
Appendix 1. Proofs

Proposition 1 The local thinker’s over-weighting ωs has two properties:

1) Change in a state’s probability. If the probability of state s is increased by dπs = hπs and

the probabilities of other states are reduced while keeping their odds constant, i.e. dπs̃ =

− πs
1−πshπs̃ for all s̃ 6= s, then:

dωs
h

= − πs
1− πs

· ωs · (ωs − 1) . (1)

2) Change in a state’s payoffs. A change in the payoffs xs, ys of a state s which, by increas-

ing (only) that state’s salience σ (xs, ys), improves its ranking from ks to ks−1 increases this

state’s over-weighting ωs.

Proof. 1) By definition,

ωs =
δks−1∑

r δ
kr−1 · πr

Therefore,

dωs = − ωs∑
r δ

kr−1 · πr

∑
r

δkr−1 · dπr

Replacing dπs = hπs and dπr = − πs
1−πshπr (for r 6= s) leads to

dωs = − ωs∑
r δ

kr−1 · πr

[
− hπs

1− πs

∑
r 6=s

δkr−1 · πr + hδks−1πs

]

Thus
dωs
h

= −ωs
1∑

r δ
kr−1 · πr

[
− πs

1− πs

∑
r 6=s

δkr−1 · πr + δks−1πs

]

The parenthesis on the right hand side can be rearranged to yield

πs
1− πs

[
δks−1(1− πs)−

∑
r 6=s

δkr−1 · πr

]
=

πs
1− πs

[
δks−1 −

∑
r

δkr−1 · πr

]

where the sum is now over all states r. Inserting this term back into the equation above we
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get the result:
dωs
h

= −ωs
πs

1− πs
(ωs − 1)

2) Let k denote the original salience ranking, and k̃ the modified salience ranking. We

know that k̃s = ks − 1. Denote by ωs the overweighting of πs with respect to k, and by ω̃s

the overweighting with respect to k̃. Write

ωs − ω̃s =
δks−1∑

r 6=s δ
kr−1πr + δks−1πs

− δks−2∑
r 6=s δ

k̃r−1πr + δks−2πs

This is negative when

δ

(∑
r 6=s

δk̃r−1πr + δks−2πs

)
<
∑
r 6=s

δkr−1πr + δks−1πs

which can be rearranged to yield

∑
r 6=s

πr

(
δk̃r − δkr−1

)
< 0

By assumption, the rankings k and k̃ differ only by a switch between s and another state

t, namely kr = k̃r for all r 6= s, t and ks = k̃t (which together imply that kt = k̃s). Thus

kt = k̃t − 1 Then the above expression becomes

∑
r 6=s,t

πrδ
kr (δ − 1) + πtδ

kt−1(δ2 − 1) < 0

and the result follows since both terms are negative.
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Appendix 2. Experimental Evidence and Calibrations
Our experimental results were obtained from surveys conducted on Amazon Mechani-

cal Turk (MTurk), an online marketplace service hosted by Amazon.com. MTurk allows

requesters to post tasks that workers can complete in exchange for compensation. Typical

tasks include data management (e.g. finding the best category for a product), content man-

agement (e.g. tagging contents with keywords), and consumer surveys. There is a growing

usage of online surveys, and of MTurk in particular, as a tool for research in the social

sciences (for an overview of its use in economics, see Horton, Rand and Zeckhauser, 2010).

To test the performance of this tool as a means to study decision-making under risk, we

ran several surveys consisting of well known choice problems, such as the Allais paradoxes,

Samuelson’s wager, framing effects and the Ellsberg paradoxes. In all such experiments we

found agreement with the traditional lab experiment results.

We posted surveys consisting of several multiple choice questions, typically between four

and six, which were either choice problems or elicitations of value (surveys are available upon

request). Throughout the surveys, we presented choice problems in the traditional form used

in (KT79). A representative example of a choice problem we used is:

Choose between:

Lottery A: $2000 with 1% chance and $0 with 99% chance, Lottery B: $20 for sure.

