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Appendix A: Demonstration of the Ability of the Constantinides and Perrakis (2007) 

Lower Bounds to Identify Good Buy Options 

We construct portfolios with long positions in calls and puts bought at artificial prices equal 

to their lower bound, as determined in Constantinides and Perrakis (2007) and test the hypotheses 

0 2:H IT OT  and 0 2:H OT IT/  .  The results are reported in Table A.  Both hypotheses are 

rejected.  One exception is the case where the volatility input is the unconditional volatility which, 

as Table I shows, has large prediction errors of future volatility.  The results demonstrate the ability 

of the lower bounds to identify good buy call and put options. 

 
Table A 

Demonstration of the Ability of the Lower Bounds to Identify Good Buy Options 
 

Equally weighted average of all artificial options equal to their corresponding put lower bound given by equations (14) 
and (15) of Constantinides and Perrakis (2007) and the corresponding call lower bound given by equation (31) of that 
same paper, and equivalent to one option per share was traded at each date.  The symbols *.and ** denote a difference in 
sample means of the OT and IT traders significant at the 5% and 1% levels in a one sided bootstrap test with 9,999 trials.  
Maximal t-statistics for Davidson and Duclos (DD, 2000) test are compared to critical values of Studentized Maximum 
Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% with k = 20 and 
ν = ∞ .  The p-values for 0 2:H OT IT  , which are greater than 10%, the highest nominal level available in Stoline and 
Ury (1979) tables are not reported here.  The p-values for the Davidson and Duclos (2006) test are based on 999 
bootstrap trials.  The p-values for 0 2:H IT OT/  are equal to one and are not reported here. 
 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITμ μ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OT  

DD (2006) p-value 0 2:H OT IT/  
10% trimming in left tail, trimming in right tail 

as below: 

0% 5% 10% 
 

A: Options Purchased at the Call Lower Bound 
Unconditional 247 (247) 0.0063 <0.05 0.271 0.199 0.083 

90-day 247 (247) 0.0160* <0.01 0.050 0.022 0.005 
Adjusted IV 226 (226) 0.0134* <0.01 0.095 0.042 0.009 
EGARCH 247 (227) 0.0151* <0.01 0.064 0.025 0.012 

 
B: Options Purchased at the Put Lower Bound 

Unconditional 247 (247) 0.0014 >0.1 0.462 0.427 0.315 
90-day 247 (247) 0.0093* <0.01 0.083 0.028 0.007 

Adjusted IV 226 (226) 0.0125** <0.01 0.026 0.007 0.000 
EGARCH 247 (227) 0.0062 <0.05 0.173 0.067 0.015 
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Appendix B: Calibration of the Index Return Tree 

For every month, we model the path of the daily index return till the option expiration on a T 

step recombining tree, where T is the number of trading days in that particular month.  For example, 

if the 3rd Friday of July is on July 27, we record the price of the July option on June 27, which is 30 

calendar days earlier.  (If June 27 is a holiday, we record the price on June 26.)  If there are 21 

trading days between June 27 and July 27, we model the path of the daily index return till the option 

expiration on a 21 step tree. 

The paths of the daily index return emanate with m branches from each node.  The objective 

is to match as closely as possible the first four moments of the daily return distribution.  As 

explained in Section II.A, we fix the mean and use the estimated volatility from one of our four 

methods.  We use as the third and fourth moment the observed sample moments over the 90 

preceding calendar days. 

In the first step of our algorithm, we pick an odd value for the number of branches m and 

group the sample of daily returns in a histogram with m bins of equal length (on the log scale) such 

that the extreme bins are centered on the extreme observed returns.  The center of each bin then 

becomes a state in the lattice, with the ordered states and the corresponding probabilities denoted 

respectively as ix  and ip , 1...i m= .  Note that this equidistant log scale and an odd value for the 

number of branches m are necessary for the lattice to recombine. 

