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Appendix 1: Optimal Emissions and Policy Parameters.

We suppose that the abatement cost function is a quadratic in the level of abatement, where abatement

is defined to be the difference between the firms’chosen emissions level ei and uncontrolled, "business

as usual" emissions eBAUi . In most cases, including the policy setting that is of primary interest here,

a quadratic functional form provides a reasonable approximation to the true form. We transform this

quadratic abatement function so that costs are expressed as a function of emissions:

Ci = γ1i(e
BAU
i − ei) + γ21(eBAUi − ei)2 (1)

= γ1ie
BAU
i − γ1iei + γ21e

BAU2
i − 2γ21e

BAU
i ei + γ21e

2
i (2)

= α0i − α1iei + βie
2
i (3)

1.1 Optimal Emissions.

Employing the above functional form for abatement costs and the linear and additively separable damage

function discussed in Section 2. of the main text, we first solve for the socially optimal emissions levels:

MIN
eh,el

: α0H − α1HeH + βHeH
2 + α0L − α1LeL + βLeL

2 + δHeH + δLeL (4)

First order conditions imply:

e∗H =
α1H − δH

2βH
(5)

e∗L =
αL − δL

2βL
(6)
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The optimal level of aggregate emissions is thus:

E∗ =
α1H − δH

2βH
+
α1L − δL

2βL
(7)

=
(α1HβL + α1LβH − δHβL − δLβH)

2βLβH

1.2 Welfare maximizing differentiated tax.

Here we solve for the differentiated tax structure that minimizes total social costs as defined by equation

(1) in the text. We assume that both the low and high damage firms’objective is to minimize the sum

of their abatement costs and tax payments, where (τ i) is the emissions tax rate for firm (i):

min
ei

: TCi = α0i − αiei + β
i
e2
i + τ iei (8)

Firms set:

−αi + 2βiei + τ = 0

ei =
αi − τ i

2βi

The regulator sets the tax τ i to minimize total social costs. Beginning with the low damage source:

∂

∂τL

 −αL (αL−τL2βL

)
+ βL

(
αL−τL

2βL

)2
− αH

(
αH−τH

2βH

)
+βH

(
αH−τH

2βH

)2
+ δL

(
αL−τL

2βL

)
+ δH

(
αH−τH

2βH

)
 = 0

1

2βL
(τL − δL) = 0

τL = δL

2



By symmetry:

∂

∂τH

 −αL (αL−τL2βL

)
+ βL

(
αL−τL

2βL

)2
− αH

(
αH−τH

2βH

)
+βH

(
αH−τH

2βH

)2
+ δL

(
αL−τL

2βL

)
+ δH

(
αH−τH

2βH

)
 = 0

τH = δH

Making the substitution, we can solve for the aggregate emissions under this optimal differentiated tax

regime:

E =
αHβL + βHαL − βHδL − δHβL

2βHβL

Note that this is equal to the optimal level of aggregate emissions.

1.3 Welfare maximizing undifferentiated tax.

We now impose the constraint of a uniform tax. We solve for the welfare maximizing undifferentiated

tax. Under an undifferentiated tax regime, firms minimize costs:

min
ei

: TCi = α0i − α1iei + α2ie
2
i + τei (9)

The first order condition for cost minimization:

−αL + 2βLeL + τ = 0

eL =
αL − τ

2βL
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The regulator chooses the uniform tax rate τ to minimize total social costs:

∂

∂τ

(
−αL

(
αL − τ

2βL

)
+ βL

(
αL − τ

2βL

)2

− αH
(
αH − τ

2βH

)
+ βH

(
αH − τ

2βH

)2

+ δL

(
αL − τ

2βL

)
+ δH

(
αH − τ

2βH

))

=

1

2βHβL
(τβH + τβL − βHδL − δHβL) = 0

The welfare maximizing undifferentiated tax:

τ =
1

βH + βL
(βHδL + δHβL)

Making the substitution:

E =
αL − ( 1

βH+βL
(βHδL + δHβL))

2βL
+
αH − ( 1

βH+βL
(βHδL + δHβL))

2βH

=
βHαL − βHδL − δHβL + αHβL

2βHβL

Note that the aggregate emissions under the social cost minimizing differentiated and undifferentiated

tax regimes are equivalent.

