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A Statistics on the probability of cash thefts for Italy and the US

The statistics on the probability of cash thefts (κ) for Italy are computed in 3 steps.

(1) We consider 4 crimes where cash is lost: bag-snatching (Scippi), pickpocketing (borseggi), theft
(furti), robbery (rapine). Using survey data on victimization per person (aged 14 or older) for the whole
Italy (i.e. average of 103 provinces) in the year 2002 , gives the following percentages for each of the crimes,
respectively:1 0.4 , 1.4 , 2.2, 0.3.

(2) Next, we adjust the statistic for each crime to take into account information on the percentage of
crimes where cash is taken (source: Istat victimization survey). For instance for bag-snatching cash is taken
49% of the times. The statistics that we are interested in for 2002 is:

κ = (0.4 · 0.49 + 1.4 · 0.61 + 2.2 · 0.37 + 0.3 · 0.59) = 2.041

.
(3) Finally, using data on bag-snatching (scippo) and pickpocketing (borseggi) across 103 Italian provinces,

and using a time series for these two crimes at the country level across years (source Istat), we construct
values of κ that vary across provinces and years.

The statistics on victimization rates for the US are taken from Table 3 in ”Rates of criminal victimization
and percent change”, relative to the years 1993 and 2005. We have the following crime rates:2

a) Personal Theft (see footnote e, includes pocket picking, completed bag snatching and attempted bag
snatching), 0.23 in 1993 and 0.09 in 2005.

b) Robbery, completed property taken: 0.38 in 1993 and 0.17 in 2005.

c) Theft (completed) 23.01 in 1993 and 11.20 in 2005. Theft completed with known losses: 21.64 in 1993
and 10.20 in 2005

A.1 Three comparisons of the US vs. Italy

We first compare victimization rates in Italy and the US.

Table I: Victimization rates in Italy and the US

Italy 2002 US 2005 US 1993
I) Sum of bag-snatching and pick-pocketing 1.8 % 0.09% 0.23%
II) Robbery 0.3% 0.17% 0.38%
III) Theft 2.2% 10.2% 21.64%

I and II are higher in Italy, but III is much higher in the US. If we apply the factor from Italy of the %
of times that cash is taken to II and III, we obtain:

κ2002
IT = (0.4 · 0.49 + 1.4 · 0.61 + 0.3 · 0.59 + 2.2 · 0.37) = 2.041

κ2005
US = (0.09 + 0.17 · 0.59 + 10.2 · 0.37) = 3.96

κ1993
US = (0.23 + 0.38 · 0.59 + 21.64 · 0.37) = 8.461

1Victimization rates: Istat, Figure 1.1 on page 13 of ”La sicurezza dei cittadini, year 2002” (N. 18, published in 2004);
Fraction of crimes where cash is taken: Istat Table 7.1 on page 67 of report ”La sicurezza dei cittadini”.

2per 100 persons (i.e. Percentage values), 12 years or older. Source: ”Criminal Victimization Rates, 2002”,
http://www.ojp.usdoj.gov/bjs/pub/pdf/cv05.pdf
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For bag snatching and pick-pocketing in the US we do not use a correction for the cash taken, since they
are the rates of completed crime. This has a small influence on the figures since the victimization rates are
small. The first line of the next Table summarizes these statistics

Table II: The probability of losing cash: Italy vs. US

Italy US

Our stats (κ) for 2002 - 2005 2.0 3.9

Stats from victimization survey
Robbery (in 1991) 1.3 1.5
Theft of personal property (in 1991) 3.6 5.3

Stats from reports to the Police (in 2001) 1.3 1.9

In the second comparison we use data on victimization by the International Crime Victim Survey (ICVS),
the most far reaching programme of standardized sample surveys to look a householders experience with
crime.3 The data are reported in the second and third line of table II. As before, the data (for 1991, a year
when stats are available for both countries) have similar order of magnitude.

In the third comparison between the US and Italy we use data from reports to the police, as opposed to
victimization rates.4 The advantage is that perhaps these are more comparable. We note however that the
definition of crimes is different from the one used in the victimization survey. In particular: the definition
of theft for the police statistics is ”stealing from a person with force or threat of force); includes muggings
(bag-snatching) and theft with violence; excludes pickpocketing extortion and blackmailing. Note moreover
that the police statistics may also include crimes on firms properties (not just household). The data for 2001
are reported in the fourth line of table II.