Independent lotteries were always presented side by side, as above, to prevent spurious

interpretation of correlations. The sample size was typically between 75 and 120 subjects

per survey. As requesters, we have no information about workers who complete our surveys,

except for their worker ID. Using this information, we find that over 1100 different subjects

participated in our surveys, of whom over 60% participated only once. We required two con-

ditions for participation: i) that workers be living in the U.S. (so that subjects had as much

as possible a similar understanding of survey questions) and ii) that workers’ reputation index

be above 0.96 out of 1 (see discussion below on incentives). We did not collect demographic

information on our subjects. However, other surveys on MTurk workers demographics have

found that, compared to the general U.S. population, U.S. MTurk workers are slightly more

likely to be female (60%), have a similar age distribution but are somewhat younger on
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average (ages range from 16 to 60, and 45% are above 30 years old), have higher education

level (about half have a bachelor degree or higher) and report an average household income

level of $40, 000. Even though this data is self reported, it indicates that the pool of workers

is very representative of the internet-using population, and reasonably representative of the

general population.

We used several approaches to ensure high quality data. Monetary incentives were not

feasible due to the large volume of surveys and the range of lottery payoffs involved. More-

over, the evidence on the impact of monetary incentives suggests a modest quantitative

correction to levels of risk aversion, but not a qualitative change of the subjects’ risk ap-

petite (at least in laboratory settings, see e.g. Grether and Plott 1979, and Holt and Laury,

2002). To understand the workers’ motivation, note that they choose tasks in terms of their

compensation and interest to them1. Once they choose a task, they have a strong incentive

to perform, as it can affect their reputation index: requesters have the option to accept or

reject a worker’s task, and the reputation index captures the percentage of a worker’s tasks

which were accepted. We systematically discarded from the analysis surveys completed in

a very short time, under 45 seconds, as these surveys were likely to have been answered

without due attention. We included all other data from choice problems in the analysis. We

occasionally introduced test questions, such as a choice between a two-outcome lottery and

a sure prospect close to or lower than the lottery’s downside. The rate of “wrong” anwers,

where the sure prospect was chosen over the lottery, was always negligible. To check for

consistency of preferences across subjects, we ran several surveys a few times in identical

form. We found the results to be consistent, and data from identical surveys was pooled. To

test for robustness, we repeated several surveys while changing some aspects of the presen-

tation. For instance, we varied the ordering of questions, and also the order of presentation

of the states of the world; we also varied numerical values, e.g. in the Allais paradoxes and

in the evaluation problems. Preferences were largely robust to such manipulations, and we

do not report these tests here.

In the next sections, we provide a detailed account of experiments that are important to

1Workers seemed to take a personal interest in our surveys, often providing feedback and justifying their
choices.
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assess our hypothesis of local thinking: those on the role of correlation among lotteries for

risk preferences (Section 2.B), and those concerning the role of context dependent evaluation

in preference reversals (Section 2.C). Section 2.D checks whether standard calibrations of

Prospect Theory can account for the shifts in risk preferences documented in Section 4

of the paper, and quantifies the local thinking parameters (δ, θ) most consistent with this

evidence.

2.B Robustness of the role of correlations in experiments

2.B.1 Correlation and the Allais paradoxes

To check the robustness of the results of Section 5.1, whereby the Allais paradox can

be turned on and off depending on the correlation structure of the lotteries, we ran several

variations of the experiment reported in the paper.

1) We checked that our results do not depend on the particular tabular representation

of states of the world. To do so, we replaced the latter with verbal representations of world

events such as: “Suppose you can choose between the following two lotteries, whose prizes

depend on the draw of a card. Suppose the card deck is arranged such that with 1% chance

you draw an ace, with 33% you draw a king and with 66% you draw a number. Lottery

1 yields $2500 if you draw an ace, and $0 otherwise, etc.” The experimental results were

similar to those obtained by expressing lotteries in tabular form.