We do not build our lattice by discretizing a kernel smoothed distribution because this 

method requires a substantially larger lattice.  We do not adopt the Edgeworth/Gram-Charlier 

binomial lattice methodology, as in Rubinstein (1998), because it sometimes results in negative 

probabilities. 
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In a second step, we match our moments by fixing the number of branches m and matching 

the first three moments by changing the spacing (via parameters a and b) and the probabilities via 

parameter c.  The forth moment is then matched by changing the number of branches, m. 

We derive the required parameters a, b, and c by solving the following set of three nonlinear 

equations that are simply three moment conditions for the constants a, b, and c: 

( ) ( )1
exp exp 0m

i ii
p ax b μ∗

=
+ − =∑  

( ) ( )
2 2 2
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i ii
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=
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where ( )exp μ  and 2σ  are the first and second target moments, respectively; 3μ̂  is the sample 
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, where (.)1  is the indicator function, n∗  is the index to 

this ix  which brackets from above the target expected log return μ .  The first indicator function 

ensures that the constant c is added only to the probabilities in the right tail of the distribution; the 

second one ensures that the constant c is added only to the positive probabilities.  Note that the 

affine transformation of the log states ix  preserves the equal distance between the adjacent states.  

The constant a ensures the desired scale of the log states ix , the constant b ensures the desired 

location of these states, while the constant c increases or decreases the probabilities in the right tail 

relative to the left one to match the desired skewness.  Note that the presented adjustment of the 

probabilities in the right tail may not yield an admissible solution, i.e. we may end up with some 

negative probabilities.  If this is the case, we introduce an analogous adjustment in the left tail of the 

distribution. 
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To match the fourth sample moment 4μ̂ , we search over m, the number of nodes in the 

lattice.  With each new m the initial distribution derived from a histogram changes, providing some 

variability in the fourth moment after the adjustments resulting from solving (B.1).  After a search 

over a range of m’s, we pick this distribution which has the lowest absolute difference between its 

kurtosis and the sample kurtosis 4μ̂ .  This search procedure results in very small errors in matching 

4μ̂  for the data that we use while we obtain the exact match in the first three moments.  For the four 

volatility prediction modes which we apply in our work, the relative error on the fourth moment had 

the following characteristics:  median 0.003%, 99th percentile 0.105%, maximum 1.659% across 

973 observations while we constrained the lattice size m to be no larger than 201.  This lattice size 

appears unattractive to derive recursive conditional expectations.  However, the use of fast Fourier 

transforms results in a fairly short processing time.  See Cerny (2004). 
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Appendix C: The Performance of the Tests in Simulated Data 

We investigate via simulation the Type I and II errors of the DD (2000) and DD (2006) 

tests.  We find that the latter test has rejection probabilities much lower than one when the null of 

non-dominance is false.  Therefore, our results are conservative. 

We independently draw monthly index log returns from a normal distribution with mean 

such that the arithmetic annual return has mean 0.0870 and standard deviation 0.1522.  These 

moments are the same as the sample mean capital gain and standard deviation in our sample.  We 

set the dividend yield of the index equal to zero.  We generate 1,000 histories of length 250 months 

each, roughly equal to the length of our sample; we also generate 1,000 histories of length 1,000 

months each.  We set the annualized, continuously-compounded interest rate at 0.0470.  When we 

investigate Type I errors, we generate prices of 1-month calls with a range of moneyness, by the 

Black-Scholes-Merton formula (BSM prices).  By construction, BSM prices are within the bounds 

and do not present an opportunity to build an OT portfolio that stochastically dominates the IT 

portfolio.  When we investigate Type II errors, we generate prices (violating prices) of 1-month 

calls with a range of moneyness by the Black-Scholes formula but setting the interest rate equal to 

the arithmetic return on the index.  By construction, violating prices do present an opportunity to 

build an OT portfolio that stochastically dominates the IT portfolio. 