1.4 Welfare maximizing undifferentiated emissions trading program.

In the context of an undifferentiated permit system firm (L) faces the following problem, where permit

sales for the low damage firm are denoted (AsLH), permit purchases for the low damage firm are denoted

(AbLH), and the initial endowment of permits for the low damage firm is denoted (AL):

minej TCL = α0L − α1LeL + βLe
2
L + P (AbLH −AsLH) (10)

s.t eL ≤ AL −AsLH +AbLH
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The associated Lagrangian with the firm’s cost minimization problem is shown in (11).

LL = α0L − α1LeL + βLe
2
L + P (AbLH −AsLH) + λL(eL −AL +AsLH −AbLH) (11)

The first order conditions with respect to emissions (eL), permit sales (AsLH), and permit purchases

(AbLH) are shown in (12).

∂LL
∂eL

= λL − α1L + 2βLeL = 0 (12)

∂LL
∂AbLH

= P − λL = 0

∂LL
∂AsLH

= λL − P = 0

By substitution among first-order conditions:

−α1L + 2βLeL = P

Thus, the cost-minimizing (eL) equates marginal cost to the extant permit price (P).

We next consider the policy design problem faced by a regulator who is constrained to implement an

undifferentiated emissions trading program. We begin by setting up a standard abatement cost mini-

mization problem subject to the constraint that the sum of emissions between the two firms is less than

or equal to the cap (E). We use this set-up to derive general expressions for cost-minimizing emission

levels for the high and low damage firms that hold for any given aggregate cap. Then, we conduct a

search among all possible values of the cap (E) for that which minimizes the welfare loss relative to the

first best allocation at {e∗L, e
∗
H}. The steps involved in this procedure are shown below, beginning with

the derivation of the first-order conditions for cost minimization.
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min
eL,eH

(
α0L − α1LeL + βLe

2
L

)
+
(
α0H − α1HeH + βHe

2
H

)
(13)

s.t.E ≥ eL + eH

The associated Lagrangian is given in (14), where (φ) is a Lagrange multiplier .

L =
(
α0L − α1LeL + βLe

2
L

)
+
(
α0H − α1HeH + βHe

2
H

)
− φ(ē− eL − eH) (14)

The first-order conditions for cost-minimization with respect to {eL, eH} are:

∂LL
∂eL

= φ− αL + 2βLeL (15)

∂LL
∂eH

= φ− αH + 2βHeH

We next derive expressions for the cost-minimizing emissions levels, which are denoted {eUL , e
U
H}, for the

two regulated firms by setting their respective first-order conditions equal to zero and solving for {eL, eH}.

This yields:

eUL =
αL − φ
2β1L

(16)

eUH =
αH − φ
2β1H

We evaluate (TSC) at the cost-minimizing emission levels {eUL , e
U
H} and then at the first-best emission

levels {e∗L, e
∗
H}. The goal is to find the aggregate cap which minimizes (∆TSC): the difference in welfare

between the first-best allocation and that resulting from the undifferentiated policy. Since (φ) is the
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shadow value of a small change to the aggregate cap, it is determined by the stringency of the cap. As

such, rather than minimizing (∆TSC) over all combinations of {eUL , e
U
H}, we focus on determining the

optimal value of (φ). To do this we take ∂∆TSC
∂φ , set it equal to zero, and solve for (φ). The solution is:

φ∗ = (βLδH+βHδL)
βL+βH

. Importantly, this suggests that welfare loss is minimized when (φ∗) is equal to the

optimal tax (τ) in the undifferentiated tax policy.