We also tested whether the results depended on precise knowledge of probabilities. To do

so, we replaced risky outcomes for uncertain outcomes, for instance the following problem

from (TK92):

“Suppose you can choose between two lotteries, which depend on the differenceD between

the closing value of the Dow-Jones stock market index today and its closing value tomorrow:

if D is less than 30 pts between 30 and 35 pts more than 35 pts

Lz1 gives 0 z 7500

Lz2 gives z 2500 2500

where z is the common consequence taking the values 0 and 2500. In both experiments,
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choice patterns were similar to those obtained in the original correlated version of the Allais

paradox: subjects were risk averse in both problems, largely independent of the common

consequence z. Indeed, preferences were:

L2500
1 L2500

2

L0
1 16% 11%

L0
2 5% 68%

.

These results lend further support to our account that the state space shapes risk preferences,

via the salience of the allowed states of the world.

2) To check whether the role of correlation in the common ratio paradox of Section 5.2 is

due to special properties of compound lotteries, we ran a compound version of the common

consequence paradox of Section 5.1, in the following pair of choice problems:

Problem 1: Suppose you are presented with a two-stage game. In the first stage, you

have a 66% chance of getting $0 and ending the game, and a 34% chance of going to the

second stage. In the second stage, you will play one Lottery, L1 = (2500, .97; 0, .03) or

L2 = (2400, 1).

Problem 1’: identical to Problem 1, except in that the first stage offered a 66% chance of

getting $2400, instead of $0. In both problems, subjects choose which lottery to play before

the first stage of the game. The preferences were:

L1’ L2’

L1 6.7% 2.7%

L2 6.7% 83.9%

Preferences were essentially the same in both Problems, as expected from local thinking

and in accordance with the independence axiom. The choice patterns were similar to those

observed for the one-stage problem with common consequence z = $2400. As a result, the

compounded lottery form did not add much to correlation, suggesting that the salience of

the zero payoff in the space state generated by the lotteries may be responsible for choice

patterns.
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3) Finally, we tested our assumption that when lottery correlation is not described ex-

plicitly, subjects interpret the problem as a choice between two independent lotteries. To do

so, we compare the implicitly uncorrelated choice problem,

Problem 2: L1 = (2500, .33; 0, .67) vs L2 = (2400, .34; 0, .66).

with a problem where the state space makes the absence of correlation explicit:

Problem 2’:

21.78% 22.78% 11.22% 44.22%

L′1 2500 0 2500 0

L′2 0 2400 2400 0

The choice patterns in the two problems, elicited from two different groups of subjects,

were indistinguishable: the riskier lotteries L1 and L1’ were chosen by 46% and 49% of

subjects, respectively (N = 75 for each problem). The same subjects were then asked to

choose between the following correlated version of the same problem:

Problem 2c:

1% 33% 66%

Lc1 0 2500 0

Lc2 2400 2400 0

Both groups of subjects shifted towards risk aversion, with large majorities (up to 78%)

choosing Lc2 over Lc1.

L1 L2 L′1 L′2

Lc1 .20 .1 .14 .08

Lc2 .26 .44 .35 .43

The mirroring behavior of the two groups of subjects supports our assumption that

lotteries are interpreted as independent by default.

2.B.2 Further tests on the role of correlation on choice

We also tested the impact of correlations on choice problems that, unlike those of the

Allais paradox, do not feature a common consequence state. Consider the following two

choice problems:
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Problem 3: L1 = (40, .67; 120, .33) vs L2 = (30, .5; 110, .5)

Problem 3’:

1/6 1/3 1/2

L1’: $40 $120 $40

L2’: $110 $110 $30

Evidently, Problem 3’ is simply a correlated version of Problem 3. The two lotteries

have similar expected values, respectively $66.4 and $70. The joint preferences were:

L1’ L2’

L1 11% 28%

L2 17% 44%

There is a significant shift towards lottery L2’, which wins in the most salient and least

likely state. Notably, this occurs even though lottery A wins in 2 out of 3 states. Thus,

correlation here affects choice in the way predicted by local thinking.

2.C Robustness of context dependent evaluation and preference

reversals

The key implication of our model regarding Preference Reversals is that pricing in the

context of choice is different from pricing in isolation because lotteries are being compared

to different alternatives. Here we review this basic mechanism by: i) checking for context

dependent evaluation in a setting where there are no preference reversals, and ii) providing

a detailed description of our experiments on preference reversals.

