 4y = iyt which implies that EiYiy = Yypyty and Eimey =
Ty Pyt
Matching coefficients yields the following expressions:

| o(1= 5p0) (1= o) |
L@ = pp + 00y,) (1= Bpy) + Ko (6r — py)

ef and Ay = pa Ay + 6?, and v4 =

S { ko (1 —py) }
L@ = pp + 00y,) (1= Bpy) + Ko (6r — py)

This implies the following expression for the variance of output and inflation:

a(1— Bpy)(1 = py)
(1= py +0¢y)(1 = Bpy) + okldr — py

o _ Ko (1= py) 2var
o) = (= o =)

var(Y; /i) = ( ])2 var(yr)

Then, the derivative of the variance of output with respect to x is:

OVAR(Y:/vr) _ g (o — py)(1 = Bpy)*(1 = py)?
Ok (L= py + 0, (1 = Bpy) + 0kldx — pyl)

Svar (i)

If (¢r — py) > 0, then this derivative is always negative. The sign of the derivative flips iff
(px — py) < 0. Note that the denominator is always positive which follows from the bounds

implied by the determinacy condition.



Next, consider a demand shock at the ZLB. The expression for the derivative of output

with respect to k is given by:

s (1=py)(1 = Bp)po ~0
Ok [(1—u)(1— Bp) — po]’

Now, only consider technology shocks A;. The system has a solution of the following
form: Y, = Y A, m = wmaA; and iy = 14 A; which implies that F,Y;.1 = YapaA; and

Eymi 1 = mapa Ay Matching coefficients yields the following expressions:

Y, = KO [Qr — pa] "
(1 —pa+0dy)(1 - Bpa) + kolpr — pal]
_ K741 — pa+ogy)
TA —

(1= pa+o¢y)(L = Bpa) + ro(Ppr — pal]

This implies the following expression for the variance of output and inflation:

. B ROYA [wa - IOA] i var
var(Yy/Ay) = ([(1 —pa+09,)(1 = Bpa) + Kko[dr — PAHVA) )

] (L= pa 70,
var(m/d.) = ([(1 —pa+00,) (L~ Bpa) + ro(dr pAH“> )

Then, the derivative of the variance of output with respect to s is:

B RO (¢7r _pA)
—2“[u_pA+a%X1—ﬁmo+%0@w—“”}

7[ dm—anu—wma—m+v%>]
(1 —pa+0¢,)(1—Bpa)+ ko (¢r — PA>2
>0

since the denominator is always positive which follows from the bounds implied by the
determinacy condition.

Next, notice that the shock n; appears exactly in the same way as v, — 41/, 1. Hence, the
derivative of output has the same sign with respect to x, depending on ¢, —p,, : W <0
if ¢, —p, < 0 and W > 0if ¢, — p, > 0. The coefficients in the case of an idiosyncratic



monetary policy shock 7, are:

V. — —o(1 — Bpy)

! 1_pn+0¢y+0’€(¢7r_pn)
o —o(1 = Bpy)
y =

1= Bpy 1 = py+ 09y + 0k(dr — py)

Finally, consider a markup shock /i, — shocks to labor taxes 7, have isomorphic deriva-
tions. First, note that we have YV, =Y, — Y = _0'++¢/lt' Then, applying the method of

undetermined coefficients in a setup analogous to the above yields the following coefficients:

Y, = — (011+ ¢) ko (ér = p,) ]

(1= pu+09y)(1 = Bpyu) + ko (dr — pp)

(1 —ﬁﬁpu) (0‘11+ ¢) {(1 = /)u_ Jflagy?(pf)—(lﬁfl)pizz((bjﬁi — pu)}

T, = —

This directly implies that the variance of output is

(773)

Taking derivatives of the variance of output with respect to kappa yields:

RO (d)ﬂ' B pu)

ver (o) = (L= b 00, (1 o) + 7 (9 — m” verli)

dvar(Y;) oy oy,

ok " Ok
o (60— ) |

1
=2 (0'_1+¢) (1_pu+0¢y)(1_Bpu)"i_’fo-(wa_p;L)
( 1 ) (1 —Put O-gby)(l — ﬁpu)o-(gbﬂ — pu)

U_1+¢ ((1 _pu+0¢y)(1 _Bpu) + Ko (Qbﬂ _pu>>2

—9 (1_p#+a¢y)(1_ﬁp#) UCLT’(Y)

k(1= pu+09,)(1 = Bpu) + ko (dr — pu)) t
>0

Note that the denominator is always positive which follows from the bounds implied by the

determinacy condition.



A.3 Welfare - Proofs of Propositions 6-11

Proof of Proposition 6 For the technology shock, first note the for Y,* = U?{f ¢/1t, we have
that

var (=) = [(al—1+ +¢¢) [(1 =y ila;yfﬁf )—(;p_jﬂ; ﬁi - ﬂAJ ] |

Second, we take derivatives of the weighted variance term:

04 t 1 10 ¢

PR — () + 07
_ Rk e (1—pA+<f¢Y)(1—ﬁpA)—fw(cbw—pA))
‘9[<1—@p,4> var (¥, ’“((1—pﬁa%)(l—ﬂpA>+m<¢ﬁ—pA>

(1 —pa+0¢y)(1 — Bpa)
RO

(1= pa+0¢,)(1 = Bpa)
RO

>0if ¢ —pa <y =

<O0if ¢y —pa>Ty=

For the demand shock, Y = Y;. Since var(m) =
implies that

#var(lft), some algebra directly

0%var(m) 1 1 Ovar(m)
T - hgvartm) H0 =5

_0 17 (1= py +00y) (1= Bpy)

K2 m)[(l—ﬂpw)} [ 1+2(1—P¢+U¢y)(1—ﬁpw)JrM(%—Pw)}
_ 0 k1P (L= py+00,)(L = Bpy) — Ko (dr — py)

= aver ) {u - w} ((1 o 00,) (1 Bpe) T ro(on = p¢>)
>Oiﬁ¢ﬂ_p¢<rw:(1—p¢+am¢;,)(1—ﬁp¢)

(1—py+0ody)(1—Bpy)

RO

<Oiff¢w—pw>I‘¢:




For the markup shock, some algebra directly implies that

0%var(m) _ 0 (0 =putody)
0K N K2 o (¢7r - pu)

<O0iff ¢p —p, >T, =

2 (1= py + 06,)(1 = Bp,) — k(s — py)
var(¥:) <<1 o+ 00,) (1= Bpa) + Ko (o — m)
(1— Pu+ opy)(1 — BPM)

(1 - pu + U¢y)(1 - ﬁpu)

>0if ¢p —p, <)y =

Proof of Proposition 7 Noting that for the demand shock v, it holds true that Y, =Y,

we take derivatives of W with respect to « :

o _
ok

OLvar (1) dvar (Y;)
o —1 K t
(9+07) 0K - 0K

(¢ + o Y var(Y;)
(1= py +0¢y)(1 = Bpy) + ko(dr — py)
(1= py + 06,) (L~ Bpy) — 50 (6x — pu)) + 20(6s — py)

(1 Bpy)?

o(1 — 1— o
<O (6= pu) < Ay =2 0(2(61p @(ﬂp¢)5120)¢y)
0(1 — Bpw)(l — Pyt U¢y)

o(2(1 — Bpy)? + Kb)

(_

>0 iff (¢r — py) > Ay =

Proof of Proposition 8

First, consider the derivative of the weighted inflation term with respect to s:

82 t 1 1 a t
—”vgl:(ﬂ ) = —Qﬁvar(w) + GE—UG@T:T )
2
:i (L —putogy) <(1_pu+0¢y)(1_ﬁpu)_”?U(@r—Pu))
K2 [ o (¢7r - py) UGT(Y;) (1 —Put U¢y)(1 - Bpu) + /{U(wa - pu)

(1 —pu+00y)( - Bpy)
RO

(1 —Put 0¢y)(1 — Bpu)
RO

<0iff ¢r —p, >T, =

> 0iff ¢or —p, <T) =




Second, since Y,* = 0, taking derivatives of welfare with respect to x yields after some algebra:

ow 1

—=—(¢+07"

ox =) A e b) (L= Bp) T e (6= )
2

(9 [(1 — Put 0Py

var (Yy)

(1—- Pu+ ‘7¢y)(1 - 5/)“) — K0 (pr — Pu) +2(1 - P+ U¢y)(1 - ﬁpu))

E U(¢ﬂ_pu)
2
01— putogy) _ _
<01f;[ a(gb:—pu) (I—pu+0od,)(1—Bpu)

—k0(dn — pu) + 21— pu+00,)(1 — Bp,) > 0

oi?[=ptoo))]
K U(¢”_pu)

— 60 (¢r — pu) +2(1 = pu + 0¢y)(1 = Bpu) <0

(1- Pu+ ‘7¢y)(1 - Bpu)

A sufficient but not necessary condition for %—IZ < 01is (¢r — pu) <O.
Proof of Proposition 9

For technology shocks, Y,* = %flt This implies that

= () [ty

so that

Ovar(Y, - Y¢) _ ( 1+¢ ) 7(0x = pa) (L= Bpa) (L = pat06,))*
Ok o'+ 9) (1 —patody)(l—PBpa)+ko(dx—pa))?

_ U(¢7r - pA) var e

= A or 08 (L= Bo) +ro 6n =y 7Y

> 0iff (¢r —pa) <0
< 0iff (¢r —pa) >0

Proof of Proposition 10



We combine results of Propositions 6 and 9, which directly yields after some algebra:

o _
ok

(_

0var (m) N Ovar (Y, — Y)

B on

v
(1—Bpa)’
<O (dr —pa) < A=

(1= pa+09y)(1 = Bpa) — £0(¢px — pa)) +2 0(dr — pa))

1—Bpa)(l — pa+ody)
o(2(1 = Bpa)* + k0)
01— Boa)(1 — pa + 0y)
o(2(1 — Bpa)? + k0)

> 0if (¢r — pa) > Ag =

ZLB

When 1); becomes negative enough, the ZLB binds. We assume, like in Eggertsson and
Woodford (2003) and Eggertsson (2008) that the shock to ¥ = g < 0 in period 0 and
which reverts back to steady state 1)g = 1) > 0 with a fixed probability 1 — i every period

thereafter. Under discretion, out of the trap, optimal policy is able to achieve Y, —Y,*, m, = 0.

At the ZLB, we have i, = § — 1.

First, consider the Phillips curve (no shock to Y;* now) where we denote by S the time

in the trap:
Ts = IiYS + 6/171’3.

Next, consider the IS equation (no shock to ¥;* now)
Ys = uYs +opuns + (1 — p)s

Some algebra directly implies that

(1—Bu)

A R Gy gy

Vs

and
K

=) (L B) —ron’®

s =

Note that here Y,* = 0. Consider each derivative of the welfare function with respect to .

First, some algebra directly implies that

dvar(Ys) 201
7l e vy fwuvar (Ys) >0




Next, since mg = ﬁYS, we have that

dvar(ms) K 1 K ? Quar(Yy)
O _2(1—Bu) 1—BMUW(YS)+(1—B;L) Ok

:{ (1—p) (1= Bp) } 2%
[(1—p) (1= Bp) — kopl] (1 - Bp)

This implies that the derivative of the weighted variance of inflation is

svar (Yg) >0

dLvar (s) 6 6 0var(ng)
T vl G LT

_ [(1—u)(1—5u)+mu] 0
(1—p) (1= Bp) — kop| (1—Bu)

Therefore, the derivative of welfare with respect to x is negative:

svar (Ys) > 0

ow

— < 0.
ok

since all loss components have a positive derivative with respect to x and are multiplied by
—1.

A.4 Optimal policy

Optimal policy under discretion can be characterized easily here since there are no state

variables. The problem is just a static one of minimizing
-1 0 2 e\2
Li=(¢+07") Em%—(Y}—Y;)

subject to
Ty = K/}/; — K)}/;n + 6Etﬂ-t+1-

Lets reformulate it as minimizing
_ 0 2 e\2
Ly = Eﬁt + (Y = Y)

subject to

=K = Y)+r (Y =Y") + BEm.



The FOC of this problem leads to the simple, well-known targeting rule
Om + (Y —YS) =0.
Now we have to work with two equations only to pin down the solution of the model

o, + (Y, — V) =0

=K Y = Y)+r (Y =Y") 4+ BEmn

Replace the first into the second
Ty = —/§97Tt + K (Y;e — Y;n) + 5Et7Tt+1

Now replace for
1

ye _yn —
¢ t o1+ ¢

fie
Then get

T = —KOT + /‘ia,l—ﬂt + BE T4

+¢

This gives the following first-order forward looking difference equation in m;

K A
(1 —+ /i@) T = 5Et7Tt+1 + mﬂt

Guess
Ty = Tt

which gives

Eimir = Tupufle
Replace above and match coeffcients to get

K
T 0T+ 6) (11 #0— Bpy)

Thus,

B 1 ( K )A
T o o) \(I+r0—Bp,) )

10



This implies that

0 K
Y, - Y% = —0mn = — 1.
W)= —om =~ (= )
We first start with establishing what happens to the variance of output when prices
become more flexible. First note that two cases are particularly easy. For demand shocks,
output does not respond at all as long as the ZLB does not bind. That is, in that case, we

have

Y, =0.

So variance of output does not depend on price stickiness.

For technology shocks, output responds one-to-one since we have
m =Y, -Y) =0

This means )
1+e A,
ol +¢

Again, variance of output does not depend on price stickiness.

Y, =Y =

For markup shocks, we have as the solution for output (since Y;* = 0)

v — _ 0 ( K >A
T o o) \(L+ KO- Bp) )

var (Y;) = 6 ((1 T /@0/{— 50#))2.

dvar (Yy) 62 (1 — Bp,) 2k
Ok (1+k0—Bp,)’

Now, lets look at the effects of increased price flexibility on welfare. As is well-known

Then

> 0.

with technology shocks only, both 7, and (Y; — Y,¢) can be put to zero and one gets to first-
best. Thus, there is no interesting relationship between price flexibility and welfare. With

mak-up shocks, there is a trade-off as can be seen above.

11



For mark-up shocks, we want to evaluate
-1 0 e
W=—(¢p+07") ;var(ﬂt)—i-var(Yt—Yt)

We have as the targeting rule
O+ (Y —YS) =0

which gives
0*var (m;) = var (Y; — Yy).

Then, welfare is given by

W=—(p+0")0 K% +e) var (m)} .