Further, we know from (12) that firms minimize total compliance costs by equating their marginal costs

to the permit price. The permit price, through market forces, reflects the shadow value of relaxing the

aggregate cap, in an undifferentiated design. Therefore, firms equate marginal costs to (φ). Making the

substitution:

E =
αL − ( 1

βH+βL
(βHδL + δHβL))

2βL
+
αH − ( 1

βH+βL
(βHδL + δHβL))

2βH

=
βHαL − βHδL − δHβL + αHβL

2βHβL

The emissions level that corresponds is precisely the aggregate emissions level from the case of the second-

best undifferentiated tax. This is also the optimal quantity of permits allocated to firms.

1.5 Welfare maximizing differentiated emissions trading program.

Facing a differentiated permit system, the objective of firm (L) is cost minimization subject to a constraint

that is slightly modified with respect to (10). As above, we denote the initial allocation of permits (AL),

purchases of permits (AbLH), sales of permits (AsLH), and the extant price of permits (P ). We add (rL)

as defined in Section 2.1.4 of the paper.

min
ej

TCL = α0L − α1LeL + βLe
2
L + P (AbLH −AsLH) (17)

s.t. rLeL ≤ AL −AsLH +AbLH
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The associated Lagrangian expression is:

Lj = α0L − α1LeL + βLe
2
L + P (AbLH −AsLH)− λL(rLeL −AL +AsLH −AbLH) (18)

The first order conditions with respect to emissions (eL), purchases of permits (AbLH), and sales of

permits (AsLH) is given by:

∂LL
∂eL

= −λLrL − α1L + 2βLeL (19)

∂LL
∂AbLH

= P − λL

∂LL
∂AsLH

= λL − P

By substitution among first-order conditions, the cost-minimizing emission level (eL) equates marginal

cost to the extant permit price (P ) weighted by the firm-specific trading ratio (rL).

The regulator’s problem

Now let’s approach the design of a differentiated permit system from the regulators’perspective. To do

this, we follow Muller and Mendelsohn (2009) and set up the regulator’s problem with a cap on damage

(D̄). Within this framing we then derive expressions for optimal emissions and then show that aggregate

emissions are the same as in the case of the undifferentiated permits and, by extension, the tax policies.

min
eL,eH

(
α0L − α1LeL + βLe

2
L

)
+
(
α0H − α1HeH + βHe

2
H

)
(20)

s.t. D̄ ≥ δLeL + δHeH

The Lagrangian corresponding to the regulator’s cost-minimization problem is:
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L =
(
α0L − α1LeL + βLe

2
L

)
+
(
α0H − α1HeH + βHe

2
H

)
− ψ(D̄ − δLeL − δHeH) (21)

The first-order conditions with respect to the emissions vector {eL, eH} are:

∂L

∂eL
= −α1L + 2βLeL + ψδL (22)

∂L

∂eH
= −α1H + 2βHeH + ψδH

Following the exercise from the undifferentiated permit system, we first solve for optimal emission levels:

eDL = α1L−ψδL
2βL

and eDH = α1H−ψδH
2βH

.Next, we evaluate (TSC) at {eDL , eDH} and {e∗L, e∗H}.Taking the differ-

ence (∆TSC) and minimizing with respect to (ψ), yields ψ∗ = 1. From
(
eDL
)
and

(
eDH
)
above, conditional

on ψ∗ = 1, the resulting, firm-specific, emission levels are equal to the first best. Furthermore, total

emissions under the differentiated policy design, with an optimal cap are: eDL + eDH = α1L−δL
2βL

+ α1H−δH
2βH

.

This is equal to the aggregate emission levels in both of the undifferentiated policy designs, provided:

τ = φ = (βHδL+δHβL)
βH+βL

.

Finally, it is straightforward to solve for the welfare maximizing permit allocation. The total quantity of

permits allocated is given by:

A =
2δH

δH + δL

(
α1H − δH

2βH

)
+

2δL
δH + δL

(
αL − δL

2βL

)
=

βHαLδL + δHβLαH − βHδ2
L − δ2

HβL
βHβL (δH + δL)

Appendix 2: The benefits from differentiation.