We begin with point i). To check that context dependent evaluation is a feature of choice

extending beyond preference reversals, we asked subjects to price L$ = (600, .4; 0, .6) in

isolation and in the context of a choice with Lp = (400, 1). There are two differences with

the preference reversals experiments: a) the expected value of L$ is much lower than that

of Lp so we do not expect reversals of preference between pricing and choice, and b) Lp is

a sure gain, which simplifies the pricing problem, so subjects only price L$. Crucially, since

in the comparison with Lp the downside of L$ is salient, we expect that pricing in choice is

lower than pricing in isolation.
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To elicit pricing in isolation and in the choice context, we used wording similar to Grether

and Plott (1974): “Suppose that you can choose between playing lottery L$ and getting a

sure dollar amount. If this amount is very low, you might choose the lottery. As the dollar

amount increases, you might prefer it to the lottery. For what dollar amount would you be

indifferent between playing the lottery and getting the dollar amount?” Subjects chose from

a menu of prices. We also tried to have subjects enter their own price; in this case the data

is more noisy. The experiments confirm that subjects vastly prefer Lp to L$ and the prices

satisfy:

P (L$|Lp) = 170 < P (Liso$ ) = 230

Pricing in isolation is higher not only on average, but also probabilistically: the price dis-

tribution for L$ in isolation, PLiso
$

first-order stochastically dominates the price distribution

for L$ in the context of choice, PL$|Lp , as shown in Figure 1. We ran another version of

the survey where instead of the certainty equivalent we elicited the selling price, denoted by

P sell(L$), which yielded similar results.

Figure 1: Context Dependent Evaluation

We now consider point ii). To test for preverence reversals, we used the following

strategy. Subjects were presented with a choice between two-outcome lotteries Lp and L$,

where Lp is a lottery with a high probability of a low payoff, and L$ pays a high payoff with

low probability. The full state space of the choice problem was presented. Each subject

was asked to choose between the lotteries and immediately afterwards to price one of the
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lotteries. This represents pricing in the choice context. After a few filler questions, that

subject was asked to price the remaining lottery. This represents pricing in isolation. Which

lottery was priced in which context (choice or isolation) was randomized across subjects.

Our identifying assumption is that in the choice context the pricing of each lottery is based

on its evaluation in comparison with the alternative lottery. Our account for preference

reversals then predicts that they occur between choosing and pricing in isolation, but not

between choosing and pricing in the choice context. To elicit pricing in either context, we

used the Grether and Plott (1974) wording described above. As in the experiment described

in point i), subjects chose from a menu of prices. We also tried to have subjects enter their

own price, which yields noisier data. We considered the two lotteries

Lp = (4, .97; 0, .03), vs L$ = (16, .31; 0, .69)

which Tversky et al (1990) found to lead to a high rate of preference reversals. The experi-

mental results allow us to make four points:

1) Standard preference reversals, where individuals choosing Lp over L$ price L$ higher,

occur in terms of average prices in isolation. To see this, note that the mean prices P (Liso$ )

and P (Lisop ) for L$ and Lp, respectively, stated by individuals that had chosen Lp over L$

were equal to

P (Lisop ) = 4.6 < P (Liso$ ) = 5.2 .

Since Lp � L$ and P (Lisop ) < P (Liso$ ), Preference Reversal occurs with respect to mean

prices in isolation.

We then tested whether preference reversals occur not only on average, but also prob-

abilistically. Even though we do not directly replicate Tversky’s within-subject test (since

each subject priced only one lottery in each context), we checked from the distributions of

prices in isolation the likelihood with which Preference Reversals would occur if individuals

were drawing prices from these distributions. To do so, we denoted the price distribution for

L$ in isolation by PLiso
$

and the price distribution for Lp in isolation by PLisop . As a first step,

we noted that PLiso
$

nearly first-order stochastically dominates PLisop as shown in Figure 2.

Figure 2 already gives a compelling visual effect of the potential prevalence of preference
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Figure 2: Cumulative distributions of P (Liso$ ) and P (Lisop ).

reversals (remmeber that this is the price distribution for individual who chose Lp over L$).