B Cash management and the household size

To study the effect of household size let’s consider first two extreme cases. First suppose that a household is
a collection of people, and that the data just collect their aggregates. Let s be the size of the household, i.e.
the number of its members. Assume that b/c and p is common for all members. Under these assumptions:

(M/c)(s) = (M/c)(1),
c(s) = s c(1),
n(s) = s n(1),

(W/M)(s) = (W/M)(1)/s,

(M/M) (s) = (M/M) (1) /s .

At the other extreme suppose that a household behavior is completely centralized, independently of its
3Source: http://ruljis.leidenuniv.nl/group/jfcr/www/icvs/data/i VIC.HTM
4The source is INTERNATIONAL COMPARISON OF CRIMINAL STATS, Table 1.4, year 2001

(http://www.homeoffice.gov.uk/rds/international1.html).

2



size. Then the size of of the household does not matter at all, so that:

(M/c)(s) = (M/c)(1),
n(s) = n(1),

(W/M)(s) = (W/M)(1),
(M/M) (s) = (M/M) (1) .

Table III: Cash management and Household size

Variable ln c ln n ln M/c ln W/M ln M/M ln n
(c/2M)

Bivariate Regression
ln (# adults in household) 0.50 0.20 -0.16 -0.13 -0.05 0.08
Multivariate Regression
ln (# adults in household) - 0.13 0.14
ln c - 0.18 -0.58

We regress the (log of ) each variable mentioned above on the (log of ) the number of adults in the
household. Each regression includes year, province, and ATM dummies, as well as the level of interest rates.
The regressions are run at the household level, so that, depending on the variable there are approximately
between 60,000 and 40,000 observations. The coefficient on household size is reported in table III:

Table IV: Cash management and Household size (alternative measures)

Variable ln c ln n ln M/c

Bivariate Regressions
ln (# family members) 0.43 0.20 -0.17
ln (# income receivers) 0.37 0.16 -0.09
Multivariate Regressions
ln (# family members) - 0.14 0.08
ln c - 0.18 -0.57
ln (# income receivers) - 0.10 0.12
ln c - 0.20 -0.57

The estimated coefficients suggest that none of the extreme cases is a good approximations of the data.
The coefficient of c suggests that there are economies of scale in the cash expenditure, since it is below 1.
From the coefficients on n and M/c it seems that larger households economize on cash holdings, so in our
estimated models they will have larger b/c. Also a higher b/c associated with a larger family, gives a lower
W/M , as in the table. From the coefficients of M/M and on n/(c/2M) it seems that family size does not
have a large effect on the precautionary cash holdings.

Table IV shows that similar results are obtained when we use alternative measures of family size (number
of family members or of income receivers).

C On the average cash balance M with a precautionary motive

Proposition 1. Assume that π = 0 and let λ denote the time elapsed between two consecutive withdrawals.
Let M(λ) be the average cash balance during this elapsed time, W (λ) be the withdrawal at the end of a period
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of length λ and M(λ) the cash balance just prior to the withdrawal. Let M be the expected value of cash
holdings under the invariant distribution and g(λ) be the density of the distribution of the lengths. We then
have

M(λ) = M(λ) + W (λ)/2 = m∗ − (c λ)/2 (1)

M =

∫∞
0

M(λ) λ g(λ) dλ∫∞
0

λ g(λ) dλ
(2)

Proof of Proposition 1. Let t ∈ [0, λ] index the time elapsed in an interval of length λ. The law of
motion of cash and the optimal policy imply that cash holdings obey m(t) = m∗ − cλ for t ∈ [0, λ) and
m(λ) = m∗. W (λ) = m+(λ) −m−(λ) and m∗ = W (λ) + M(λ) imply equation (1). The ergodic theorem
implies, using ω to index the sample space,

M = lim
T→∞

(1/T )
∫ T

0

m(t, ω) dt in pr. (3)

from which equation (2) can be derived.

