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Appendix to “Macroeconomic Dynamics Near the

ZLB: A Tale of Two Equilibria”

A Solving the Two-Equation Model

The model is characterized by the nonlinear difference equation

Et[πt+1] = max

{
1

r
, π∗

(
πt
π∗

)ψ
exp[εt]

}
. (A.1)

We assume that rπ∗ ≥ 1 and ψ > 1.

The Targeted-Inflation Equilibrium and Deflation Equilibrium. Consider a solution

to (A.1) that takes the following form

πt = π∗γ exp[λεt]. (A.2)

We now determine values of γ and λ such that (A.1) is satisfied. We begin by calculating

the following expectation

Et[πt+1] = π∗γ
1√

2πσ2

∫
exp[λε] exp

[
− 1

2σ2
ε2
]
dε

= π∗γ
1√

2πσ2
exp

[
1

2
λ2σ2

] ∫
exp

[
− 1

2σ2
(ε− λσ2)2

]
dε

= π∗γ exp

[
1

2
λ2σ2

]
.

Combining this expression with (A.1) yields

γ exp[λ2σ2/2] = max

{
1

rπ∗
, γψ exp[(ψλ+ 1)εt]

}
. (A.3)

By choosing λ = −1/ψ, we ensure that the right-hand side of (A.3) is always constant. Thus,

(A.3) reduces to

γ exp[σ2/(2ψ2)] = max

{
1

rπ∗
, γψ

}
(A.4)

Depending on whether the nominal interest rate is at the ZLB (Rt = 1) or not, we obtain

two solutions for γ by equating the left-hand-side of (A.4) with either the first or the second

term in the max operator:

γD =
1

rπ∗
exp

[
− σ2

2ψ2

]
and γ∗ = exp

[
σ2

2(ψ − 1)ψ2

]
. (A.5)
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The derivation is completed by noting that

γψD =
1

rπ∗
exp

[
− σ

2

2ψ

]
≤ 1

rπ∗

γψ∗ = exp

[
σ2

2(ψ − 1)ψ

]
≥ 1 ≥ 1

rπ∗
.

A Sunspot Equilibrium. Let st ∈ {0, 1} denote the Markov-switching sunspot process.

Assume the system is in the targeted-inflation regime if st = 1 and that it is in the deflation

regime if st = 0 (the 0 is used to indicate that the system is near the ZLB). The probabilities

of staying in state 0 and 1, respectively, are denoted by ψ00 and ψ11. We conjecture that the

inflation dynamics follow the process

π
(s)
t = π∗γ(st) exp[−εt/ψ] (A.6)

In this case condition (A.4) turns into

Et[πt+1|st = 0]/π∗ =
(
ψ00γ(0) + (1− ψ00)γ(1)

)
exp[σ2/(2ψ2)] =

1

rπ∗
Et[πt+1|st = 1]/π∗ =

(
ψ11γ(1) + (1− ψ11)γ(0)

)
exp[σ2/(2ψ2)] = [γ(1)]ψ.

This system of two equations can be solved for γ(0) and γ(1) as a function of the Markov-

transition probabilities ψ00 and ψ11. Then (A.6) is a stable solution of (A.1) provided that

[γ(0)]ψ ≤ 1

rπ∗
and [γ(1)]ψ ≥ 1

rπ∗
.

Sunspot Shock Correlated with Fundamentals. As before, let st ∈ {0, 1} be a Markov-

switching sunspot process. However, now assume that a state transition is triggered by

certain realizations of the monetary policy shock εt. In particular, if st = 0, then suppose

st+1 = 0 whenever εt+1 ≤ ε0, such that

ψ00 = Φ(ε0),

where Φ(·) is the cumulative density function of a N(0, 1). Likewise, if st = 1, then let

st+1 = 0 whenever εt+1 > ε0, such that

ψ11 = 1− Φ(ε1).



This Version: July 8, 2013 A-3

To find the constants γ(0) and γ(1), we need to evaluate

1√
2πσ2

∫ ε

−∞
exp

[
− 1

2σ2
(ε+ σ2/ψ)2

]
dε

= P
{
ε+ σ2/ψ

σ
≤ ε+ σ2/ψ

σ

}
= Φ

(
ε+ σ2/ψ

σ

)
.

Thus, condition (A.4) turns into

1

rπ∗
=

[
γ(0)Φ(ε0)Φ

(
ε0 + σ2/ψ

σ

)
+ γ(1)(1− Φ(ε0))

(
1− Φ

(
ε0 + σ2/ψ

σ

))]
exp[σ2/(2ψ2)]

γψ(1) =

[
γ(1)(1− Φ(ε1))

(
1− Φ

(
ε1 + σ2/ψ

σ

))
+ γ(0)Φ(ε1)Φ

(
ε1 + σ2/ψ

σ

)]
exp[σ2/(2ψ2)].

This system of two equations can be solved for γ(0) and γ(1) as a function of the thresholds

ε0 and ε1. Then (A.6) is a stable solution of (A.1) provided that

[γ(0)]ψ ≤ 1

rπ∗
and [γ(1)]ψ ≥ 1

rπ∗
.