To quantify this effect, we denoted by CLiso
$

the cumulative pricing distribution for lottery

L$ in isolation implied by the observed price distribution PLiso
$

. Then the likelihood that a

given subject exhibits a Preference Reversal is:

Prob
[
P (Liso$ ) > P (Lisop )

]
=

∫
PLisop (p) ·

(
1− CLiso

$
(p)
)
dp.

The data imply that, conditional on Lp � L$, Prob
[
P (Liso$ ) > P (Lisop )

]
= 0.52.

Interestingly, the observed choice and pricing patterns allow us to predict the frequency

of non-standard preference reversals, namely those whereby L$ is preferred to Lp and yet

Lp is priced higher in isolation. These non-standard reversals are neither predicted by our

model nor by any other theory of preference reversals (Tversky et al 1990, Loomes and

Sugden 1983). However, studies on preference reversals have document that these non-

standard patterns occur in the data, and experimenters have attributed them to arbitrary

fluctuations in evaluation, especially if the two lotteries are evaluated similarly (Bostic et

al 1990). Crucially, as stressed by (Tversky et al 1990) the preference reversal phenomenon

is interesting precisely because in experiments the non-standard reversals appear to occur

substantially less frequently than standard ones, suggesting that the riskier lottery tends to
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be systematically undervalued in the choice context and overpriced in isolation. If preference

reversals were simply due to random fluctuations, the rates of standard and non-standard

reversals would be the same on average. Using the above method, we find that in our

experiments non-standard reversals occur with frequency around 25%, which is substantially

lower than the frequency of standard preference reversals in our data.2 Thus, also in our

experiments reversals cannot be explained by random fluctuations in evaluation.

2) Standard preference reversals do not occur between choice and pricing in the context

of choice, consistent with the key prediction of our model. Indeed, conditional on Lp � L$,

the mean prices in the context of choice were

P (Lp|L$) = 4.3 > P (L$|Lp) = 4.1

Now the distribution for P (Lp|L$) does not first order stochastically dominate that for

P (L$|Lp) because subjects attribute similar values to both lotteries in the choice context

(indeed, about half the subjects chose each lottery), which magnifies the impact of noise

in pricing in the chocie context. Interestingly, we estimate from the price distribution that

using prices in the context of choice, around 45% of subjects would exhibit the standard

preference reversal while around 49% incur in the non-standard preference reversal in the

context of choice. There is no significant difference between these two rates, which suggests

that any reversals in the context of choice are due to random fluctuations of evaluation.

To summarize points 1 and 2, our results show that the key feature of our experiments

is that the price of the riskier lottery L$ substantially increases when performed in isolation

relative to choice (see Figure 3), while the price of the safer lottery Lp does not change much

in the two contexts. These features are both predicted by our model (the latter one is due to

the fact that Lp wins with probability close to one, p = 0.95). The two prices are generally

very close in the context of choice, although the precise ranking in this context is not clearly

established by the data. These findings confirm that context-dependent evaluation provides

2The difference between these rates is less striking here than those found in the literature, which reports
rates for standard preference of around 75% (conditional on choosing Lp), and rates for non-standard reversals
of around 15% (conditional on choosing L$). This may be due to a potentially higher level of noise in our
data, or more simply to errors introduced by our method of inferring preference reversals from independent
pricing distributions.
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an empirically valid account of preference reversals.

Figure 3: Effect of context on the evaluation of L$.

3) As is clear from average pricing, some subjects reported prices for Lp above its high

payoff of $4; since the range of prices in the menu extend much beyond the normal range

of prices for Lp, this may induce some subjects to erroneously choose a higher price (this

problem did not occur for L$, probably because the expected value is so much lower than the

upper limit). Yet, using different menus for the two lotteries might have also induced relative

mispricing (we conservatively chose mispricing of Lp because it goes against the standard

preference reversals hypothesis). To get a more realistic distribution of prices, and to check

for the robustness of the results, we also cleaned the data by truncating the most extreme

overpricing.