We have as the solution of the model

Ty =

<a—11+ ?) ((1 e m) f

or

var (m) = [((,_11+ ) ((1 + i Bpu))} -

We can then establish how variance of inflation depends on price flexibility.

dvar () _ (1—Bpu) 2K -0

Or (1 + kb — 5Pu)3

Then, we can establish how the welfare relevant variance of inflation depends on price flexi-
bility
0%var (n 1— kO —
K (t): il ﬁp“3>01f1—ﬁ9>ﬂpu.
8'% (1 + ’%9 - ﬁpu>

Thus, while with a low p,, this variance of welfare relevant inflation term is increasing with

greater price flexibility, it can decrease for a high enough p,. Third, we can consider how
the variance of welfare relevant output gap depends on increased price flexibility (this is

basically the same as the variance of output since Y, = 0)

Quar (Y —YF) _ 02 (1 —Bpyu) 2k -0
Ok (14 K0 —Bp,)°

12



Now, lets finally move to welfare. Replace the expression for inflation above, along with

the relationship between to get m;, and (Y; — Y}©) to get

1

V=g

k(1+6k) ]
(14 K0 — Bp,)°

For simplicity, first consider p, = 0. Then, we have

W:‘<all+¢>9{<1fme>}

It is easy to see that in such a case
ow
oK

When we consider a general p,, however, note that this is not always the case. In particular,

< 0.

for a high enough p,,, it can be the case that increased price flexibility leads to higher welfare.

Generally,
oW 1+ kb —Bp,(1+2k0)

Ok (1+ k0 — Bp,)°

The denominator is always positive, but the numerator can take either positive or negative

value. Thus,
ow 14 k0

haad -
Ok <01 1—|—2/16’>

There are two forces at work: the variance of the welfare relevant output gap is always

Bou-

increasing in price flexibility, but the variance of the welfare relevant inflation can decrease
with higher flexibility if p, is big enough.

Finally, we take into account the zero lower bound on interest rates explicitly. This
happens when r}' becomes negative enough so that the ZLB binds. We assume, like in
Eggertsson and Woodford (2003) and Eggertsson (2008) that the shock to rj = 7% < 0 in
period 0 and which reverts back to steady state r¢ = r > 0 with a fixed probability 1—u every
period thereafter.

Under discretion, out of the trap, optimal policy is able to achieve Y, — Y, m = 0. At
ZLB, we have i; =  — 1.We have to consider two cases: when the economy is in a ZLB
situation and when it is out of it. Out of the trap, as discussed above, in this simple model
under discretion, both Y; —Y,¢ and 7, are equal to zero when the shock that hits the economy

is a shock to r}' such as a preference shock. In the trap, iy = 8 — 1.

13



Now, consider the Phillips curve (no Y;" shock now)

m = KY; + BEym

which we rewrite as
TS — RYS + 6#71’5.

Next, consider the IS equation (no Y;" shock now)
Y, = EthJrl - U(it - Etﬂ'tﬂ - 7“?)
which we rewrite as

Ys = uYs +opmg + org

Lets manipulate these two expressions

s = (1 —li6,u> YS

(1—=p)Ys —org
o

TS =

and combine them to get

K (1= p)Ys—org
(1—6u) Yo =

op
or 1 1
. . 1,
K op ) - (1—5u>] Yo= s
[(1—u)(1—5u)—fwu} Vo= Lpm
o (1= Bp) po
T U (1= ) — oS
and then

e (1 —%u) ¥

7TS:< K ) U(l_ﬁﬂ) rn
1—Bp) (1—p) (1= Bu) — kop °

14



OR rn
(1—p) (1= Bp) —rop ¥

TS =
For welfare, we want to evaluate
—1 0 e
W=—(¢+0c7") Evar(m)—i—var(Yt—Yt)

which here is 0
W =— (gb + 0'_1) [Evar (m¢) + var (Yt)}

First, we have

1—pBpu
S R CEE N
i O Lo
W=—(o+07) |2 (1 _*‘BM)QW (Ye) + var (Ys)
W= (640 [(g (1 _"”@)2 n 1) var (V)
W= (640 Ku _QZM)Q n 1) (ysﬂ |

dvar(Ys) _y { o(l—pu) ] o(1—pBu)
i (= 1) (L= ) = rrm ) (1~ 10) (1 — ) — rons)

5o >0

which also gives

dvar(Ys) 201
o (L) (1 Bu) —rou ¥s)-

M:Q( K ) 1 W(YS)+< K )28var(YS)

Next

0K 1—=8u) 1—75u 1—pBu ok

15



duar(ms) K 1 K 2 201
o (1 - 5u> =g Fs) + (1 - ﬁu) (1) (1= Bp) —rop (¥s)

Pl - F e w} ’ (1 —KBM)QUW s

Jvar(mg) _ [ (1—p)(1—PBu) ] 2K
Or (L =) (L= Bp) — kop] ] (1— Bu)

Finally, the weighted variance of inflation term

svar (Yg) >0

0%var (mg)
Ok

0 0 dvar(m
= —var(7s) %

M _ K 21}&7, i Q (1 — /L) (1 — B,u) 2K var
() 0 T ) T g

0%var (mg) 0 ar (1—p) (1= Bpu) 20 var
(= LR e e ] e e
dfvar (rs) [ 2(1—p) (1 = Bp) var
ok [ H [[(1—/1)(1—5#)—%0#]” (1 - Bu)* o)

0%var (rs) _ [ Ry v (45) > 0

Ok (L= p) (L= Bp) —rkop] (1—Bp)
%o oW
5 <0.

We can also study optimal monetary policy under commitment, which means specifying a
fully state-contingent path at ¢ = 0 for the endgeonous variables to minimize the loss-function

subject to

T = KkY; — RY," + BEmi.

16



Lets then define the Lagrangian
E :lEOiﬁt Q’ﬂ‘Q + (}/; . Ye)2
2 — K t t
+ By Blare{m — k(Y= V) = 6 (Y = Y)") = BBy}
t=0

where {q1,} is the sequence of Lagrange multiplier.

First order conditions are given as:

0
omy : 0= Eﬂ't +q1e — 11

oY, —=Y"):0=(Y; =Y — kg,

Consequently, the equilibrium time path of

{YA;% T, q1,t}

t=0
is characterized by the following 3 equations
mo= k(Y —Y) = w (Y =Y) = fEmp
0
O0=-—m+qs—qre1
K
0=(Y; = Y) = rqus
given exogenous processes and initial conditions. We assume that all the variables are in the

steady state initially: g_; = 0.

So assuming the ”time-less perspective” we have as the ”targeting rule”

O, + (Y = Y) — (Yo — Y, )) =0

17



B APPENDIX: Wage and Price Flexibility

B.1

General model

Woodford (2003) presents a simple model with wage and price stickiness that can be sum-

marized under a Taylor rule as

where we have that @} = (1 + w,)

}A/;f EtY;H-l - U(
T = kp(Y: — V") + &(

T = Ko(Y: = Y}")

it = ngrﬂ-f + gbyyt

Wy = Wy + 7 — 7}

TI)t — UA]?) + 5Et7'['tp+1

- Sw (uA)t

ar —wyY," and V" =

€
Et”t+1 )

—wy') + BET,

14w
o 1tw

ay _01+w'ut+al+

the welfare- objective around the efficient steady state is given by

L = Ap(md)” + () + Aa(Ye — Y))
Here, we have fw = ( ai(l_i_yga /B): fp ( aiﬁiwpapp)ﬁ)a = fw (ww + o 1) y Rp = fpw]n Ry =
(1-aw)(1-aup) (wuto ") (1-ap)(1-apf) _ w 065" 00y 60"
o (vlw) 2 = pap ’ (1+w1;€p) Ap = OpEpy +95¢h &l 0, Aw T 006 0w, En
B —14 _ h — f(h _
0,and A\, = m > 0. Moreover, v = “hh , O = ) We = vop, and w = Wy, +wp.
Assume the production function (i) = Atht() to get on = 1/v, wy = v/7v, and
1—
U.)p = T’Y

B.2 Simplified Approximate model

Next, we make the assumption that simplifies the model and leads to sharp insights.

assume that k, = K, = K. After some manipulation and using that Aw, = 7"

obtain

Awy = — (& + &) (wy

18
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and the solution for w; can then be written as

wy = Lywe—q + Tpwy

<5+n<ww+104 +é)+1)ﬂ 4 % =0 and

where I, is the root less than 1 of the polynomial p? — 3

_ _ Ty 1 1
Iy = 1_/3FwPAK/ <Ww+0‘1 + W_p> ’
As our second result, in this simplified case, the rest of the model equations reduce to

three equations as given by

1
T = k(Y = Y") + BEmE + r— (w; — wy')
p

S , » .
Yy = EYi — o(iy — By — )

1 = ¢7T7Ttp + ¢yf/;t

This then implies that our previous result on demand shocks will go through fully in this
case.