Benhabib, Schmitt-Grohé, and Uribe (2001a) Dynamics. BSGU constructed equilib-

ria in which the economy transitioned from the targeted-inflation equilibrium to the deflation

equilibrium. Consider the following law of motion for inflation

π
(BGSU)
t = π∗γ∗ exp[−εt/ψ] exp

[
− ψt−t0

]
. (A.7)

Here, γ∗ was defined in (A.5) and −t0 can be viewed as the initialization period for the

inflation process. We need to verify that π
(BGSU)
t satisfies (A.1). From the derivations that

lead to (A.4) we deduce that

γ∗Et+1

[
exp[−εt+1/ψ]

]
= γψ∗ .

Since

exp
[
− ψt+1−t0

]
=
(
exp

[
− ψt−t0

])ψ
,

we deduce that the law of motion for π
(BGSU)
t in (A.7) satisfies the relationship

Et[πt+1] = π∗

(
πt
π∗

)ψ
exp[εt].

Moreover, since ψ > 1, the term exp
[
− ψt−t0ψ

]
−→ 0 as t −→ ∞. Thus, the economy will

move away from the targeted-inflation equilibrium and at some suitably defined t∗ reach the
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deflation equilibrium and remain there permanently. Overall the inflation dynamics take the

form

πt = π∗

 γ∗ exp[−εt/ψ] exp
[
− ψt−t0

]
if t ≤ t∗

γD exp[−εt/ψ] otherwise
, (A.8)

where γ∗ and γD were defined in (A.5).

Alternative Deflation Equilibria. Around the deflation steady state, the system is locally

indeterminate. This suggests that we can construct alternative solutions to (A.1). Consider

the following conjecture for inflation

πt = π∗γmin
{

exp[−c/ψ], exp[−ε/ψ]
}
, (A.9)

where c is a cutoff value. The intuition for this solution is the following. Large positive shocks

ε that could push the nominal interest rate above one, are offset by downward movements

in inflation. Negative shocks do not need to be offset because they push the desired gross

interest rate below one, and the max operator in the policy rule keeps the interest rate at

one. Formally, we can compute the expected value of inflation as follows:

Et[πt+1] = π∗γ

[
1√

2πσ2

∫ c

−∞
exp[−c/ψ] exp

[
− 1

2σ2
ε2
]
dε (A.10)

1√
2πσ2

∫ ∞
c

exp[−ε/ψ] exp

[
− 1

2σ2
ε2
]
dε

= π∗γ

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

] ∫ ∞
c

1√
2πσ2

exp

[
− 1

2σ2
(ε+ σ2/ψ)2

]
dε

]
= π∗γ

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

](
1− Φ

(
c

σ
+
σ

ψ

))]
Here Φ(·) denotes the cdf of a standard Normal random variable. Now define

f(c, ψ, σ) =

[
exp[−c/ψ]Φ(c/σ) + exp

[
σ2

2ψ2

](
1− Φ

(
c

σ
+
σ

ψ

))]
.

Then another solution for which interest rates stay at the ZLB is given by

γ̄ =
1

r∗π∗f(c, ψ, σ)

It can be verified that for c small enough, the condition

1

r∗π∗
≥ γ̄ψ min

{
exp[−c+ ε], 1

}
is satisfied.
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B Model Solution

The equilibrium conditions (in terms of detrended variables, i.e., ct = Ct/At and yt = Yt/At)

take the form

1 = βEt

[(
ct+1

ct

)−τ
1

γzt+1

Rt

πt+1

]
(A.11)

1 =
1

ν
(1− cτt ) + φ(πt − π̄)

[(
1− 1

2ν

)
πt +

π̄

2ν

]
(A.12)

−φβEt

[(
ct+1

ct

)−τ
yt+1

yt
(πt+1 − π̄)πt+1

]

ct =

[
1

gt
− φ

2
(πt − π̄)2

]
yt (A.13)

Rt = max

1,

[
rπ∗

(
πt
π∗

)ψ1
(

yt
yt−1

zt

)ψ2
]1−ρR

RρR
t−1e

σRεR,t

 . (A.14)

B.1 Approximation Near the Targeted-Inflation Steady State

Steady State. Steady-state inflation equals π∗. Let λ = ν(1− β), then

r = γ/β

R∗ = rπ∗

c∗ =

[
1− v − φ

2
(1− 2λ)

(
π∗ −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
y∗ =

c∗[
1
g∗
− φ

2
(π∗ − π̄)2

] .
Log-Linearization. We omit the hats from variables that capture deviations from the

targeted-inflation steady state. The linearized consumption Euler equation (A.11) is

ct = Et[ct+1]−
1

τ
(Rt − Et[πt+1 + zt+1]).

The price setting equation (A.12) takes the form

0 = −τc
τ
∗
ν
ct + φπ∗

[(
1− 1

2ν

)
π∗ +

π̄

2ν

]
πt + φπ∗(π∗ − π̄)

(
1− 1

2ν

)
πt

−φβπ∗(π∗ − π̄)

(
τct − yt − Et[τct+1 − yt+1] + E[πt+1]

)
− φβπ2

∗Et[πt+1].
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Log-linearizing the aggregate resource constraint (A.12) yields

ct = yt −
1/g∗

1/g∗ − φ(π∗ − π̄)2
gt −

φπ∗(π∗ − π̄)

1/g∗ − φ(π∗ − π̄)2
πt

Finally, the monetary policy rule becomes

Rt = max

{
− ln(rπ∗), (1− ρR)ψ1πt + (1− ρR)ψ2(yt − yt−1 + zt) + ρRt−1 + σRεR,t

}
.