In Table C1, we present simulated rejection probabilities of 0 2:H IT OT  by the DD 

(2000) test for moneyness K/S = 0.96-1.08 and level of significance 0.01, 0.05, 0.10α = .  The null 

is false both for BSM and violating call prices and the test does a good job in rejecting the null.  In 

Table C2, we present simulated rejection probabilities of 0 : dH OT IT  by the DD (2000) test.  

The null is false for BSM call prices but the test only rarely rejects the null.  The null is true for 

violating call prices and the test only rarely rejects the null.  We conclude that Type I errors are 
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infrequent but Type II errors are frequent.  Increasing the sample size from 250 to 1000 does not 

help.  Therefore, we rely more heavily on the DD (2006) test, described next. 

The DD (2006) test requires that one specify the range of the outcomes.  DD (2006) and 

Davidson (2007) demonstrate that rejecting the null of non-dominance is not feasible for the entire 

support of the joint distribution since the leftmost t-statistic is approximately equal to 1 by 

construction and the rightmost t-statistic corresponds to the difference between sample means, 

whose significance is a stronger than necessary condition for the second-order stochastic 

dominance.  In case the tested samples are uncorrelated, the trimming in the tails simply discards 

extreme observations till the desired degree of trimming is reached.  In our case of correlated 

(coupled) samples, the trimming is symmetrical with respect to either distribution.  To trim in the 

left tail, we first discard a couple characterized by the lowest value for the first sample, and then a 

couple characterized by the lowest value for the second sample until the desired proportion of all 

couples is discarded.  We proceed analogously in the right tail with the couples characterized by the 

highest values for either sample.  In all cases presented below, we trim 10% of coupled observations 

in the left tail while we vary the amount of trimming in the right tail.  Note that we may expect DD 

(2006) to be more conservative than DD (2000) since a pre-condition to the former test is finding 

non-negative t-statistics in the entire joint support of the two compared distributions (i.e., without 

trimming). 

In Tables C3-C5, we present simulated rejection probabilities of 0 2:H OT IT/  by the DD 

(2006) test.  The null is true for BSM call prices and false for violating prices.  In all tables, we trim 

10% of the paired outcomes in the left tail.  In Table C3, we do not trim the paired outcomes in the 

right tail.  The probability of rejection of the null hypothesis when it is true is very low at all 

moneyness levels and improves dramatically when the sample size goes from 250 to 1000.  On the 
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other hand, the probability of rejecting the null when it is false is unacceptably low and does not 

improve when the sample size increases.  Tables C4 and C5 present the same information but with 

trimming of the right-hand tail of the data by 5% and 10%, respectively.  With 5% trimming the 

probability of rejecting the null hypothesis when it is false improves significantly, but still the test is 

very conservative in its rejection probabilities.  It shows some improvement when the sample size 

increases to 1000, but the rejection probabilities remain low.  On the other hand, the probability of 

rejecting the null hypothesis when it is true depends strongly on the degree of moneyness of the 

mispriced option.  It is at acceptable levels when moneyness K/S is less than 1.02 but rises for 

higher numbers at a sample size of 250, but improves in a major way in all cases when the sample 

size increases to 1000 and becomes acceptable for all but the highest degree of moneyness.  The 

results are similar for 10% trimming: the probabilities of rejection of H0 when it is false improve for 

all but the highest degree of moneyness but the test remains very conservative in its rejections in all 

cases, with the sample size playing a relatively modest role; the probabilities of rejecting H0 when it 

is true at a 250 sample size are acceptable only for in-the-money calls and improve dramatically at a 

1000 sample size, becoming acceptable for all but the highest degree of moneyness. 