For productivity shocks, it is tedious to analytically show how the variance of output
varies with . The solution of the model however can be shown in closed-form. For simplicity,

assume log-utility (¢ = 1) and i.i.d. technology shocks (p4 = 0). Then,

Y/t = Yaa; + Y, wy

where
YA:R(1+M_II’>~Y:— K(pr — )
o BT [ (6~ ) = (T — 1= 6,) (1= BT)]

This together with
wy = Lywi—q + Tpwy!

and

completes the solution.
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B.3 Discretion

The objective function is given by the following:

Ly = )‘p(ﬂtp)Q + )‘w(ﬂg})z + )‘x({/t - 26)2

0,8, 0wy, & ol tw
A= o 91’ > 0 = ’19 e 0N = e 0
Pép + w‘bh éw pgp + w¢h éw pép + w¢h éw
. 1+w
Yo = o1 —I—wat

Given our specific assumptions, w; is an exogenous process and hence there are no endogenous
state variables in the model. This greatly simplifies things as the discretion problem just
reduces to a period by period minimization problem.Also, note that our assumptions &, =
ﬁn, & = i/ﬁ and Aw;, = 7" — 1} and the assumption of log utility (for expository

reasons only) allow us to write the following Lagrangian after some manipulation:

1 N N
L0 =5 Do) 4+ Xl + 7)? + Au(Fy = ¥
- - 1 1
+ quy {Wf — k(Y. =Y) = BEY  + k—ay — /ﬂ—wt}
Wp Wp

where the central bank will take expectation functions as given since there are no endogenous
state variables and we use the fact that the IS equation is not binding. This yields the
following FOCs:
oL .
8_775 =7 + A (AW +77) + 1 =0
oL A
———~ =AM = Y) — kg =0
(¥ - 1)

with the exogenous processes

—T L Plw LI
G et T o\t 1w, )

~

Y =a
Now combine the two FOCs to get the targeting rule, which is our main result here
P ~ )‘x ¥ e
(Ap + Ay) T + A Ay + ;(Yt - Y =0.
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Assuming i.i.d. shock for simplicity, one can derive the solution of the model in closed

form:
T = T Wi—1 + Ty + TaG
iE) 0wy, ' (wu + 1)
Twl =
K (Bpwptbudy ' (wwt1))
(1 st
K —1
1 i tun (Wo+1) B ) .
Tw = n(gpwp+9w¢g1(ww+l)) . B ( Né@pwp+9w¢hl(ww+1)> — (1 n w) 9w¢h1 (ww + 1) + K)w—p
1+ (1) — Ay, 1+ T
1 1
TA = (0 " ¢71( +1)) —/{w—
K\ UpWp wPp (Ww p
===y

For the output gap, we have
(0pp + 00yt (W + 1)) 70+ 00y (Wi + 1) Ay + (1 +w) (V; = V) =0

which gives

o Opp + Oy (W + 1 0wty (W +1) .
(i ¥y = - Ot on D)y Oue et D)

and for output, since Y,* = a,

. Opp + Oy, (wy + 1 0wty (W +1)
Yt:—(pp (1?100() ))Wf_ Cb;gliidw) )(wt—wt—1)+at
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B.4 Commitment

In the case of commitment, we have:

:_%Ezy[ (Aw+m)+waﬁ—ﬁW}

p Wp

1 1
+E02ﬁ 1t {Wt — k(Y - V) - BET, +Hw a; — m—wt}
=0

where the central bank can commit and hence does not take E;m},, as given

o
oy
oL

(i 17)

= ATt + A (A +77) + que — qre-1 =0

=AYy = ¥)) = kg1 = 0

with the exogenous processes

'y 1 1
Wy = Fwwt,l + ﬁ K ( + _) Qy
Wp

1— Blwpa \wy +1
. o 1 1
Aw, = Iy — 1) wy —
Wy ( )U)t 1+ 1_ﬁrpr/€ ww+1 +wp Qg

~

Y =a
Now combine the two FOCs to get the targeting rule
Az o Az oo e
(Ap + Aw) T+ A Aty + — (Yt Y) (Y;_I—Y;_l):O.

The closed-form solution of the model is not very instructive, although possible.
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C APPENDIX: Smets-Wouters Model

We refer the reader to the original Smets and Wouters (2007) paper for a detailed description
of the model. Here we present the log-linearized equilibrium conditions in line with the
notation in their paper (for the expressions for the reduced-form parameters below as a

function of the structural parameters, please see Smets and Wouters (2007) and its appendix).

A

b= 161+ (1= 1) Byépyy — coffy — Eyityyy 4 €0} — 5 (Byugy — i)
by = d1i—1 + (1 —41) Byl + 2 + €f
G = — (Fe — Bxirpr + €)) + 1 By + (1 — q1) ByGe
Ut = CyCt + Tyl + ¢ + vy Uy

= i1 = B (Biftipr — i) — m (= (aif + (1 — )iy — ar) — i)

~w A D= ~w ~ -~ 1 ~ h/v ~ ~ AW
Ty —lyTi—1 = ﬂ’}/ (Etﬂ'tJrl — Lwﬂ't)—)\w <wt — ((m) Ct — <$) Cir—1 -+ O'lnt) — My >

Et = kll;;t—l + (1 — ]{?1) 7A,t + k?gég

~ -~

k?t - @t + kt—l

ek

~ . e N
k‘t:wt—rt + Ny

re = prio1 + (1= p) (ram + 1yygap,) + rayAygap, + €

23



D APPENDIX: Solution and Estimation Method

We use a Bayesian framework for estimation. The first-order approximation to the equilib-

rium conditions of the model can be written as

To(0) s; =Ty () s, + T(0)e, + T, ()

where s, is a vector of model variables and &, is a vector of shocks to the exogenous processes.
7 is a vector of rational expectations forecast errors, which implies F; 7, = 0 for all ¢, and

0 contains the structural model parameters. The solution to this system is given by

St = Ql(g)st_l + QE(Q)St.

which can be obtained using standard methods in the literature. Finally, the model variables

are related to the observables by the measurement equation

Y, = Bs,

where y; is the vector of observables.
Let Y = {y}L, be the data. In a Bayesian framework, the likelihood function L(Y | ) is
combined with a prior density p(6) to yield the posterior density

p(@ 1Y) o p(O)L(Y |06).

Assuming Gaussian shocks, it is straightforward to evaluate the likelihood function using the
Kalman filter. A numerical optimization routine is used to maximize p(6 | Y') and find the
posterior mode. Then, we can generate draws from p(f | Y') using the Metropolis-Hastings
algorithm where we use a Gaussian proposal density in the algorithm, using a inverse of a
scaled Hessian computed at the posterior mode as the covariance matrix.

The Metropolis-Hastings algorithm works as follows. Let the posterior mode computed
from the numerical optimization routine be 6. Let the inverse of the Hessian computed at
0 be 3.