Approximate Piecewise-Linear Solution in Special Case. To simplify the exposition,

we impose the following restrictions on the DSGE model parameters: τ = 1, γ = 1, π̄ = π∗,

ψ1 = ψ, ψ2 = 0, ρR = 0, ρz = 0, and ρg = 0. We obtain the system

Rt = max

{
− ln(rπ∗), ψπt + σRεR,t

}
(A.15)

ct = Et[ct+1]− (Rt − Et[πt+1])

πt = βEt[πt+1] + κct.

It is well known that if the shocks are small enough such that the ZLB is non-binding, the

linearized system has a unique stable solution for ψ > 1. Since the exogenous shocks are iid

and the simplified system has no endogenous propagation mechanism, consumption, output,

inflation, and interest rates will also be iid and can be expressed as a function of εR,t. In

turn, the conditional expectations of inflation and consumption equal their unconditional

means, which we denote by µπ and µc, respectively.

The Euler equation in (A.15) simplifies to the static relationship

ct = −Rt + µc + µπ. (A.16)

Similarly, the Phillips curve in (A.15) becomes

πt = κct + βµπ. (A.17)

Combining (A.16) and (A.17) yields

πt = −κRt + (κ+ β)µπ + κµc. (A.18)

We now can use (A.18) to eliminate inflation from the monetary policy rule:

Rt = max

{
− ln(rπ∗), −κψRt + (κ+ β)ψµπ + κψµc + σRεR,t

}
(A.19)
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Define

R
(1)
t = − ln(rπ∗) and R

(2)
t =

1

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
.

Let ε̄R,t be the value of the monetary policy shock for which Rt = − ln(rπ∗) and the two

terms in the max operator of (A.19) are equal

σRε̄R,t = −(1 + κψ) ln(rπ∗)− (κ+ β)ψµπ − κψµc.

To complete the derivation of the equilibrium interest rate, it is useful to distinguish the

following two cases. Case (i): suppose that εR,t < ε̄R,t. We will verify that Rt = R
(1)
t is

consistent with (A.19). If the monetary policy shock is less than the threshold value, then

(κ+ β)ψµπ + κψµc + σRε̄R,t < −(1 + κψ) ln(rπ∗).

Thus,

−κψR(1)
t + (κ+ β)ψµπ + κψµc + σRεR,t < −κψR(1)

t − (1 + κψ) ln(rπ∗) = − ln(rπ∗),

which confirms that (A.19) is satisfied.

Case (ii): suppose that εR,t > ε̄R,t. We will verify that Rt = R
(2)
t is consistent with (A.19).

If the monetary policy shock is greater than the threshold value, then

(κ+ β)ψµπ + κψµc + σRε̄R,t > −(1 + κψ) ln(rπ∗).

In turn,

−κψR(2)
t + (κ+ β)ψµπ + κψµc + σRεR,t

= − κψ

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
+ (κ+ β)ψµπ + κψµc + σRεR,t

=
1

1 + κψ

[
(κ+ β)ψµπ + κψµc + σRεR,t

]
> − ln(rπ∗),

which confirms that (A.19) is satisfied.

We can now deduce that

Rt(εR,t) = max

{
− ln(rπ∗),

1

1 + κψ

[
ψ(κ+ β)µπ + κψµc + σRεR,t

]}
. (A.20)
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Combining (A.16) and (A.20) yields equilibrium consumption

ct(εR,t) =


1

1+κψ

[
(1− ψβ)µπ + µc − σRεR,t

]
if Rt ≥ − ln(rπ∗)

ln(rπ∗) + µc + µπ otherwise

. (A.21)

Likewise, combining (A.17) and (A.20) delivers equilibrium inflation

πt(εR,t) =


1

1+κψ

[
(κ+ β)µπ + κµc − κσRεR,t

]
if Rt ≥ − ln(rπ∗)

κ ln(rπ∗) + (κ+ β)µπ + κµc otherwise

. (A.22)

If X ∼ N(µ, σ2) and C is a truncation constant, then

E[X|X ≥ C] = µ+
σφN(α)

1− ΦN(α)
,

where α = (C − µ)/σ, φN(x) and ΦN(α) are the probability density function (pdf) and the

cumulative density function (cdf) of a N(0, 1). Define the cutoff value

C = −(1 + κψ) ln(rπ∗)− (κ+ β)ψµπ − κψµc. (A.23)

Using the definition of a cdf and the formula for the mean of a truncated normal random

variable, we obtain

P[εR,t ≥ C/σR] = 1− ΦN(Cy/σR)

E[εR,t | εR,t ≥ C/σR] =
σRφN(C/σR)

1− ΦN(C/σR)
.