We repeat the simulations by drawing returns from the empirical distribution instead of a 

lognormal distribution and obtain almost identical results for both tests. 
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Table C1 
Simulated Rejection Probabilities of 0 2:H IT OT  by the DD (2000) Test 

 

K/S Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

A: Sample Size 250 
0.96 1 1 1 1 1 1 
0.98 1 1 1 1 1 1 
1.00 1 1 1 1 1 1 
1.02 1 1 1 1 1 1 
1.04 1 1 1 1 1 1 
1.06 1 1 1 1 1 1 
1.08 1 1 1 1 1 1 

B: Sample Size 1000 
0.96 0.863 0.863 0.863 1 1 1 
0.98 0.892 0.892 0.892 1 1 1 
1.00 0.935 0.935 0.935 1 1 1 
1.02 0.971 0.971 0.971 1 1 1 
1.04 0.983 0.983 0.983 1 1 1 
1.06 0.995 0.995 0.995 1 1 1 
1.08 1 1 1 1 1 1 

 
Table C2 

Simulated Rejection Probabilities of 0 2:H OT IT  by the DD (2000) Test 
 

K/S Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

A: Sample Size 250 
0.96 0.007 0.003 0.002 0 0 0 
0.98 0.004 0.003 0 0 0 0 

1 0.001 0 0 0 0 0 
1.02 0 0 0 0 0 0 
1.04 0 0 0 0 0 0 
 1.06 0 0 0 0 0 0 
1.08 0 0 0 0 0 0 

B: Sample Size 1000 
0.96 0.100 0.067 0.028 0.001 0.001 0 
0.98 0.079 0.051 0.018 0.001 0 0 

1 0.050 0.036 0.010 0 0 0 
1.02 0.021 0.015 0.003 0 0 0 
1.04 0.012 0.005 0.001 0 0 0 
1.06 0.003 0.003 0 0 0 0 
1.08 0 0 0 0 0 0 
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Table C3 
Simulated Rejection Probabilities of 0 2:H OT IT/  by the DD (2006) Test without Trimming 

 

K/S Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

A: Sample Size 250 
0.96 0.008 0.003 0 0.099 0.052 0.014 
0.98 0.009 0.005 0 0.107 0.059 0.016 

1 0.013 0.007 0.002 0.110 0.062 0.015 
1.02 0.020 0.013 0.002 0.123 0.065 0.021 
1.04 0.029 0.018 0.005 0.136 0.078 0.028 
1.06 0.048 0.032 0.010 0.156 0.093 0.040 
1.08 0.099 0.066 0.031 0.187 0.136 0.072 

B: Sample Size 1000 
0.96 0 0 0 0.090 0.051 0.007 
0.98 0 0 0 0.098 0.053 0.010 

1 0 0 0 0.111 0.056 0.013 
1.02 0.001 0 0 0.110 0.060 0.020 
1.04 0.005 0.003 0 0.124 0.073 0.028 
1.06 0.009 0.004 0 0.124 0.069 0.025 
1.08 0.024 0.010 0.001 0.145 0.088 0.028 

 
Table C4 

Simulated Rejection Probabilities of 0 2:H OT IT/  by the DD (2006) Test with 5% Trimming in the Right Tail 
 

K/S Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

A: Sample Size 250 
0.96 0.020 0.009 0 0.188 0.120 0.044 
0.98 0.028 0.013 0.003 0.221 0.142 0.053 

1 0.043 0.023 0.007 0.274 0.179 0.081 
1.02 0.119 0.075 0.027 0.341 0.268 0.130 
1.04 0.149 0.106 0.046 0.468 0.406 0.286 
1.06 0.267 0.240 0.191 0.508 0.462 0.371 
1.08 0.366 0.365 0.365 0.544 0.544 0.544 

B: Sample Size 1000 
0.96 0.002 0 0 0.319 0.207 0.083 
0.98 0.005 0 0 0.375 0.263 0.115 

1 0.010 0.005 0.000 0.454 0.357 0.183 
1.02 0.039 0.039 0.022 0.485 0.460 0.316 
1.04 0.069 0.060 0.033 0.489 0.489 0.483 
1.06 0.113 0.113 0.113 0.505 0.505 0.502 
1.08 0.209 0.209 0.209 0.509 0.509 0.509 
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Table C5 
Simulated Rejection Probabilities of 0 2:H OT IT/  by the DD (2006) Test with 10% Trimming in the Right Tail 