(a) Choose a starting value #°. Then use a loop over the following steps (b)-(d).

(b) For d =1, ..., D, draw a 6* from the proposal distribution N (8%, ¢%).

(c) Accept 6%, that is 8¢ = §*, with probability min{1,7(6471, 6*)}. Reject 6*, that is

04 = 641, otherwise.
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(d) r(99=1, 0%) is given by:

1 gy DOV )
M) = e L 6 )

The scale parameter ¢ is chosen to lead to acceptance rates of around 30%.
To settle on a model specification, we do Bayesian model comparison using the marginal

data densities of the models. In comparing models A and B we are interested in the relative
p(AlY) _ p(4) p(Y]4)
p(BlY) — p(B) p(Y|B)
p(A) and p(B) are the prior probabilities of the models A and B. Since we do not specifying

posterior probabilities of the models given the data. That is, where

different prior probabilities over the models, we just compare the marginal data densities

given by p(Y | A) and p(Y | B). The marginal data density of a model is given by

oY) = [ O |0) ds.
Note that this measure penalizes overparameterized models.
The marginal data density is approximated by the Geweke (1998) modified harmonic-
mean estimator. First note that we can write

1 [ f(6)ds
oY)~ / POy 6"

where f is a probability density function such that [ f(6)df = 1. Then, we can use the

following estimator

£(0%)
(

. RS
0= |5 2 ey (99

where d denotes the posterior draws obtained using the Metropolis-Hastings algorithm. For

f, Geweke (1998) proposed a truncated multivariate normal distribution.

E APPENDIX: Gali-Smets-Wouters Model

E.1 Log-linearized equilibrium

We refer the reader to the original Gali, Smets, and Wouters (2012) paper for a detailed
description of the model and its notation. Compared to the model in Smets and Wouters
(2007), the model here features log-utility as well as no Kimball demand in wages. Moreover,

the model features unemployment. Here we present the log-linearized equilibrium conditions
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in line with the notation in their paper and the priors and posterior estimates of the model

parameters.

ét = Clét—l + (1 — Cl)Etét-i-l — C;{TAt — Etﬂ-t-f—l + 5?}

where ¢; = (h/7) / (1+h/7) and ¢, = {57E.

A _ ./ A .l A ./ A q
by = iqy0—1 + (1 —iq) Eylyyr + 109G + €7

where i, = SEwt iy =i,/ (7?¥), and £ is the investment specific shock .

Gr = — (ft — By + gi’) + qlEtffH + (1 = 1) EiGea

where ¢ =%/ (r¥ + (1 - 9)).

Y = CyCr + Tyl + ¢ + Uy Uy

= M, <al§:t + (1 —a)n + 5?)

where ¢, = (C/Y), i, = (I/Y) ,and v, = RFK/Y. M, is the price markup in steady state.

e — et = B (Biftupr — wpie) — mp (= (aif + (1 — a)iy — ay) — fif)

r_ (1-B0p)(1—6p) 1
where 7, = 5, o]
T — i1 = B (Bt — i) — Aw (0 — (2 + &7 + ¢ny) — fif’)
where )\, = (17’8%3‘)(1*9”) [6w(1+(Mw1/Mw—1)so))] with M,, as the wage markup in steady state, €}

is the labor supply shock, and

5= (1= 1) 4o Kﬁ) 6 — (%) ét1] |

’(Z)t — (ét + 5? + gbﬁt) = QO'LALt

Note that

where 1, is unemployment. By using the unemployment rate 4, as an additional observable,
Gali-Smets-Wouters can identify the labor supply shock and the usual labor markup shock

separately:
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lt:ﬁt‘i‘at

where Zt is the labor force.

Et = klil;t_l + (1 — kfl) it + ]{5,25:5]
where ki =1 — (I/K) and ky = (1) (14 8) 72W.

~ e

~

ky = 0y + ki
. 1— .
”’*:( ww>rf

~ R ke .
kt:wt—rt -+ Ny

where 7F =1 — .

re = prre—1 + (1 — pr) (7"7r7Tt + Tym?t) + rayAygap, + €

where ygap, is the deviation of actual output from the flexible price level in the absence of
the price and wage markups shocks. Unless noted otherwise, the notation for the shocks is
the same as reported in the main text of our paper for the Smets-Wouters model, except for

the new labor supply shock, which follows

ey =0.999 x ey | +eey

and has measurement error component as described below.

E.2 Estimation

We use the same data as in Gali, Smets, and Wouters (2012) (including unemployment as an
observable) as well as the same strategy as them regarding measurement errors on the wage
series (with two wage series used: compensation per employee (refered to as wc below) and
average weekly earnings (refered to as wE below)). Thus, we use the notation o, for the
standard deviation of the measurement error on one wage series and o, for the standard

deviation of the measurement error on the other. The average weekly earnings series is
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allowed to have a different trend growth from the common economy-wide trend, given by
Twe- Also, the price and wage markup shocks are normalized by a factor of 100 during the

estimation as in Gali, Smets, and Wouters (2012).

E.3 Prior distribution

Table 1: Parametrization of Priors in Gali-Smets-Wouters, Structural Parameters

Parameters Density Prior Mean Prior Standard Deviation

v Normal 4.00 1.00
h Beta 0.70 0.10
0. Beta 0.50 0.15
© Normal 2.00 1.0
v Beta 0.50 0.20
0, Beta 0.50 0.15
Y Beta 0.50 0.15
Yp Beta 0.50 0.15
P Beta 0.50 0.15
M, Normal 1.25 0.12
T Normal 1.50 0.25
Or Beta 0.75 0.10
Ty Normal 0.12 0.05
T Ay Normal 0.12 0.05
T Gamma 0.62 0.10
100(8~' —1) Gamma 0.25 0.10
I Normal 0.00 2.00
T Normal 0.40 0.10
TWE Normal 0.20 0.10
M, Normal 1.5 0.25
o Normal 0.30 0.05
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Table 2: Parametrization of Priors in Gali-Smets-Wouters, Shock Processes

Parameters Density Prior Mean Prior Standard Deviation

Pa Beta 0.5 0.2
Pb Beta 0.5 0.2
Pg Beta 0.5 0.2
Pq Beta 0.5 0.2
Or Beta 0.5 0.2
Pp Beta 0.5 0.2
Pw Beta 0.5 0.2
Pya Normal 0.5 0.25
p Beta 0.5 0.2
oo Beta 0.5 0.2
Oq Uniform 2.5 1.44
o, Uniform 2.5 1.44
o Uniform 2.5 1.44
or Uniform 2.5 1.44
oy, Uniform 2.5 1.44
Op Uniform 2.5 1.44
Ow Uniform 2.5 1.44
Oy Uniform 2.5 1.44
Owe Uniform 2.5 1.44
OwE Uniform 2.5 1.44
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E.4 Posterior estimates

Our posterior estimates are basically the same as in Gali, Smets, and Wouters (2012), with

some minor differences from the different number of draws.