Thus,

µc =
1− ΦN(Cy/σR)

1 + κψ

[
(1− ψβ)µπ + µc

]
− σRφN(Cy/σR)

(1 + κψ)(1− ΦN(Cy/σR))
(A.24)

+ΦN(Cy/σR)

[
ln(rπ∗) + µc + µπ

]
µπ =

1− ΦN(Cy/σR)

1 + κψ

[
(κ+ β)µπ + κµc

]
− κσRφN(Cy/σR)

(1 + κψ)(1− ΦN(Cy/σR))
(A.25)

+ΦN(Cy/σR)

[
κ ln(rπ∗) + (κ+ β)µπ + κµc

]
The constants C, µc, and µπ can be obtained by solving the system of nonlinear equations

composed of (A.23) to (A.25).
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B.2 Approximation Near the Deflation Steady State

Steady State. As before, let λ = ν(1 − β). The steady-state nominal interest rate is

RD = 1, and provided that β/(γπ∗) < 1 and ψ1 > 1:

r = γ/β

πD = β/γ

cD =

[
1− v − φ

2
(1− 2λ)

(
πD −

1− λ
1− 2λ

π̄

)2

+
φ

2

λ2

1− 2λ
π̄2

]1/τ
yD =

cD[
1
g∗
− φ

2
(πD − π̄)2

] .
Log-Linearization. We omit the tildes from variables that capture deviations from the

deflation steady state. The linearized consumption Euler equation (A.11) is

ct = Et[ct+1]−
1

τ
(Rt − Et[πt+1 + zt+1]).

The price-setting equation (A.12) takes the form

0 = −τc
τ
D

ν
ct + φβ

[(
1− 1

2ν

)
β +

π̄

2ν

]
πt + φβ(β − π̄)

(
1− 1

2ν

)
πt

−φβ2(β − π̄)

(
τct − yt − Et[τct+1 − yt+1] + E[πt+1]

)
− φβ3Et[πt+1].

Log-linearizing the aggregate resource constraint (A.12) yields

ct = yt −
1/g∗

1/g∗ − φ(β − π̄)2
gt −

φβ(β − π̄)

1/g∗ − φ(β − π̄)2
πt

Finally, the monetary policy rule becomes

Rt = max

{
0, −(1− ρR) ln(rπ∗)− (1− ρR)ψ1 ln(π∗/β)

+(1− ρR)ψ1πt + (1− ρR)ψ2(yt − yt−1 + zt) + ρRt−1 + σRεR,t

}
.

Approximate Piecewise-Linear Solution in Special Case. As for the approximate

analysis of the targeted-inflation equilibrium, we impose the following restrictions on the

DSGE model parameters: τ = 1, γ = 1, π̄ = π∗, ψ1 = ψ, ψ2 = 0, ρR = 0, ρz = 0, and
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ρg = 0. In the deflation equilibrium, the steady-state inflation rate is πD = β. To ease the

expositions, we assume that the terms |πD − π̄| that appear in the log-linearized equations

above are negligible. Denote percentage deviations of a variable xt from its deflation steady

state by x̃t = ln(xt/xD). If we let κD = cD/(νφβ
2) and using the steady-state relationship

r = 1/β

R̃t = max

{
0, −(ψ − 1) ln(rπ∗) + ψπ̃t + σRεR,t

}
c̃t = Et[c̃t+1]− (R̃t − Et[π̃t+1]) (A.26)

π̃t = βEt[π̃t+1] + κDc̃t.

Provided that ψ > 1, the ZLB is binding with high probability if the shock standard deviation

σR is small. In this case, R̃t = 0. An equilibrium in which all variables are iid can be obtained

by adjusting the constants in (A.20) to (A.22):

R̃t(εR,t) = max

{
0,

1

1 + κψ

[
ψ(κ+ β)µDπ + κψµDc − (ψ − 1) ln(rπ∗) + σRεR,t

]}

c̃t(εR,t) =


1

1+κψ

[
(1− ψβ)µDπ + µDc + (ψ − 1) ln(rπ∗)− σRεR,t

]
if R̃t ≥ 0

µDc + µDπ otherwise

(A.27)

π̃t(εR,t) =


1

1+κψ

[
(κ+ β)µDπ + κµDc + κ(ψ − 1) ln(rπ∗)− κσRεR,t

]
if R̃t ≥ 0

(κ+ β)µDπ + κµDc otherwise

.

In this simple model, the decision rules have a kink at the point in the state space where

the two terms in the max operator of the interest rate equation are equal to each other. In

the targeted-inflation equilibrium, this point in the state space is given by

ε̄∗R =
1

σR

[
− (1 + κψ) ln(rπ∗)− (κ+ β)ψµ∗π − κψµ∗c

]
,

whereas in the deflation equilibrium, it is

ε̄DR =
1

σR

[
(ψ − 1) ln(rπ∗)− (κ+ β)ψµDπ − κψµDc

]
,

Once εR,t falls below the threshold value ε̄∗R or ε̄DR , its marginal effect on the endogenous

variables is zero. To the extent that ε̄DR > 0 > ε̄∗R, it takes a positive shock in the deflation

equilibrium to move away from the ZLB, whereas it takes a large negative monetary shock

in the targeted-inflation equilibrium to hit the ZLB.
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C Computational Details

C.1 Model Solution Algorithm

Algorithm 1 (Solution Algorithm) 1. Start with a guess for Θ. For the targeted-

inflation equilibrium, this guess is obtained from a linear approximation around the

inflation target. For the deflation equilibrium, it is obtained by assuming constant

decision rules for inflation and E at the deflation steady state. For the sunspot equilib-

rium, it is obtained by letting the st = 1 decision rules come from the targeted-inflation

equilibrium and the st = 0 decision rules come from the deflation equilibrium.