We are interested in quantifying the gross and net benefits associated with moving from an undifferentiated
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policy regime to one that incorporates differentiation. To do this, we subtract any increases in costs from

decreases in damages to come up with a measure of net benefits. First, we derive an expression for the

change in emissions at each source:

eDH − eUH =
δL − δH

2 (βL + βH)
(23)

eDL − eUL =
δH − δL

2 (βL + βH)
(24)

Intuitively, emissions are higher under exposure-based trading at the low damage firm.

To compute the change in abatement costs at each firm we simply substitute the emissions expressions

into the corresponding abatement cost functions. The change in abatement costs at the low damage firm:

C(eDL )− C(eUL ) =
(δHβL + 2δLβH + δLβL) (δL − δH)

4 (βH + βL)2 (25)

Cost change at high damage firm (abatement costs increase under exposure based trading):

C(eDH)− C(eUH) =
(δHβH + 2δHβL + δLβH) (δH − δL)

4 (βH + βL)2 (26)

Taken together, moving from an emissions-based policy design to one that incorporates trading ratios

increases total abatement costs by:

(δL − δH)2

4(βH + βL)
(27)

These costs must be compared against the benefits associated with shifting some of the permitted emis-

sions from the high-damage source to the low-damage source:
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D(eD)− C(eU ) = δH
δL − δH

2 (βH + βL)
+ δL

δH − δL
2 (βH + βL)

(28)

= − (δL − δH)2

2 (βH + βL)
(29)

The net welfare change is thus

TSCD − TSCU =
(δL − δH)2

2 (βH + βL)
− (δL − δH)2

4(βH + βL)
(30)

=
(δL − δH)2

4(βH + βL)
≥ 0 (31)

.

2.1 Uncertain marginal damages.

Here we derive an expression for the difference in total social costs incurred under the differentiated tax

versus the undifferentiated tax when damages are uncertain. In the presence of uncertainty in estimates

of marginal damages, tax rates are defined in terms of expected damages. Let τ denote the optimal

undifferentiated tax: τ = (βHE[δL]+βLE[δH ])
βH+βL

. We define τL to be the expected value of marginal damages

for the low-damage firm E(δL).We define τH to be the expected value of marginal damages for the

high-damage firm E(δH).

First, we derive an expression for the emissions at each source under the differentiated and the undiffer-

entiated taxes.
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eDL =
α1L − τL

2βL

eUL =
α1L − τ

2βL

eDH =
α1H − τH

2βH

eUH =
α1H − τ

2βH

We next characterize the change in emissions at each source:

∆EL = eDL − eUL

=
α1L − τL

2βL
−
α1L − (βHE[δL]+βLE[δH ])

βH+βL

2βL

=

(βHE[δL]+βLE[δH ])
βH+βL

2βL
− τL

2βL

=
(βHE[δL] + βLE[δH ])

2βL(βH + βL)
− (βHE[δL] + βLE[δL])

2βL(βH + βL)

=
E[δH ]− E[δL]

2(βH + βL)

∆EH = eDH − eUH

=
α1H − τH

2βH
−
α1H − (βHE[δL]+βLE[δH ])

βH+βL

2βH

=

(βHE[δL]+βLE[δH ])
βH+βL

2βH
− τH

2βH

=
(βHE[δL] + βLE[δH ])

2βH(βH + βL)
− βHE[δH ] + βLE[δH ]

2βH(βH + βL)

=
E[δL]− E[δH ]

2(βH + βL)
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We then evaluate the social welfare function given the particular realization of δ′H and δ
′
L and derive the

difference in TSC. The increase in abatement costs is the same as above. The reduction in damages is

given by:

∆D = δ′H · eDH + δ′L · eDL + CL(eDL ))− (δ′H · eUH + δ′L · eUL )

= δ′H(eDH − eUH) + δ′L(eDL − eUL )

= δ′H
E[δL]− E[δH ]

2 (βH + βL)
+ δ′L

E[δH ]− E[δL]

2 (βH + βL)

= (δ′L − δ′H)
E[δH ]− E[δL]

2 (βH + βL)