 

K/S Writing at Black-Scholes Price Writing at Call Upper Bound 
α=0.1 α=0.05 α=0.01 α=0.1 α=0.05 α=0.01 

A: Sample Size 250 
0.96 0.046 0.022 0.005 0.360 0.255 0.122 
0.98 0.062 0.037 0.010 0.416 0.313 0.156 

1 0.094 0.060 0.022 0.470 0.414 0.262 
1.02 0.196 0.195 0.167 0.489 0.481 0.420 
1.04 0.225 0.221 0.203 0.512 0.512 0.512 
1.06 0.288 0.288 0.288 0.536 0.536 0.536 
1.08 0.366 0.366 0.366 0.544 0.544 0.544 

B: Sample Size 1000 
0.96 0.010 0.005 0 0.453 0.453 0.371 
0.98 0.015 0.008 0.004 0.479 0.479 0.465 

1 0.025 0.023 0.010 0.478 0.478 0.478 
1.02 0.039 0.039 0.039 0.485 0.485 0.485 
1.04 0.072 0.072 0.072 0.489 0.489 0.489 
1.06 0.113 0.113 0.113 0.505 0.505 0.505 
1.08 0.209 0.209 0.209 0.509 0.509 0.509 
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Appendix D: Returns to Straddles/Strangles Triggered by Call Upper Bound Violations 

We examine the existence of good sell put options by testing the policy of shorting straddles 

and strangles triggered by observing call options violating their upper bounds at the same or similar 

strike price.  The results are reported in Table D and show that the portfolio of the OT trader 

stochastically dominates the portfolio of the IT trader. 

 
Table D 

Returns of Straddles/Strangles Trader and Index Trader 
 

Equally weighted average of all violating options equivalent to one call and one put per share was traded at each date.  
Trades were executed whenever there was a call violating the upper bound and a put traded at the same strike (for 
straddles) or within 0.98-1.02 moneyness bound (for strangles) for the same date.  The symbols * and ** denote a 
difference in sample means of the OT and IT traders significant at the 5% and 1% levels in a one sided bootstrap test with 
9,999 trials.  Maximal t-statistics for Davidson and Duclos (DD, 2000) test are compared to critical values of Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% with k = 
20 and ν = ∞ .  The p-values for 0 2:H OT IT  , which are greater than 10%, the highest nominal level available in 
Stoline and Ury (1979) tables are not reported here.  p-values for the Davidson and Duclos (2006) test are based on 999 
bootstrap trials.  The p-values for 0 2:H IT OT/  are equal to one and are not reported here. 
 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆμ μ−OT IT  
(annualized) 

DD (2000) 
p-value 
0 2:H IT TO  

DD (2006) p-value 0 2: /H OT IT  
10% trimming in left tail, trimming in right 

tail as below: 

no trimming 5% 
trimming 

10% 
trimming 

 
A: Straddles 

Unconditional 34 (247) 0.0058 <0.1 0.290 0.171 0.066 
90-day 66 (247) 0.0068 <0.05 0.262 0.157 0.040 

Adjusted IV 71 (226) 0.0165** <0.05 0.048 0.016 0.018 
EGARCH 40 (247) 0.0158** <0.1 0.034 0.039 0.042 

 
B: Straddles and Strangles 

Unconditional 40 (247) 0.0081 <0.1 0.231 0.138 0.054 
90-day 80 (247) 0.0143* <0.01 0.126 0.042 0.011 

Adjusted IV 94 (226) 0.0235** <0.01 0.020 0.023 0.025 
EGARCH 54 (247) 0.0172** <0.05 0.053 0.012 0.014 
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Appendix E: Robustness to Initial Portfolio Composition 

We investigate the robustness of the results to the initial portfolio composition by including 

various open option positions in the stock account portion of the IT portfolio.  The results are 

reported in Table E and show that our main conclusion that the portfolio of the OT trader 

stochastically dominates the portfolio of the IT trader is robust to the initial portfolio composition. 