Table 3: Posterior Estimates of Gali-Smets-Wouters, Structural Parameters

Parameters Posterior Mean Probability Interval (90%)

] 3.8895 [2.0728 5.6435]
h 0.7437 [0.6258  0.8468]
O 0.5563 [0.4402 0.6738]
© 4.3831 [3.3576  5.3685]
v 0.0244 [0.0096 0.0381]
0, 0.6310 [0.5349  0.7339]
Yoo 0.1812 [0.0723 0.2876]
Y 0.4856 [0.1938  0.7738]
0 0.5554 [0.3605 0.7506]
M, 1.7452 [1.6121 1.8785]
Tr 1.8863 [1.6162 2.1517]
pr 0.8573 [0.8259  0.8894]
Ty 0.1675 [0.1090 0.2264]
TAy 0.2553 [0.2013  0.3081]
7 0.6642 [0.4917  0.8340]
100(8~' — 1) 0.3054 [0.1734  0.4382)]
I -1.6492 [-3.9587 0.6353]
T 0.3347 [0.2957 0.3745]
TWE 0.0748 [0.0256  0.1210]
M, 1.2224 [1.1479  1.2968]
o 0.1712 [0.1416  0.2004]

F APPENDIX: Two-Sector Model

We present in detail below a two-sector model in the spirit of de Walque, Smets and Wouters
(2006).
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Table 4: Posterior Estimates of Gali-Smets-Wouters, Shock Processes

Parameters Posterior Mean Probability Interval (90%)

Da 0.9782 [0.9676 0.9893]
Db 0.4305 [0.1934 0.7053]
P 0.9723 [0.9556 0.9905]
P 0.7521 0.6202  0.8861]
pr 0.1000 0.0211 0.1742]
Px 0.4519 [0.0879 0.8123]
P 0.9831 [0.9654 0.9991]
Poa 0.6916 0.5532 0.8314]
s 0.5969 [0.2569 0.9668]
[t 0.6393 [0.3585 0.9295]
o 0.4156 [0.3709 0.4583]
o, 1.5743 0.4540 2.4475]
o, 0.4780 0.4341 0.5216]
o 0.4207 0.3397  0.4944]
o, 0.2159 0.1946  0.2366]
o, 0.1214 0.0328 0.2221]
T 0.0679 0.0131  0.1307]
o 1.1823 0.8896 1.4640]
T 0.4559 0.4073  0.5040]
Twk 0.3625 03137 0.4114]
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F.1 Households

There is a continuum of households on the unit interval. Each household specializes in the

supply of a particular type of labor. A household that supplies labor of type-j maximizes

3

where Htj denotes the hours of type-j labor services, C; is aggregate consumption, and Cg

the utility function:

(Hg’>1+80

log (C7 = nCir) ===

E {Z B4,

t=0

is consumption of household j. The parameters 3, ¢, and 7 are, respectively, the discount
factor, the inverse of the (Frisch) elasticity of labor supply, and the degree of external habit

formation, while d; represents an intertemporal preference shock that follows:
b = 07° 1 exp(ese),

where 5, ~ i.i.d. N (0,0%).

Household j’s flow budget constraint is:

P,C] + PI] + B] + E, [Qt,t—i—l‘/zrl]
= Wy())H! +V/ + Ry_1B]_, — Pa(w)K]_, + 11,

where P, is the price level, Bg is the amount of one-period risk-less nominal government
bond held by household j, R; is the interest rate on the bond, W;(j) is the nominal wage
rate for type-j labor, I1; denotes profits of intermediate firms. In addition to the government
bond, households trade at time ¢ one-period state-contingent nominal securities Vtilat price
Q+t4+1, and hence fully insure against idiosyncratic risk.

Moreover, I7 is investment, R is the rental rate of effective capital K/ = u,K; | where
u; is the variable capacity utilization rate, and a(u;) is the cost of capital utilization. In
steady-state, u = 1 and a(1) = 0. Moreover, in the first-order approximation of the model,
the only parameter that matters for the dynamic solution of the model is the curvature

X = 2 W) The capital accumulation equation is then given by:

a'(1)
- - 4 j
t—1
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where d is the depreciation rate and S(.) is the adjustment cost function. In steady-state,

S=5 =0and S” > 0. y represents an investment shock that follows:

fie = gy exp(ep),

where ¢, ~ i1.i.d. N (0,02).

Each household monopolistically provides differentiated labor. There are competitive
employment agencies that assemble these differentiated labor into a homogenous labor in-
put that is sold to intermediate goods firms. Theo assembling technology is a Dixit-Stiglitz

Wt
production technology H; = ( fol (Ht] )% dj) QWfl, where Oy, denotes the time-varying
elasticity of substitution between differentiated labor. Tl‘he corresponding wage index for the
homogenous labor input is W; = ( fol Wi( j)l_ewvtdj) ¢ and the optimal demand for H

is given by H? = (Wy(j)/W,)~*"* H,. The elasticity of substitution 6y, follows:

9 ] 1-pu Oirs Pa
< Wit ) _ (_ w ) (L) exp(gW’t — Uwé?WJj_l)
9W,t —1 HW —1 QW,t—l —1

where ey ~ 1.i.d. N (0,0%,).

Each household resets its nominal wage optimally with probability 1 — ay, every period.
Households that do not optimize adjust their wages according to the simple partial dynamic
indexation rule:

Wi(§) = Wit () [mra )™ [7a] "

where vy measures the extent of indexation and 7 is the steady-state value of the gross in-
flation rate m; = P,/ P,_;. All optimizing households choose a common wage W;* to maximize

the present discounted value of future utility:

00 (H] k) 14+ ‘
Ly Z O"fjvﬁk _5t+kw1t:_—w + Avik (1 - Tt{il-k) VVt*XW,EkHtJJrk )
k=0

where Ay is the marginal utility of nominal income and

_ { (T4t - Mok Qg1 -~ Q=) [7?&](1_7“/)’“
Witk =

1, k=0~

Ck>1

Maximization is subject to the sequence of labor demand function effective while W;* remains
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in place:

—Ow, i1k
i (Wi Xwk
Hi = W o Hiip

Finally, due to the wage rigidity assumption, the nominal aggregate wage evolves accord-

ing to:
1
Wo = |(1 = aw) W™ g {Wos mgan ™ fra) = 0| T

F.2 Firms

The final good Y;, which is consumed by the government and households as well as used
to invest, is a Cobb-Douglas aggregate of the flexible price and sticky price sectoral goods
(Yp: and Y, respectively)

Y= (You)* (Yre) ™

which gives the following relative demand and price index expressions

Ysi _ ( § )PF,t
Yy 1-¢) Ps;

Yso _ P
Y, P,
P, = ;1—6 (PS,t)£ (prt)lfﬁ .
£ (1-¢)

These sectoral goods Yr; and Ygs; are produced by perfectly competitive firms assembling

intermediate goods, Yr,(i) and Yg.(i), with a Dixit-Stiglitz production technology Yp,; =
0 6

_bp
0p— 0p—1 -

fol Yp,t(i)ﬁldi and Yg,; = fol Yg,t(z’)g%ldi ep , where 0p denotes the elasticity
of substitution between intermediate goods. The corresponding price indices for the sec-
and Py, = ( [y Psu(i)=rdi) ™",
where Pp,(i) and Pg;(i) are the prices of the intermediate goods i. The optimal demand for
Yi4(i) and Ys (i) are given by Vi (i) = (Ppy(i)/ Prs) ™" Yy and Y (i) = (Ps4(i)/ Psy) " Y,z re-

spectively.

toral consumption goods are Pr; = ( fol Py (1)t07 di) e

Monopolistically competitive firms produce intermediate goods using the production
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function in the sticky price sector:
V(i) = (AHg (i)' K (0),

where Hg,(i) and Kg, (i) denote the homogenous labor and capital employed by firm ¢ and
Ay represents exogenous economy-wide technological progress. The gross growth rate of

technology a; = A;/A;_1 follows:

a; = a'""al" | exp(eay),
where a is the steady-state value of a; and ¢, ~ i.i.d. N (0,02).
Similarly, monopolistically competitive firms produce intermediate goods using the pro-

duction function in the flexible price sector:
Yiu(i) = Apy (AcHpa (1) Kiy(0),

where Hp,(i) and Kp,(i) denote the homogenous labor and capital employed by firm ¢ and
Ay represents exogenous economy-wide technological progress. The gross growth rate of

technology a; = A;/A;_ follows:
a; = a' P*al | exp(eas),

where a is the steady-state value of a; and e,; ~ i.i.d. N (0,02). In addition, there is a

flexible price sector specific technology shock Ap; that follows:
Apt = Aiw?’tp,l exp(eart),

where g5 ~ 1.1.d. N (0,0%p).