Thus, the change in total social cost (avoided damages less the increase in costs) is:

∆TSC = (δ′L − δ′H)
E[δL]− E[δH ]

2 (βH + βL)
− (E[δL]− E[δH ])2

4(βH + βL)

2.2 Uncertain abatement costs.

With no damage uncertainty, the comparison focuses on the difference in emission levels resulting from

second-best tax and first-best taxes. In the case of the second best tax, the regulator has imperfect

information regarding the slope of each firm’s marginal cost function. With perfect information on costs,

τ is the optimal undifferentiated tax: τ = (βHδL+δHβL)
βH+βL

. In the current case: τ = (bHδL+δHbL)
bH+bL

, where

bH = E[βH ], bL = E[βL]. We denote the realization of the cost parameters: {β′H , β
′
L}. The first best

comparative case features the following τL = δL and τH = δH .

We begin by deriving expressions for emissions under both the first-best and second-best tax policies:
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eDL =
α1L − (τL)

2(β1L)

eUL =
α1L − (τ)

2(β1L)

eDH =
α1H − (τH)

2(β1H)

eUH =
α1H − (τ)

2(β1H)

Then we evaluate the social welfare function at these emission levels and determine the change in TSC.

∆TSC = (δH(eUH) + CH(eUH)− δL(eUL ) + CL(eUL ))− (δH(eDH) + CH(eDH) + δL(eDL ) + CL(eDL )) (32)

∆TSC =
(δL − δH)2 (β′1HE[β2

1L] + β′1LE[β2
1H ]
)

4β′1Lβ
′
1H (E[β1L] + E[β1H ])2 ≥ 0 (33)

To build some intuition for how these gains from differentiation vary with the difference between ex ante

expected and ex post realized costs, we reformulate the problem. Let E[βi] = βi. Let β
′
i = ∆i + βi, i =

L,H. It is now straightforward to investigate how a discrepancy between expected and realized abatement

costs affects the gains from policy differentiation in the context of a price-based policy:

d

d∆L

(
(δL − δH)2 (βH + ∆H)(β2

L) + (βL + ∆L)(β2
H)

4(βL + ∆L)(βH + ∆H) (βL + βH)2

)
= −1

4

E[βL] (δL − δH)2

(βH + ∆H)2 (βH + βL)2
< 0
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d

d∆H

(
(δL − δH)2 (βH + ∆H)(β2

L) + (βL + ∆L)(β2
H)

4(βL + ∆L)(βH + ∆H) (βL + βH)2

)
= −1

4

E[βH ] (δL − δH)2

(βL + ∆L)2 (βH + βL)2
< 0

In sum, we find that the gains from policy differentiation are decreasing with the discrepancy ∆i.

Appendix 3: Marginal Damage Functional Form.

In order to evaluate the plausibility of our assumption that the NOx damage function is linear and

additively separable, we conduct a series of auxiliary simulations with the AP2 model. Specifically, the

simulations consist of systematically reducing total NOx emissions from EGUs and recomputing the

source-specific marginal damage ($/ton) estimates for 565 of the 632 EGUs covered in the analysis. The

intent is to test whether the marginal damage is sensitive to the level of emissions and, therefore, ambient

concentrations. This design is executed both in the PM2.5 and the O3 modules of AP2 and the resulting

marginal damages are then combined to form the estimate of the marginal damage function.

Figure A1 displays the average marginal damage function over the 565 EGUs encompassed in these

auxiliary simulations. At observed baseline emission levels, the marginal damage if $1,705/ton NOx.

With emissions from these EGUs eliminated (100% reduction), the marginal damage is $1,840/ton NOx.

This is an 8% increase.
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Figure A2 shows the results for Mount Storm Power Station located in West Virginia. This site was chosen

because the marginal damages are most sensitive to changes in baseline emission levels. Specifically, the

marginal damage increases from $1,000/ton to $1,170/ton over the range of simulated emission levels.

This is a 17% increase.
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Figure 1: Figure A2: NOx Marginal Damage Function at Mount Storm Power Station.

17