 
Table E 

Returns of Options Trader and Index Trader with Open Options Positions in the IT portfolio 
 

Equally weighted average of all violating options within the indicated moneyness range equivalent to 0.8 option per 
share in Panel A and one option per share in Panels B and C was traded at each date.  The symbols * and ** denote a 
difference in sample means of the OT and IT traders significant at the 5% and 1% levels in a one sided bootstrap test with 
9,999 trials.  Maximal t-statistics for Davidson and Duclos (DD, 2000) test are compared to critical values of Studentized 
Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 10% with k = 
20 and ν = ∞ .  The p-values for 0 2:H OT IT  , which are greater than 10%, the highest nominal level available in 
Stoline and Ury (1979) tables are not reported here.  The p-values for the Davidson and Duclos (2006) test are based on 
999 bootstrap trials.  The p-values for 0 2:H IT OT/  are equal to one and are not reported here. 
 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITμ μ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OT  

DD (2006) p-value 0 2:H OT IT/  
10% trimming in left tail, trimming in right 

tail as below: 

no trimming 5% 10% 
 

A: 0.2 ATM Calls Short, Equivalent of 0.8 Calls in Violation Written 
Unconditional 43 (247) 0.0028 <0.01 0.244 0.026 0.000 

90-day 100 (247) 0.0042 <0.01 0.149 0.005 0.002 
Adjusted IV 120 (226) 0.0055* <0.01 0.133 0.032 0.000 
EGARCH 65 (247) 0.0055** <0.01 0.071 0.000 0.000 

 
B: One ATM Call Long, Equivalent of One Call in Violation Written 

Unconditional 43 (247) 0.0035 <0.01 0.244 0.062 0.000 
90-day 100 (247) 0.0052 <0.01 0.149 0.020 0.002 

Adjusted IV 120 (226) 0.0069* <0.01 0.133 0.047 0.000 
EGARCH 65 (247) 0.0068** <0.01 0.071 0.000 0.000 

 
C: 0.5 ATM Puts Long, Equivalent of One Call in Violation Written 

Unconditional 43 (247) 0.0031 <0.01 0.244 0.023 0.001 
90-day 100 (247) 0.0048 <0.01 0.149 0.007 0.000 

Adjusted IV 120 (226) 0.0065* <0.01 0.133 0.036 0.000 
EGARCH 65 (247) 0.0065** <0.01 0.067 0.002 0.003 
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Appendix F: Robustness to the Risk Aversion Coefficient 

We estimate the returns of the IT portfolio by optimally rebalancing it according to the 

procedure described in Section II.C of the paper, assuming that the risk aversion coefficient is equal 

to 10 rather than 2.  The results are shown in Table F.  As noted in Section IV.C of the paper, the 

results are virtually indistinguishable from those of Table V in the main paper. 

 
Table F 

Returns of Options Trader and Index Trader with Risk Aversion Coefficient 10 
 
Equally weighted average of all violating options equivalent to one option per share was traded at each date.   The 
symbols * and  ** denote a difference in sample means of the OT and IT traders significant at the 5% and 1% levels in a 
one sided bootstrap test with 9,999 trials.  Maximal t-statistics for Davidson and Duclos (DD, 2000) test are compared to 
critical values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal 
levels of 1, 5, and 10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT IT  , which are greater than 10%, the 
highest nominal level available in Stoline and Ury (1979) tables are not reported here.  The p-values for the Davidson 
and Duclos (2006) test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/  are equal to one and are not 
reported here. 
 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITμ μ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OT  

DD (2006) p-value 0 2:H OT IT/  
10% trimming in left tail, trimming in right 

tail as below: 

no trimming 5% 10% 
 

A: Call Upper Bound 
Unconditional 43 (247) 0.0006 <0.01 0.275 0.041 0.001 

90-day 100 (247) 0.0008 <0.01 0.201 0 0.004 
Adjusted IV 120 (226) 0.0013* <0.01 0.124 0.031 0 
EGARCH 65 (247) 0.0012** <0.01 0.083 0 0 