To do so, we discarded surveys where stated prices exceeded the respective expected

values by 50% or more, and we capped the stated price for Lp at $4. Again, average prices

support our prediction; conditional on choosing Lp over L$ the average prices are:

P (Lisop ) = 3.88 < P (Liso$ ) = 4.58

This result holds not only for the averages but also for the distributions of prices, in the sense

that the distribution for P (Liso$ ) essentially first order stochastically dominates the price for
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P (Lisop ), as before. Let us now compare choice and pricing in the choice context. Again

conditional on Lp � L$, the subjects now price Lp on average just above L$:

P (Lp|L$) = 3.41 ∼ P (L$|Lp) = 3.40

As before, the distributions do not suggest a significant difference between the two prices.

The rate of standard and non-standard preference reversals are also very similar (around

30%). Thus, the truncated yield very similar results to the non-truncated data. This conclu-

sion is robust to different specifications of the truncation (although lowering the threshold

for the pricing of Lp affects P (Lp) relatively more than P (L$)).

4) It is the comparison between the two lotteries, rather than the actual choice, that drives

the large change in evaluation between choice and pricing in isolation. To test for this, in

another version of the survey subjects were asked to price the lotteries under comparison, but

without having to choose between them. We again observe, under the same truncation as

in point 3, that L$ is priced higher in isolation, P (Lisop ) = 3.58 < P (Liso$ ) = 4.34. However,

L$ is also priced higher under comparison, albeit much less so that in isolation: P (Lp|L$) =

3.42 < P (L$|Lp) = 3.78. The main difference between the two price distributions is again

the large shift in evaluation of L$; to that extent, the results are still compatible with our

predictions. Moreover, while the presentation of the lotteries was identical in the two versions

of the survey, we expect that subjects who were asked to choose were more thorough in their

examination of the state space. That may help explain why pricing under comparison was

half-way between pricing under choice and pricing in isolation.

2.D Calibrations

2.D.1 Long-shot lotteries and bounds on θ

Recall the specification of the salience function in Equation (2) is:

σ(x, y) =
|x− y|

|x|+ |y|+ θ
.

The parameter θ plays an important role in determining the salience of states whose payoffs
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y 1 5 20 50 100 200
.44 .45 .15 .06 .10 .10

Table 1: Proportion of risk-seeking subjects in longshot lotteries

are close to zero; it can be interpreted as a cognitive limit to the resolution of payoff magni-

tude when a payoff approaches zero. This latter property of salience is crucial to determine a

local thinker’s risk attitudes with respect to longshot lotteries in Section 4.2: a local thinker

takes the longshot lottery if and only if y < θ · (1 − 2p)/2p. We thus use the experimental

results on longshot lotteries to derive constraints on θ. The following table reports the pro-

portion of 100 subjects who chose the longshot lottery over its expected value as a function

of y ∈ {1, 5, 20, 50, 100, 200} when p = 0.01.

Thus, for p = 0.01, risk seeking decreases strongly between y = $5 and y = $20. This

yields θ ≥ 0.1. We use the specification θ ∼ 0.1 to analyze the remaining results on risk

preferences, see 2.C.3b.

2.D.2 Calibrations of Prospect Theory

We consider the ability of standard calibrations of Cumulative Prospect Theory (CPT)

to account for the risk shifting experiments of Sections 4, where dramatic shifts in risk pref-

erences occurred as the expected values of lotteries changed. To explore CPT’s predictions in

these experiments, we use the following standard functional forms for CPT’s value function

v and probability weighting function π (Tversky and Kahneman, 1992):

v(x) =

 xα for x ≥ 0

−λ(−x)α for x < 0
, π(p) =

pγKT

(pγKT + (1− p)γKT )1/γKT

An agent characterized by v(x) has constant relative risk aversion with coefficient 1−α > 0

(implying decreasing absolute risk aversion). The parameter λ > 1 captures loss aversion.

This functional form is standard in applications of Prospect Theory (e.g. Benartzi and

Thaler, 1995). Importantly, the estimations of α from different sets of experiments yield

very different values. In choices between two outcome lotteries and a sure prospect, Tversky

and Kahneman calibrate α ∼ 0.88, λ ∼ 2.25. In choices involving three-outcome lotteries
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Wu and Gonzalez (1996) get α ∼ 0.5 and α ∼ 0.37. The estimation of the probability

weighting function is more stable, locating around γKT ∼ 0.61 (TK1992). Wu and Gonzalez

(1996) estimate γKT ∼ 0.71, while Prelec’s (1998) simplest representation of the weighting

function is

π(p) = e−(− ln p)γP

with γP ∼ 0.65, which is numerically very similar to the original (TK92) calibration. These

calibrations are useful references for generating predictions of CPT for our choice problems.