In the sticky price sector, a firm resets its price optimally with probability 1 — ap every
period. Firms that do not optimize adjust their price according to the simple partial dynamic
indexation rule:

PS,t(l.) = PS7t_1(7:)7Tgv§_17_Tl_’YP,

where vp measures the extent of indexation and 7 is the steady-state value of the gross

inflation rate mg; = Ps/Ps—1. All optimizing firms choose a common price P§, to maximize
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the present discounted value of future profits:

o0

A ) ) )
Ey Z O/faﬁk%k (P& X peeYsrn(i) = Wi Hs i (i) — Ry Kspen(i)]
k=0 t

where

(T84S t41 " Tyt ) =k > 1
Xpiip =
1, k=0

In the flexible price sector, all firms choose a common price Py, to maximize profits:
Py Yii(i) = Wi Hpg (i) = R K p i (4).

F.3 Government
F.3.1 Monetary Policy

The central bank sets the nominal interest rate according to a Taylor-type rule:

R G

which features interest rate smoothing and systematic responses to deviation of GDP from

1-p
" (Yt/YH

doy
oo exp (Eryt) »
)

its target level Y, and deviation of inflation from steady-state 7* = 7. As in Smets and
Wouters (2007) there is also a dependence of the interest rate on the growth rate of deviation
of output from the target level. We set the target level of output Y,* equal to the flex-price
output as in Smets and Wouters (2007) (here, the flex-price output is defined as the output
that would prevail in the presence of flexible prices and absence of the wage markup shock and
the flex-price sector-specific shock). R is the steady-state value of R; and the non-systematic

monetary policy shock e is assumed to follow an i.i.d. N (0,0%).

F.3.2 Fiscal Policy

Government spending follows an exogenous AR(1) process

Gy — 5 = pa <ét—1 — G) + eats

where G is government spending-to-output ratio, G is its steady-state value, and eg; ~

i.i.d. N (0,0%). Lump-sum taxes are available and hence we abstract from government debt
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dynamics completely.

F.4 Equilibrium

Equilibrium is characterized by the prices and quantities that satisfy the households’ and
firms’ optimality conditions, the government budget constraint, monetary and fiscal policy

rules, and the clearing conditions for the product, labor, capital rental and asset markets:
[ ctaivcor [ Ri+at) [ KLd =Y.
0 0 0
1 1
/ HFJ(Z)d/L + / Hs’t(l)dl — Ht7
0 0

1
/ Vidj =0,
0

1 1
/ Kra(i)di + / Kesu(i)di = K,
0 0
1

/ Bldj = 0.
0

Note that Ctj = (C, [tj = I;, and [_(tj_l = K, 1 due to the complete market assumption and
the separability between consumption and leisure. The capital accumulation equation in the

aggregate is then given by:

Ki=(0—d) K1+ {1—5( L )]It.

Iy

and the aggregate resource constraint then takes the form:

Ct + It -+ Gt + a(ut)f_(t_l = )/t

F.5 Stationary equilibrium
F.5.1 De-trending

The technology process A; induces a common trend in output, consumption, real wage,
government purchases, investment, and capital. In addition, introducing non-zero steady
state inflation also creates a trend in nominal prices. The trend in nominal prices is the

same across sectors and in the aggregate. We will also define a relative price term. We
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detrend the variables as follows:

~ I ~
=, C=—, I1=—, Ki=—, Kj=—,Yp, =
¢ ¢ Ay Ay Ay
K * *
0 = W, ’I"K_Rt . Ppy . Py S
t = y Ty = ) Fit ) St ) Fit =
PA; P, Pr, Ps
K
» Pry o = W, F = Wy S R; K,F
Rt = 75—, Wy = y Wy = y Ty =5 Ty
Pg Pg Ay Pry Ay Pg
- Gt
Gi=—
Y,

At = AtPtAt7 (it = Atét

F.5.2 Equilibrium conditions

Aggregator of the sectoral outputs is given by
- ~ £/~ 1-¢
Vo= (Vse) (Vo)
while the sector specific production functions are given by
?S,t(w = Hs’t(i)li)\k&t(i))\

?F,t(i) — AF,tHF,t(i)l_AKF,t(Z))\'

The relative demand equations are given by

where
_ P
PRyt Ps.
Moreover,
P ( Ps,; )5( Pry )1‘5
Pioi \Psy Py
or

Ty = (7T57t)5 (7TF,1t)175 .
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Also note the definition that gives the law of motion for pg;, is

PRt  TFg

PRit—1 TSt

The capital-labor ratios evolves as

while the nominal marginal costs evolev as

A
mesy = A (1-— /\)_(1_)‘) (TtK’S> ﬁ)fl_’\

A 1
mepy = A (1= X))~ <rtKF> d}tFl_)‘—A
Fit

)

with the following relationships holding by definition

u?f . rtK’S
w_f‘ = DR, Tf—p = PRt
~ 1 ~o\E (T
Wy = ————= (@07)" (@)
g-9

PR

Optimal price setting equation for sticky price firms is given by

oo
- ~ X
k pk Ptk
0=L, E apf At+kYSt,t+k (pfq,t—nk — ITpMCSt+k | -

k=0 s=1 7rS,t+s
where )
—0p
- Xpik -
* by
Ysiirn = Psi—r — Yiik.
Hs:l 7TS7t+S

Optimal price setting equation for flexible price firms is given by
0= (1—xpmcpy).
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Relatedly, aggregate price index.for the sticky price sector is given by

1
_ 1—9]3 1—9P
wle T [T 1\TP
1= (1_0‘P)p5?t r +ap (-( St 1) ) ]
ﬂ-S,t T

while the aggregate price index for the flexible price sector is given by
p},t =1

The marginal utility of income can be expressed as

X a0y

e <atc~’t - nét—l)

which implies a euler equation of the form

]\t = ﬁRtEt

A
Q1Mo |
Optimal condition for capital utilization is given by

K = a (uy)

while the optimality condition for capital is given by

1

d, = BE, {L]\Hrl {7”1:]11“#1 - a(utﬂ)}] + (1 —d) BE, [_&)t+1:| .