Remark 1. If the distribution of the length λ is concentrated at a single value λ̄, as in a deterministic
model, then M = M(λ̄) . Then

M = M(λ̄) = M(λ̄) + W (λ̄)/2

Remark 2 When the distribution of the length λ is not degenerate then

M <

∫ ∞

0

M(λ) g(λ) dλ =
∫ ∞

0

M(λ) g(λ) dλ +
1
2

∫ ∞

0

W (λ) g(λ) dλ

where the inequality follows because M(λ) is decreasing in λ. Thus M , the duration weighted expected value
of M(λ), is smaller than the unweighted expected value in the right hand side of the inequality.

D A model with random consumption jumps

The referee suggested a model with a delay between the decision of a withdrawal and the arrival of the
cash and with jumps in consumption as an alternative way to obtain a process for cash balances where
withdrawals happen at times where cash balances are positive. We empathize completely with the idea. We
analyze it thoroughly in the a variation of the model presented below. Nevertheless find it much easier to
do it without the delay, in fact it is not even necessary to obtain that cash is positive at time of some of the
withdrawals.5

5With the delay, one has to distinguish between the time at which a withdrawal is decided, and the time at which it is
implemented, i.e. when the cash can be spent. In a deterministic model, this distinctions vanishes, since the future is perfectly
forecastable. Then the model just adds (with no reason) a lower bound to the cash balances. Hence, we think that what
Referee 3 has in mind is a model where the consumption is random. But in this case we think that a fixed delay makes the
model not very tractable. For instance, consider the model with jumps in consumption of a fixed size, say z, that happen
with a constant Poisson arrival rate, say κ, and a deterministic time lag between the decision and the actual withdrawal. In
this case, suppose that there is a large number of jumps in the time between the decision and the actual withdrawal (i.e. the
delay). Then non-negative of cash has to be violated. Summarizing, we find the delay on withdrawing a feature that requires a
more complex, and less tractable model. Nevertheless, we think we understand the idea of the example, and find it interesting
and important. Based on that we consider a variation on the model that incorporates jumps in consumption (of fixed size z,
arriving at a Poisson rate κ), but eliminates the delay on withdrawal. We think that this captures the same logic.
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D.1 Overview and main findings

We consider a model where consumption has two components: one is deterministic at a constant rate c per
unit of time, −as in our previous model− and the other is a jump process. We assume that the jump process
occurs with probability κ per unit of time, and that when it happens consumption increases by an amount
given by the parameter z > 0. With this parametrization, expected consumption per year, equals c + κz.

The aim of this extension is to explore the implications of an alternative reason for “precautionary”
type of behavior. In this model, there are two types of withdrawals, those that occur when m reaches zero,
and those that occur at the time of a jump in consumption if m < z. The idea is that at times when
consumption jumps, if the money balances at hand m are not large enough to pay for the sudden increase
in cash consumption, i.e. if m < z then the agent will withdraw cash, even if cash has not reached zero.
Otherwise, the nature of the optimal policy is the same, after withdrawal agents set their cash balances to
the optimal replenishment level m∗. Hence in this model, the value of z acts in a similar way as the threshold
m proposed by referee 3.

We show that solving the Bellman equation is more involved than in our previous case, requiring to solve
a delay-differential equation, as opposed to an ordinary differential equation. While we present an algorithm
to solve for the parameters that fully characterize the Bellman equation, we do not have a simple close form
solution for the optimal policy m∗ as we did for our benchmark case.

We also give a characterization of the algorithm to solve for M, W, n and M as a function of m∗ and
the rest of the parameters (κ, z, c). We use this characterization to explore the implications of this model
for the following statistics of interest: M/ (c + zκ) , W/M, n, M/M , and n/ [(c + zκ) / (2M)]. In particular
we solve for these statistics by normalizing c + κz = 365 and consider different values c/ (c + κz) , m∗ and
κ. We have chosen the values of m∗ given κ so that the implied values of cash relative to cash consumption,
M/ (c + κz) will be close to the ones for the Italian households in Table 1. We focus on parametrizations
where the fraction of cash consumption that is continuous, c/ (c + κz) is at least 1/3. We view this range
as the most interesting and realistic case, since higher values imply that most purchases using cash will
correspond to jumps and hence will be of large size.6