2.D.2a Long-shot lotteries

Consider again the choice between a sure prospect S = {y, 1} and a long-shot lottery

L = {x, p; 0, 1 − p} with the same expected value, y = xp. A CPT agent evaluates these

lotteries as

VCPT (L) = π(p) · v(y/p), and VCPT (S) = v(y)

If the value function is a power function, then L is preferred to S when π(p)(y/p)α > yα,

that is, π(p) > pα. This condition is independent of the expected value y; thus, for a given

level of probability, a CPT agent either refuses any long-shot lottery, or takes every long-shot

lottery, when that lottery L is compared with its expected value S. This is in contradiction

with the experimental results (and also introspection) whereby subjects prefer the lottery L

as long as its expected value is small enough. CPT can account for these results by allowing

a more general value function, featuring increasing relative risk aversion. However, several

results (including the following) also need decreasing absolute risk aversion to be compatible

with CPT, and constant relative risk aversion is a natural candidate for that.

2.D.2b Shifts in risk preferences

Consider again the risk shifting experiments of Section 4 where the lottery loss is kept

constant at l = 20. Our experimental results, summarized in Table 2, are broadly consistent

with the predictions of our model displayed in Figure 3.

Can CPT explain these patters through a combination of risk aversion and probability

weighting? The answer is that it depends on the values of α and γKT . We simulated the

choice behavior of a CPT agent using a single-agent stochastic choice model (Camerer and
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$10500 0.83 0.65 0.50 0.48 0.46 0.33 0.23
$2100 0.83 0.65 0.48 0.43 0.48 0.38 0.21
$400 0.60 0.58 0.44 0.47 0.33 0.30 0.23
$100 0.58 0.54 0.40 0.32 0.22 0.30 0.13
$20 0.15 0.2 0.12 0.08 0.10 0.25 0.15

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 2: Proportion of Risk-Seeking subjects

Ho 1994), which assumes that all subjects are described by the same calibrated model but

their choices follow a stochastic process described by the logistic function P (L1 � L2) =

1/(1 + eV (L2)−V (L1)). This process introduces no extra degrees of freedom and ensures that

P (L1 � L2) = 0.5 if and only if V (L1) = V (L2), and also P (L1 � L2) = 1 if and only if

V (L1) >> V (L2). The specification above fixes the value function’s normalization, v(1) = 1.

The quantitative CPT predictions generated for the baseline KT calibration (α = 0.88 and

γPT = 0.61) are presented in Table 3:

$10500 1 0.99 0.85 0.52 0.39 0.28 0.21
$2100 1 1 0.89 0.52 0.37 0.25 0.16
$400 1 1 0.92 0.51 0.34 0.20 0.12
$100 1 1 0.93 0.47 0.28 0.15 0.08
$20 1 1 0.74 0.17 0.08 0.04 0.02

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 3: CPT with baseline calibration α = 0.88, γKT = 0.61 (TK1992)

This table reveals two important facts:

1. CPT predicts a drop in risk seeking when π(p) < p, i.e. when p > 0.35, which corre-

sponds broadly to what we observe. However, in its original intution, the probability

weighting function was meant to overweight small probabilities (in KT, 1979 this seems

to mean p < 0.1). From a conceptual standpoint, our prediction of overweighting (and

thus of risk seeking) for moderate probabilities is entirely original because it explains

why agents can overweight even probabilities as high as p ∼ 0.35.

2. When α is high (in Table 3, α = 0.88), the value function is little curved and risk

attitudes depend mainly on the weighting of probabilities. As a result, agents are risk
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seeking for any p such that π(p) > p and risk aversion otherwise, largely independently

of y. Thus in the baseline KT calibration α = 0.88 for two outcome lotteries, CPT

cannot reproduce the experimental patterns. Similarly, one can show that if α is small

(e.g. α = 0.37 as suggested by Wu and Gonzalez 1996), choices are driven mainly by

risk preferences and agents are essentially risk neutral for any y > 100, independently of

p. This reasoning suggests that an intermediate level of α may ensure that preferences

depend both on payoff level x and on its variance (through p), as observed. Table 4

shows the predictions of CPT with the intermediate α = 0.6.