Qg1 Q1

Moreover, the optimal choice of investment is governed by

L I, I I
At = CDtMt 1-— S a,t~—t — a,t~—tS at~—t
I I I 4

. 2 .
1 - I / 1
+ BE | —Ppp1fiena (at+1t[;1> S <Gt+1tITH>

Ai+1 t ¢

Definition of effective capital is then

~ 1 ~
K, = —u K,
Qg
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(21)
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while the law of motion of capital is

~ 1 = I, =~
Kt: (].—d> a—Kt_l—f—/Lt <1—S <Cltj—t>> ]t'
t t—1

Optimal wage setting is governed by

- Xwit k HY\
k kX ~ % it t,t+
0=FE, E @Wﬂ At+kHt,t+k Wy = — $Wt+k5t+kw = )
k=0 s=1 Tt+stt+s At+k

where

—O0w, i 4k
I e Xwak 1 o
tt+k = | W =% t+k-

Hs:l Tt sQtis Wik

Aggregate wage then evolves as

1
— — 1—9W 1—-6
_ 1Oy, _ Ta \ (M_1Gp—1\ W e
wy = | (1 — aw) w, + o < Wi - )
Tt mTa

The aggregate resource constraint takes the form
~ ~ ~ ~ 1 = -
Ci+ I + GiY, + a(ut)a_Kt—l =Y.
t

Finally, the monetary policy rule is

() @ (B)

and the law of motion of government spending is

1-pr L
¥ /7,
YEYe,

G~ G =pa (Giy = G) +equ

F.5.3 Steady state

Recall that in steady-state, we assume

i=1, a(l)=0,and S =S = 0.
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From (21) and (22), we get

P =a/B—(1—-d).
Given 7%, (12), (13), (14), and (15) imply
— 1 - _ - ﬁ 1 ép —1
= (1= NN (7K te mcs = mcp = =L
w T2 ( ) (r ) (note mcg = mcp T2 7 )

Given 7% and w, (10) and (11) imply

K R R

A

w
H Hs Hp 7K1-)\

From the production functions, we can obtain

- = ——\ A
Vs Ve (K
Hy Hp \H

From (24) and (27), we can compute

A
C-0-95-

<l
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The steady-state hours H depend on the preference parameter o. We normalize H to unity
by calibrating w appropriately.

Now, we need to determine the sector specific steady states. From (6) we get

Y.
Ys _ & (38)
Ypo 16
while from (F.5.2) we get
pr=1 (39)

Finally, from (7) and (8) we derive

(40)
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F.6 Linear Model and Estimation

F.6.1 Model

Vo= Vs +(1-6)Vr
§S,t = )\f(s,t +(1—\) Hsy
}C/F’t = Apyt + A}/%Fi +(1=X) ﬁF,t
3?/5,15 - }:;F,t = PRyt
Ty = &Ry + (1 — T re

~

PRt — PRt—1 = TFt — TSt

e — Ty :ﬁR,t

we = (&)W + (1 — &) wf

= O+ 1R
~ /8 ~ A~ —~
Mot = 17 Bp Bt + J—gwﬂs,t1 + KpMmcsy

0 = mcpy,

~ a = ~ R a -+ ~
At:—_a Ct+_77 Ct_l—_n ay + a 7;] 5:

a—n a—n a—rm (1—ps)(a—n)

A =R, + E, [/N\tﬂ — T4l — at—i—l]
XUy = @K

> 1—d > 1—d %
O, = %Et [q)tJrl] + (1 — %) E; [AtJrl + rt+1:| — By [ar44]
At (i) + _25 (It It 1+at>+ﬁa5 Et [It+1—ft+at+1]

-~ -~ B -~ ~ ~ 7 a+n =
_ —F — — H,— A oF
Wy 1+Bwt 1+1+5 Wi 1 — Kige | wy Pty t+(1_p6)(7 o
W 1+ Byw .. o4 R W 1+ Byw — Bpa .
+ = + Emqy +——a1 — Qs + KTt
1+ﬂt1 1+5t1+6tt+1 1+Bt1 1+ 5 ¢ Wy

III N*I

(1-G)V, =2, + [It—i-GH—r



i:[t = fﬁs,t +(1-¢ fIFt

Kt = gks,t‘i‘ (1—-¢) Kpy

o~

R, = pRRt—l + (1= pgr) |:¢7r7ATs,t + ¢y (Y/t -Y,

Finally, exogenous variables evolve as follows:

0F = psdi_1 + ey
flit = Pufle—1 + Ep

Ay = Pali—1 + Eap

Apt = parArt + €art

o~

*

o~

)] + day (Y — §t—1) + ERt

Twit = PWIW;t—1 + EWit — UwEuw,t—1

ét = pGGt—l + eay
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F.7 Estimation
F.7.1 Data

We use the same data as in Smets and Wouters (2007) from 1966:1 to 2007:IV.

F.7.2 Prior distribution

We will calibrate d, G, and 1/ (6w — 1) at the same values as in Smets and Wouters (2007)
and ¢ and p, r at the same values as in deWalque, Smets, and Wouters (2006). We also

normalize the wage markup and the flex-price technology shock by a factor of 100.

Table 5: Parametrization of Priors Two-Sector Model, Structural Parameters

Parameter Density Prior Mean Prior Standard Deviation
d calibrated 0.025

G calibrated 0.18

13 calibrated 0.85

A Normal 0.30 0.05
vp Beta 0.50 0.15
Yw Beta 0.50 0.15
n Beta 0.50 0.1
ap Beta 0.50 0.1
aw Beta 0.50 0.1
1/(6p — 1) Normal 0.15 0.05
1/ (0w — 1) calibrated 0.5

® Gamma 2.00 0.75
X Gamma 5.00 1.00
s” Gamma 4.00 1.00
100(a — 1) Normal 0.54 0.1
100(7 — 1) Normal 0.62 0.1
100(8~1 = 1) Gamma 0.25 0.1
On Normal 1.5 0.15
oy Normal 0.13 0.03
bay Normal 0.13 0.03

46



Table 6: Parametrization of Priors Two-Sector Model, Shock Processes

Parameters Density Prior Mean Prior Standard Deviation
Ps Beta 0.60 0.20
Pu Beta 0.60 0.20
Pa Beta 0.60 0.20
Pa,F calibrated 0.99

W Beta 0.60 0.20
v Beta 0.50 0.20
PR Beta 0.60 0.20
Ile Beta 0.60 0.20
10005 InvG 0.50 1.00
1000, InvG 0.50 1.00
1000, InvG 0.50 1.00
1000, F InvG 0.5 1.00
1000w InvG 0.5 1.00
1000 R InvG 0.10 1.00
1000¢ InvG 0.50 1.00
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F.7.3 Posterior estimates

Table 7: Posterior Estimates Two-Sector Model, Structural Parameters

Parameter Posterior Mean Probability Interval (90%)
A 0.1166 [0.0814 0.1534]
vp 0.1030 0.0370 0.1667]
Y 0.1821 0.0987 0.2650]
n 0.6766 0.5790 0.7782]
ap 0.7886 0.7865 0.7902]
aw 0.5617 (0.5078 0.6172]
1/(0p —1) 0.1435 [0.0654 0.2198]
© 3.9326 [2.5851 5.2326]
X 5.6442 3.9603 7.2807]
s" 6.0680 [4.0670 7.9204]
100(@ — 1) 0.5226 0.4313 0.6133]
100(7 — 1) 0.6388 0.4788 0.8001]
100(8~1 = 1) 0.1754 0.0813 0.2668]
O 1.6356 [1.4402 1.8298]
by 0.0512 (0.0212 0.0796]
bay 0.1786 0.1421 0.2162]

Table 8: Posterior Estimates Two-Sector Model, Shock Processes

Parameter Posterior Mean Probability Interval (90%)

s 0.6136 [0.4748 0.7558]
Py 0.7892 [0.7198 0.8571]
Pa 0.0747 0.0184 0.1276]
pw 0.8134 [0.7624 0.8663]
vw 0.3188 [0.1386 0.4954]
PR 0.8008 [0.7642 0.8374]
b 0.9815 [0.9675 0.9965]
100075 0.1685 0.1255 0.2097]
1000, 5.0681 [3.3722 6.7231]
1000, 0.9340 [0.8385 1.0260]
1000, ¢ 0.0652 0.0645 0.0662]
1000w 0.1943 0.1276 0.2575]
10005 0.2596 [0.2345 0.2843]
1000¢ 0.4949 0.4500 0.5393]
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