Here is a summary of the findings for this model, illustrated by figures 1-4 (panels of Figure I; see
Section D.4 in this appendix, for a detailed explanation of the construction of these figures). Recall that
the only difference with the BT model is that at the time of jumps when m < z, agents must withdraw.
This introduces the following forces: it tends to reduces the number of withdrawals needed to finance cash
consumption for a given cash consumption, since a non-negligible fraction of consumption happens at the
time of the withdrawal (see Figures 1 and 4); it tends to increase the size of withdrawals, since the withdrawals
at the time of a jump include z (see Figure 2) and it produces a positive average cash balances at the time of
withdrawal, since some withdrawals happen when m < z (see Figure 4). Thus, the number of withdrawals, n,
that correspond to cash holding relative to cash purchases, M/ (c + zκ), are close to or smaller than the ones
in the BT model (see Figure 1). This result goes against most of the data, especially for those with ATM
cards (notice how low is the number of withdrawals in the model relative to those in Table 1 in the paper).
This can also be seen in the statistic n/ [(c + κz) / (2M)], the ratio of the actual number of withdrawals
to the implied number of withdrawals from the BT model ( this statistics is one in the BT model). This
is closer of smaller than one for this model, while it is much bigger in our data for Italian households (see
Table 1 in the paper). Finally, one feature of this model that agrees with the data is that it easily produces
positive and large values of M/M , see Figure 4.

Summarizing, on the positive side this model allows to have observations with W/M ≥ 2 or equivalently
with values of M < (c + κz) /2n, as we observe for a small number of households, especially those with-
out ATM cards. On the negative side, we find the model less tractable than our benchmark model, and
inconsistent with the large number of withdrawals that characterize the behavior of the typical household.
Furthermore, we do not have time series data (at high frequency) on cash consumption to retrieve infor-

6 For example, if κz = 2/3 of total annual cash consumption, and cash consumption is about 2/3 of total consumption, for
κ = 10, then the purchases z will be about 4.5 % of annual total consumption. For completeness, we discuss the other cases in
detail in the last section of this document.
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mation on z and κ. Hence, we think that the jumps in consumption are distinguishable from the model
with random free withdrawals only in terms of some of their implications. We prefer our benchmark model
(the one with random free withdrawals) because it is simpler, it allows a more thorough understanding,
characterization, and comparative statistics; it introduces fewer parameters (p versus z and κ); and it is
roughly consistent with more patterns of the data.

D.2 The Bellman Equation in the model with consumption jumps

The Bellman equation for m > 0 becomes:

rV (m) = Rm + p

[
min

m̂
V (m̂)− V (m)

]

+κ min
[
b + min

m̂
V (m̂)− V (m) , V (m− z)− V (m)

]

+V ′ (m) (−c− πm)

The term min [b + minm̂ V (m̂)− V (m) , V (m− z)− V (m)] takes into account that after the jump in con-
sumption the agent can decide to withdraw cash, or otherwise her cash balances becomes m− z. As before
we let m∗ solve: m∗ = arg minm̂ V (m̂) we also let V ∗ ≡ V (m∗) . Non-negativity of cash gives

V (m) = V ∗ + b for m ≤ 0.

We look for a solution of the form of an Ordinary Differential Equation (ODE):

(r + p + κ) V (m) = Rm + (p + κ)V ∗ + κb + V ′ (m) (−c− πm)

for all 0 ≤ m ≤ z and of a Delay-Differential Equation (DDE):

(r + p + κ) V (m) = Rm + pV ∗ + κV (m− z) + V ′ (m) (−c− πm)

for z ≤ m ≤ m∗∗.

D.2.1 Characterization of the Bellman Equation

We can further characterize the solution by splitting the domain of V, [0,m∗] into J intervals. The first
J − 1 intervals are of width z and are given by [jz, (j + 1) z] for j = 0, 1, ..., J − 1. The last interval is given
by [Jz, min {m∗, (J + 1) z}] . We index the solution of the ODE in each interval by j as follows:

(r + p + κ)V0 (m) = Rm + (p + κ) V ∗ + κb + V ′
0 (m) (−c− πm)

for 0 ≤ m ≤ z, V0 and the DDE:

(r + p + κ)Vj (m) = Rm + pV ∗ + κVj−1 (m− z) + V ′
j (m) (−c− πm)

for j z ≤ m ≤ min {(j + 1) z,m∗} and 1 ≤ j ≤ J.
Notice that given, V ∗ ≥ 0 and V (0) = b+V ∗ one can readily solve the ODE for V0 as done in the model

with κ = 0. For the other intervals, given V ∗ we can solve Vj recursively, since in the j segment we use the
solution for the j− 1 segment, i.e. we can treat the DDE as an ODE. Since V is continuous, we require that

Vj (zj) = Vj−1 (zj)

for j = 1, 2, ..., J − 1. Notice that this equality also implies that the derivatives of Vj and Vj−1 agree at this
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point for j ≥ 2. Finally we look for the J segment for which:

V ′
J−1 (m∗) = 0 and VJ−1 (m∗) = V ∗ .