$10500 0.78 0.62 0.52 0.50 0.50 0.49 0.48
$2100 0.89 0.70 0.54 0.50 0.49 0.48 0.47
$400 0.94 0.80 0.57 0.49 0.48 0.45 0.44
$100 0.93 0.82 0.57 0.47 0.44 0.41 0.38
$20 0.32 0.22 0.13 0.11 0.10 0.10 0.11

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 4: CPT with α = 0.6, γKT = 0.61

This calibration approximates reasonably the experimental results, even though differ-

ences remain; for instance, at low p agents are not progressively more risk seeking as the

expected value y increases; instead they are extremely risk seeking (for y = 100, 400) and

then progressively more risk neutral. Still, our conclusion from this exercise is that - from a

formal standpoint - the probability weighting function controls how risk attitudes change as

p varies, while the value function controls how risk attitudes change as y varies. Since our

results describe these two comparative statics, by fine tuning both the probability weighting

function and the value function, CPT can recover some of the features of our results.

Finally, we simulate our model and recover a quantification of the local thinking param-

eters (δ, θ). One issue with this simulation exercise is that in our specification of decision

weights, a local thinker’s evaluation is discontinuous at payoff levels where salience ranking

changes, particularly if the agent’s utility is linear. This creates a difficulty in the applica-

tion of the Camerer and Ho (1994) stochastic choice model, since the latter is very sensitive

to changes in the difference between the utilities, particularly if this difference moves away
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$10500 0.79 0.79 0.75 0.71 0.69 0.34 0.39
$2100 0.79 0.83 0.79 0.75 0.72 0.31 0.37
$400 0.68 0.82 0.82 0.78 0.76 0.27 0.34
$100 0.38 0.72 0.81 0.79 0.77 0.22 0.30
$20 0.001 0.002 0.013 0.03 0.04 0.07 0.16

0.01 0.05 0.2 0.33 0.4 0.5 0.67

Table 5: Local Thinking with δ = 0.7, θ = 0.1

from zero. This might potentially lead to a very abrupt transition from risk aversion to

risk seeking as y changes. To address this issue, we smooth the local thinker’s evaluation

of lotteries by introducing mild concavity in the value function, which is an approach that

is fully consistent with our model. We simulate our model using the standard TK (1992)

calibration of the value function v(x) = x0.88. Table 6 shows the results with the calibration

δ = 0.7, θ = 0.1: The predictions are sensitive to δ, since it modulates large variations in the

evaluation of the lotteries: for δ = 1 the lotteries are evaluated at their expected value, and

for δ → 0 they are evaluated at their most salient payoff. The specification δ = 0.7 gives a

good agreement with the experimental data. The value of θ is also important, but only for

the lower left entry in the table: the experimental data for this experiment imply that when

y = 20 the lotteries’ downside is salient for any p. Setting p = 0.01, we again get θ ≤ 0.4.

For p > 0.01 the constraint is eased and for y ≥ 100, all payoffs are greater than or equal to

80 so θ effectively does not count.

Having introduced risk aversion to simulate the logistic stochastic choice model under

local thinking, as a consistency check we confirmed that the value function v(x) = x0.88

together with the fitted parameters δ = 0.7 and θ = 0.1 still predicts the Allais common

consequence and common ratio paradoxes as well as the main features of subjects’ risk

taking in longshot lotteries (all phenomena that in the paper we rationalized using linear

utility). With risk aversion, the new constraints which guarantee the Allais paradoxes

are δ ∈ (0.19, 0.82), which are verified at δ = 0.7. With respect to longshot lotteries, when

α = 0.88 even if the upside of the lottery is salient, a small majority of subjects are predicted

to be risk averse; when the downside is salient, then the vast majority will be risk averse.

This is close to the observed rates, see Table 1.
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