 
B: Put Upper Bound 

Unconditional 23 (247) 0.0002 >0.1 0.427 0.210 0.157 
90-day 16 (247) -0.0002 >0.1 1 1 1 

Adjusted IV 4 (226) n/a n/a n/a n/a n/a 
EGARCH 9 (247) n/a n/a n/a n/a n/a 



15 
 

Appendix G: Robustness to the Futures Basis Risk 

We investigate the robustness of the results to the futures basis risk by estimating the bounds 

under the assumption that futures basis risk is zero, 0ε = , in equation (2) of the paper.  The results 

are reported in Table G and are very similar to those in Table V in the paper.  We conclude that the 

results are robust to the futures basis risk. 

 
Table G 

Returns of Options Trader and Index Trader without Futures Basis Risk 
 
The table differs from Table V only in that the basis risk is set at zero, 0ε = , instead of bounding the risk by 0.5%ε = . 
Equally weighted average of all violating options equivalent to one option per share was traded at each date.  The symbol 
** denotes a difference in sample means of the OT and IT traders significant at the 5% level in a one-sided bootstrap test 
with 9,999 trials.  Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of 
Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 
10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT IT  , which are greater than 10%, the highest nominal level 
available in Stoline and Ury (1979) tables are not reported here.  The p-values for the Davidson-Duclos (2007) test are 
based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/  are equal to one and are not reported here. 

 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITμ μ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OT  

DD (2006) p-value 0 2:H OT IT/  
10% trimming in left tail, trimming in right tail as 

below: 

0% 5% 10% 
 

A: Call Upper Bound 
Unconditional 67 (247) 0.0012 <0.01 0.412 0.128 0.005 

90-day 156 (247) 0.0083** <0.01 0.083 0.011 0.000 
Adjusted IV 195 (226) 0.0032 <0.01 0.337 0.255 0.076 
EGARCH 112 (247) 0.0037 <0.01 0.261 0.074 0.000 

 
B: Put Upper Bound 

Unconditional 36 (247) -0.0015 <0.1 1 1 1 
90-day 52 (247) -0.0003 <0.01 1 1 1 

Adjusted IV 64 (226) -0.0012 <0.01 1 1 1 
EGARCH 38 (247) 0.0014 <0.01 0.374 0.199 0.004 
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Appendix H: Robustness to the Assumed Equity Risk Premium 

In the paper, we set the expected premium on the index at 4%.  We investigate the 

robustness of the results to the assumed equity risk premium.  Here we set the expected premium on 

the index at 6% instead of 4%.  The results are reported in Table H, Panel A.  Since the upper call 

and put bounds are higher, the options trader is more selective than before in writing options that 

violate these bounds.  In Panel B, we report the results when we set the premium at 2%.  In both 

cases, the stochastic dominance results in writing calls are as strong as in Table V.  We conclude 

that the results in Table V are robust to the assumption that the expected premium on the index is 

4%. 

 
Table H 

Returns of Options Trader and Index Trader with Different Risk Premium 
 
Equally weighted average of all violating options equivalent to one option per share was traded at each date.  The symbol 
** denotes a difference in sample means of the OT and IT traders significant at the 5% level in a one-sided bootstrap test 
with 9,999 trials.  Maximal t-statistics for Davidson-Duclos (DD, 2000) test are compared to critical values of 
Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for three nominal levels of 1, 5, and 
10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT IT  , which are greater than 10%, the highest nominal level 
available in Stoline and Ury (1979) tables are not reported here.  The p-values for the Davidson-Duclos (2007) test are 
based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/  are equal to one and are not reported here. 