2. Given this guess, simulate the model for a large number of periods.

3. Given the simulated path, obtain the grid for the state variables over which the approxi-

mation needs to be accurate. Label these grid points as {S1, ...,SM}. For a fourth-order

approximation, we use M = 130. For the targeted-inflation equilibrium, 79 of these

grid points come from the ergodic distribution, obtained using a cluster-grid algorithm

as in Judd, Maliar, and Maliar (2010). The remaining 51 come from the filtered ex-

ogenous state variables from 2000:Q1 to 2012:Q3. For the deflation equilibrium, we

use a time-separated grid algorithm to deliver 130 points, which suits the behavior of

this equilibrium better, since there are many periods when the economy is on the “edge”

of the ergodic distribution at the ZLB. For the sunspot equilibrium, we use the same

time-separated grid algorithm to deliver 156 points each for st = 1 and st = 0, and

312 points come from filtered states using multiple particles per period from the particle

filter and over sampling the period 2009:Q2-2011:Q2.

4. Solve for the Θ by minimizing the sum of squared residuals obtained following the steps

below using a variant of a Newton algorithm.

(a) For a generic grid point Si and the current value for Θ, compute f 1
π(Si; Θ),

f 2
π(Si; Θ), f 1

E (Si; Θ), and f 2
E (Si; Θ).

(b) Assume ζi ≡ I{R(Si,Θ) > 1} = 1 and compute πi, and Ei, as well as yi and ci

using (23) and (24), substituting in (25).
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(c) If Ri that follows from (25) using πi and yi obtained in (b) is greater than unity,

then ζi is indeed equal to one. Otherwise, set ζi = 0 (and thus Ri = 1) and

recompute all other objects.

(d) The final step is to compute the residual functions. There are four residuals,

corresponding to the four functions being approximated. For a given set of state

variables Si, only two of them will be relevant since we either need the constrained

decision rules or the unconstrained ones. The residual functions will be given by

R1(Si) = Ei −
[∫ ∫ ∫

c(S ′)−τ

γz′π(S ′)
dF (z′) dF (g′) dF (ε′R)

]
(A.28)

R2(Si) = f (ci, πi, yi)−φβ
∫ ∫ ∫

c(S ′)−τy(S ′) [π(S ′)− π̄] π(S ′)dF (z′) dF (g′) dF (ε′R)

(A.29)

Note that this step involves computing π(S ′), y(S ′), c(S ′), and R(S ′) which is

done following steps (a)-(c) above for each value of S ′. We use a non product

monomial integration rule to evaluate these integrals.

(e) The objective function to be minimized is the sum of squared residuals obtained in

(d).

5. Repeat steps 2-4 a sufficient number of times so that the ergodic distribution remains

unchanged from one iteration to the next. For the targeted-inflation equilibrium and

the sunspot equilibrium, we also iterate between solution and filtering to make sure the

filtered states used in the solution grid remain unchanged.

We start our solution from a second-order approximation and move to a third- and

fourth-order approximation by using the previous solution. We use analytical derivatives

of the objection function, which speeds up the solution by two orders of magnitude. As a

measure of accuracy, we compute the approximation errors from A.28 and A.29, converted

to consumption units. For the targeted-inflation equilibrium, these are in the order of 10−6.

For the deflation and sunspot equilibria, they are higher at 10−4 and 10−5, respectively, but

still very reasonable given the complexity of the model.
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Figure A-1: Solution Grid for the Targeted-Inflation Equilibrium
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Figure A-1 shows the solution grid for the targeted-inflation equilibrium. For each panel,

we have Rt−1 on the x axis and the other state variables on the y axis. The red dots are the

grid points that represent the ergodic distribution, the green points are the filtered states

from 2000:Q1 to 2008:Q3, and the blue points are the filtered state for the period after

2008:Q3. It is evident that the filtered states lie in the tails of the ergodic distribution of the

targeted-inflation equilibrium, which assigns negligible probability to zero interest rates and

the exogenous states that push interest rates toward the ZLB. By adding these filtered states

to the grid points, we ensure that our approximation will be accurate in these low-probability

regions.
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C.2 Details of Policy Experiments

Algorithm 2 (Effect of Combined Fiscal and Monetary Policy Intervention) For j =

1 to j = nsim, repeat the following steps:

1. Initialize the simulation by setting (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ) equal to the mean estimate ob-

tained with the particle filter.

2. Generate baseline trajectories based on the innovation sequence {ε(j)t }Ht=1 by letting

[ε
(j)
z,t , ε

(j)
g,t ]
′ ∼ N(0, I) and setting εR,t = 0.

3. Generate the innovation sequence for the counterfactual trajectories according to

ε
I(j)
g,1 = δARRA + ε

(j)
g,1; ε

I(j)
g,t = ε

(j)
g,t for t = 2, . . . , H;

ε
I(j)
z,t = ε

(j)
z,t for t = 1, . . . , H;

ε
I(j)
R,t = ε

(j)
R,t = 0 for t = 9, . . . , H;

In periods t = 1, . . . , 8, conditional on {εI(j)g,t , ε
I(j)
z,t }4t=1, determine ε

I(j)
R,t by solving for the

smallest ε̃R,t such that it is less than 2σR in absolute value, that yields either

R
I(j)
t (ε

I(j)
R,t = ε̃R,t) = 1 or 400 ln

(
R
I(j)
t (ε

I(j)
R,t = 0)−RI(j)

t (ε
I(j)
R,t = ε̃R,t)

)
= 1.

4. Conditional on (R
(j)
0 , y

(j)
0 , z

(j)
0 , g

(j)
0 ), compute {R(j)

t , y
(j)
t , π

(j)
t }Ht=1 and {RI(j)

t , y
I(j)
t , π

I(j)
t }Ht=1

based on {ε(j)t } and {εI(j)t }, respectively, and let

IRF (j)(xt|εg,1, εR,1:8) = (ln x
I(j)
t − lnx

(j)
t ). (A.30)

Compute medians and percentile bands based on IRF (j)(xt|εg,1, εR,1:8), j = 1, . . . , nsim. �

When we consider only a fiscal policy, we set ε
I(j)
R,t = 0 for t = 1, ..., 8 as well.
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D Estimation of Second-Order Approximated DSGE

Model

Table A-1 summarizes the prior and posterior distribution from the Bayesian estimation

of the second-order approximated version of the DSGE model. The estimation sample is

1984:Q1 to 2007:Q4. The parameter φ that is used in the main text is related to the

parameter κ (Phillips curve slope of a linearized version of the DSGE model) according to

φ = τ(1−ν)
(νπ2κ)

. The parameters r∗, π∗, and γ are fixed at the sample means of the ex-post real

rate, the inflation rate, and output growth. We assume that π̄ = 1, meaning that any price

change is costly.
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Table A-1: Posterior Estimates for DSGE Model Parameters

Prior Posterior

Parameter Density Para 1 Para 2 Mean 90% Interval

τ Gamma 2.00 0.25 1.50 [1.14, 1.89]

κ Gamma 0.30 0.10 0.17 [0.05, 0.30]

ψ1 Gamma 1.50 0.10 1.36 [1.27, 1.43]

ρr Beta 0.50 0.20 0.64 [0.55, 0.72]

ρg Beta 0.80 0.10 0.86 [0.82, 0.91]

ρz Beta 0.20 0.10 0.11 [0.03, 0.24]

100σr Inv Gamma 0.30 4.00 0.21 [0.17, 0.26]

100σg Inv Gamma 0.40 4.00 0.78 [0.66, 0.93]

100σz Inv Gamma 0.40 4.00 1.03 [0.83, 1.32]

400(r∗ − 1) Fixed 2.78

400(π∗ − 1) Fixed 2.52

100(γ − 1) Fixed 0.48

π Fixed 1.00

ψ2 Fixed 0.80

ν Fixed 0.10

1
g

Fixed 0.85

Notes: Para (1) and Para (2) list the means and the standard deviations for Beta and Gamma; and s and

ν for the Inverse Gamma distribution, where pIG(σ|ν, s) ∝ σ−ν−1e−νs2/2σ2

. The effective prior is truncated
at the boundary of the determinacy region. Estimation sample is 1984:Q1 to 2007:Q4. As 90% credible
interval, we are reporting the 5th and 95th percentile of the posterior distribution.
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E Particle Filter

The particle filter is used to extract information about the state variables of the model from

data on output growth, inflation, and nominal interest rates over the period 2000:Q1 to

2012:Q3.

E.1 State-Space Representation

Let yt be the 3× 1 vector of observables consisting of output growth, inflation, and nominal

interest rates. The vector xt stacks the continuous state variables, which are given by

xt = [Rt, yt, yt−1, zt, gt, At]
′ and st ∈ {0, 1}, is the Markov-switching process.

yt = Ψ(xt) + νt (A.31)

P{st = 1} =

 (1− p00) if st−1 = 0

p11 if st−1 = 1
(A.32)

xt = Fst(xt−1, εt) (A.33)

The first equation is the measurement equation, where νt ∼ N(0,Σν) is a vector of mea-

surement errors. The second equation represents the law of motion of the Markov-switching

process. The third equation corresponds to the law of motion of the continuous state vari-

ables. The vector εt ∼ N(0, I) stacks the innovations εz,t, εg,t, and εR,t. The functions F0(·)

and F1(·) are generated by the model solution procedure. We subsequently use the densities

p(yt|xt), p(st|st−1), and p(xt|xt−1, st) to summarize the measurement and the state transition

equations. The targeted-inflation equilibrium yields a state-space system that is a special

case: the discrete state st is constant.