 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITμ μ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OT  

DD (2006) p-value 0 2:H OT IT/  
10% trimming in left tail, trimming in right tail 

as below: 

no trimming 5% 10%  
 

A: Equity Risk Premium 2% 
Unconditional 48 (247) 0.0048 <0.01 0.176 0.016 0.000 

90-day 114 (247) 0.0057 <0.01 0.168 0.005 0.000 
Adjusted IV 140 (226) 0.0058* <0.01 0.199 0.120 0.000 
EGARCH 77 (247) 0.0045 <0.01 0.214 0.045 0.000 

 
B: Equity Risk Premium 6% 

Unconditional 38 (247) 0.0009 <0.01 0.434 0.052 0.004 
90-day 85 (247) 0.0035 <0.01 0.228 0.012 0.002 

Adjusted IV 96 (226) 0.0052* <0.01 0.156 0.042 0 
EGARCH 58 (247) 0.0051* <0.01 0.118 0 0 
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Appendix I: Restricting the Moneyness Range of Violating Calls 

In the online Appendix C, using simulated data with characteristics that mirror our sample, 

we compute the rejection probabilities of the null hypothesis when it is true as well as when it is 

false.  DD (2006) is a weak test without trimming, since it has very low probabilities of rejection of 

the non dominance null even when it is false.  With 5% trimming, the test is still conservative as far 

as rejecting the false non dominance null.  Problems with rejection of the null when it is true occur 

only for deep out of the money options.  For this reason, we repeat the stochastic dominance tests 

for the call upper bound in Panel A of Table V for a restricted moneyness range, i.e. by removing 

violating OTM calls outside the range from the sample.  The results are reported in Table I and 

remain essentially unchanged. 
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Table I 
Returns of Call Trader and Index Trader When Restricting the Moneyness Range of Violating Calls 

 
Equally weighted average of all violating calls within the indicated moneyness range equivalent to one call per share was 
traded at each date.  The symbols * and ** denote a difference in sample means of the OT and IT traders significant at the 
5% and 1% levels in a one sided bootstrap test with 9,999 trials.  Maximal t-statistics for Davidson and Duclos (DD, 
2000) test are compared to critical values of Studentized Maximum Modulus Distribution tabulated in Stoline and Ury 
(1979) for three nominal levels of 1, 5, and 10% with k = 20 and ν = ∞ .  The p-values for 0 2:H OT IT  , which are 
greater than 10%, the highest nominal level available in Stoline and Ury (1979) tables are not reported here.  The p-
values for the Davidson and Duclos (2006) test are based on 999 bootstrap trials.  The p-values for 0 2:H IT OT/  are 
equal to one and are not reported here. 
 

Volatility 
prediction 

mode 

#months 
with viol. 

(# months) 

ˆ ˆOT ITμ μ−  
(annualized) 

DD (2000) 
p-value 

0 2:H IT OT  

DD (2006) p-value 0 2:H OT IT/  
10% trimming in left tail, trimming in right tail 

as below: 

no trimming 5%  10% 
 

A: K/F < 1.04 
Unconditional 42 (247) 0.0034 <0.01 0.184 0.004 0.004 

90-day 87 (247) 0.0051 <0.01 0.164 0.000 0.000 
Adjusted IV 108 (226) 0.0089** <0.01 0.106 0.002 0.004 
EGARCH 58 (247) 0.0079** <0.01 0.124 0.000 0.000 

 
B: K/F < 1.03 

Unconditional 42 (247) 0.0026 <0.01 0.303 0.068 0.002 
90-day 80 (247) 0.0045 <0.01 0.199 0.018 0.000 

Adjusted IV 98 (226) 0.0088* <0.01 0.088 0.016 0.004 
EGARCH 50 (247) 0.0082** <0.01 0.088 0.000 0.000 

 
C: K/F < 1.02 

Unconditional 39 (247) 0.0027 <0.01 0.362 0.094 0.002 
90-day 75 (247) 0.0047 <0.01 0.256 0.050 0.000 

Adjusted IV 90 (226) 0.0071* <0.01 0.174 0.072 0.000 
EGARCH 46 (247) 0.0079** <0.01 0.088 0.008 0.000 

 