E.2 Sequential Importance Sampling Approximation

Let zt = [x′t, st]
′ and Yt0:t1 = {yt0 , . . . , yt1}. Particle filtering relies on sequential importance

sampling approximations. The distribution p(zt−1|Y1:t−1) is approximated by a set of pairs
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{(z(i)t−1, π
(i)
t−1)}Ni=1 in the sense that

1

N

N∑
i=1

f(z
(i)
t−1)π

(i)
t−1

a.s.−→ E[f(zt−1)|Y1:t−1], (A.34)

where z
(i)
t−1 is the i’th particle, π

(i)
t−1 is its weight, and N is the number of particles. An

important step in the filtering algorithm is to draw a new set of particles for period t. In

general, these particles are drawn from a distribution with a density that is proportional

to g(zt|Y1:t, z(i)t−1), which may depend on the particle value in period t − 1 as well as the

observation yt in period t. This procedure leads to an importance sampling approximation

of the form:

E[f(zt)|Y1:t] =

∫
zt

f(zt)
p(yt|zt)p(zt|Y1:t−1)

p(yt|Y1:t−1)
dzt (A.35)

=

∫
zt−1:t

f(zt)
p(yt|zt)p(zt|zt−1)p(zt−1|Y1:t−1)

p(yt|Y1:t−1)
dzt−1:t

≈
1
N

∑N
i=1 f(z

(i)
t )

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

g(z
(i)
t |Y1:t,z

(i)
t−1)

π
(i)
t−1

1
N

∑N
j=1

p(yt|z(j)t )p(z
(j)
t |z

(j)
t−1)

g(z
(j)
t |Y1:T ,z

(i)
t−1)

π
(i)
t−1

=
1

N

N∑
i=1

f(z
(i)
t )

(
π̃
(i)
t

1
N

∑N
j=1 π̃

(j)
t

)
=

1

N

N∑
i=1

f(z
(i)
t )π

(i)
t ,

where the unnormalized and normalized probability weights are given by

π̃
(i)
t =

p(yt|z(i)t )p(z
(i)
t |z

(i)
t−1)

g(z
(i)
t |Y1:T , z

(i)
t−1)

π
(i)
t−1 and π

(i)
t =

π̃
(i)
t∑N

j=1 π̃
(j)
t

, (A.36)

respectively. In simple versions of the particle filter, z
(i)
t is often generated by simulating

the model forward, which means that g(z
(i)
t |Y1:T , z

(i)
t−1) ∝ p(z

(i)
t |z

(i)
t−1), and the formula for

the particle weights simplifies considerably. Unfortunately, this approach is quite inefficient

in our application, and we require a more elaborate density g(·|·) described below that

accounts for information in yt. The resulting extension of the particle filter is known as

auxiliary particle filter, e.g. Pitt and Shephard (1999).

E.3 Filtering

Initialization. To generate the initial set of particles {(z(i)0 , π
(i)
0 }Ni=1, for each i, simulate

the DSGE model for T0 periods, starting from the targeted-inflation steady state, and set
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π
(i)
0 = 1.

Sequential Importance Sampling. For t = 1 to T :

1. {z(i)t−1, π
(i)
t−1}Ni=1 is the particle approximation of p(zt−1|Y1:t−1). For i = 1 to N :

(a) Draw z
(i)
t conditional on z

(i)
t−1 from g(zt|Y1:t, z(i)t−1).

(b) Compute the unnormalized particle weights π̃
(i)
t according to (A.36).

2. Compute the normalized particle weights π
(i)
t and the effective sample size ESSt =

N2/
∑N

i=1(π
(i)
t )2.

3. Resample the particles via deterministic resampling (see Kitagawa (1996)). Reset

weights to be π
(i)
t = 1 and approximate p(zt|Y1:t) by {(z(i)t , π

(i)
t )}ni=1.

E.4 Tuning of the Filter

In the empirical analysis, we set T0 = 50 and N = 500, 000. We also fix the measurement

error standard deviations for output growth, inflation, and interest rates at 0.1, respectively.

Since our model has discrete and continuous state variables, we write

p(zt|zt−1) =

 p0(xt|xt−1, st = 0)P{st = 0|st−1} if st = 0

p1(xt|xt−1, st = 1)P{st = 1|st−1} if st = 1

and consider proposal densities of the form

q(zt|zt−1, yt) =

 q0(xt|xt−1, yt, st = 0)λ(zt−1, yt) if st = 0

q1(xt|xt−1, yt, st = 1)(1− λ(zt−1, yt)) if st = 1
,

where λ(xt−1, yt) is the probability that st = 0 under the proposal distribution. We use q(·)

instead of g(·) to indicate that the densities are normalized to integrate to one.

We effectively generate draws from the proposal density through forward iteration of the

state transition equation. To adapt the proposal density to the observation yt, we draw

ε
(i)
t ∼ N(µ(i),Σ(i)) instead of the model-implied εt ∼ N(0, I). In slight abuse of notation

(ignoring that the dimension of xt is larger than the dimension of εt and that its distribution
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is singular), we can apply the change of variable formula to obtain a representation of the

proposal density

q(x
(i)
t |x

(i)
t−1) = qε(F

−1(x
(i)
t |x

(i)
t−1))

∣∣∣∣∣∂F−1(x(i)t |x(i)t−1)∂xt

∣∣∣∣∣
Using the same change-of-variable formula, we can represent

p(x
(i)
t |x

(i)
t−1) = pε(F

−1(x
(i)
t |x

(i)
t−1))

∣∣∣∣∣∂F−1(x(i)t |x(i)t−1)∂xt

∣∣∣∣∣
By construction, the Jacobian terms cancel and the ratio that is needed to calculate the

unnormalized particle weights for period t in (A.36) simplifies to

π̃
(i)
t = p(yt|z(i)t )

exp
{
−1

2
ε
(i)′

t ε
(i)
t

}
|Σ(i)

ε |−1/2 exp
{
−1

2
(ε

(i)
t − µ(i))′[Σ(i)]−1(ε

(i)
t − µ(i))

}π(i)
t−1.

The choice of µ and Σ is described below.

Targeted-Inflation Equilibrium. Since the discrete state st is irrelevant in this equilib-

rium, let zt = xt. We break the sample period into two parts: 2000:Q1 to 2008:Q4 and

2009:Q1 to 2012:Q3. In the second period, the economy was at the ZLB and the filter

requires a different proposal density.

For the first part of the sample, we run the Kalman filter for the log-linearized version

of the DSGE model in parallel with the particle filter and set µ(i) = ε
(i)
t|t and Σ(i) = P

(i)
t|t ,

which are respectively the mean and variance of εt conditional on Y1:t and zt−1 = z
(i)
t−1. For

the second part of the sample, the Kalman-filtered shocks become very inaccurate because

the log-linearized DSGE model misses the ZLB. Instead, we let zt−1|t−1 be a particle filter

approximation of E[zt−1|Y1:t−1] and define

π̄t(εt) = p(yt|F (zt−1|t−1, εt)) exp

{
−1

2
ε′tεt

}
|Σε|1/2π(i)

t−1.

We use a grid search over εt to determine a value ε̄ that maximizes this objective function

and then set µ(i) = ε̄. (Executing the grid search conditional on each z
(i)
t−1, i = 1, . . . , N

turned out to be too time consuming.)

Sunspot Equilibrium. The filter is initialized by simulating the model for T0 = 50 periods

conditional on st = 1. For the period of 2000:Q1 to 2008:Q4, we use the simple grid search
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approach described in the previous paragraph to generate shocks under which we simulate

the state-transition equation forward. Starting in 2008:Q4, we use the information from

the grid search to construct a mixture-of-normals proposal distribution for ε
(i)
t . While more

time consuming, this mixture proposal improves the accuracy of the particle filter. At each

iteration, we conduct separate computations for st = 0 and st = 1. We then compute the

posterior odds of st = 0 and st = 1 and select the regime-conditional particles accordingly.

For the ex-ante policy analysis, we run the filter from 2009:Q1 onward conditional on a

sequence of regimes for the periods from 2009:Q2 to 2011:Q1.

F Calibration of the Policy Experiment

Table A-2 summarizes the award and disbursements of funds for federal contracts, grants,

and loans. We translate the numbers in the table into a one-period location shift of the

distribution of εg,t. In our model, total government spending is a fraction ζt of aggregate

output, where ζt evolves according to an exogenous process:

Gt = ζtYt; ζt = 1− 1

gt
; ln(gt/g∗) = ρg ln(gt−1/g∗) + σgεg,t

For the subsequent calibration of the fiscal intervention, it is convenient to define the per-

centage deviations of gt and ζt from their respective steady states: ĝt = ln(gt/g∗) and

ζ̂t = ln(ζt/ζ∗). According to the parameterization of the DSGE model in Table 1, ζ∗ = 0.15

and g∗ = 1.177. Thus, government spending is approximately 15% of GDP. We assume that

the fiscal expansion approximately shifts ζ̂t to ζ̂It = ζ̂t + ζ̂ARRAt .

We construct ζ̂ARRAt as follows. Let GARRA
t correspond to the additional government

spending stipulated by ARRA. Since we focus on received rather than awarded funds, GARRA
t

corresponds to the third column of Table A-2. The size of the fiscal expansion as a fraction

of GDP is

ζARRAt = GARRA
t /Yt,

where Yt here corresponds to the GDP data reported in the last column of Table A-2. We

then divide by ζ∗ to convert it into deviations from the steady-state level: ζ̂ARRAt = ζARRAt /ζ∗.
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Taking a log-linear approximation of the relationship between gt and ζt leads to

ĝARRAt = 0.177 ·GARRA
t /(ζ∗Yt).

In Figure A-2, we compare ĝARRAt constructed from the data in Table A-2 to (ĝIt − ĝt),

where δARRA = 0.011.14 While the actual path of the received funds is not perfectly mono-

tone, the calibrated intervention in the DSGE model roughly matches the actual intervention

both in terms of magnitude and decay rate.

Table A-2: ARRA Funds for Contracts, Grant, and Loans

Awarded Received Nominal GDP

2009:3 158 36 3488

2009:4 17 18 3533

2010:1 26 8 3568

2010:2 16 24 3603

2010:3 33 26 3644

2010:4 9 21 3684

2011:1 4 19 3704

2011:2 4 20 3751

2011:3 8 17 3791

2011:4 0 12 3830

2012:1 3 9 3870

2012:2 0 8 3899

Notes: Data were obtained from www.recovery.org.

14Recall that σg = 0.0078.
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Figure A-2: Calibration of Fiscal Policy Intervention
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