This characterization immediately implies an algorithm to solve for the solution: Guess for a value of V ∗

solve for V0, ..., VJ−1 , where J is found so that there is a point m∗ for which V ′
J−1 (m∗) = 0. Finally, check

if VJ−1 (m∗) = V ∗.

D.2.2 Solution of the Bellman equation for the π = 0 case

The following proposition gives the functional form for the solution of the Bellman equation, and display the
equations on the constants that give the solution for the ODE-DDE for the Bellman equation.

Proposition 2. a) Given (V ∗,m∗) let J be the smallest integer such that Jz ≥ m∗. The functions Vj :
[zj, z (j + 1)] → R for j = 0, ..., J − 1 :

Vj (m) = Aj + Dj (m− z j) + exp (λ (m− zj))
j∑

i=0

Bj,i (m− z j)i

where the constants λ, Aj , Dj and Bj,i satisfy:

λ =
r + p + κ

−c
,

D0 =
R

(r + p + κ)
,

A0 + B0,0 = b + V ∗

and for j = 0, 1, ..., J − 2 :

Dj+1 = (− 1 / λ)
[
R

c
+

κ

c
Dj

]
,

Aj+1 = (1/λ)
(

Dj+1 − pV ∗

c
− κ

c
[Aj −Dj z (j + 1)]

)
+ Dj+1z (j + 1) ,

Bj+1,0 = Aj + Djz + exp (λz)
j∑

i=0

Bj,i (z)i −Aj+1, and

Bj+1,i+1 =
1

i + 1
κ

c
Bj,i

for i = 0, 1, 2, ..., j.
b) Given {Aj , Dj , Bji} , (V ∗, m∗) must satisfy:

V ∗ = AJ−1 + DJ−1 (m∗ − z (J − 1)) + exp (λ (m∗ − z (J − 1)))
J−1∑

i=0

BJ−1,i (m∗ − z (J − 1))i
,

0 = DJ−1 + exp (λ (m∗ − z (J − 1)))

[
J−1∑

i=0

BJ−1,i

(
λ (m∗ − z (J − 1))i + i (m∗ − z (J − 1))i−1

)]

D.3 Characterization of cash management statistics

We can determine M , W , M and n by finding the invariant distribution h the expected number of with-
drawals, n and using them to compute the remaining statistics (M ,M and W ), as was done in the model
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with random free withdrawals. We do so in the appendix, but the derivation and calculations of n and h
are much more involved than the one for the model with random free withdrawals. Instead here we derive
then in a different manner, without solving for h, directly finding an expression for the statistic of interest.
We define M w,M and n as the expected discounted integral of the respective quantities, and then take the
discount rate to zero.7. In particular let:

M (m) = E

[
ρ

∫ ∞

0

e−ρm (t) dt |m
]

w (m) = E


ρ

∞∑

j=0

e−ρτj w (τj) dt | m




m (m) = E


ρ

∞∑

j=0

e−ρτj m
(
τ−j

)
dt | m




n (m) = E


ρ

∞∑

j=0

e−ρτj dt | m




where τj are the times at which a withdrawal happens, and where w (τj) is the size of the corresponding
withdrawal. We are interested in

M = lim
ρ→0

M (m) , w = lim
ρ→0

w (m) , m = lim
ρ→0

m (m) , n = lim
ρ→0

n (m) .

Note that w is the expected value of the total amount of withdrawals during a period, and hence average
withdrawal size is

W =
w

n
.

Likewise, m is the expected value of the total amount of cash at the time of a withdrawal, and hence the
average cash at the time of a withdrawal is

M =
m

n
.

These functions satisfy the following Bellman equations, which, in order to simplify the solution, we only
write for the case of π = 0. The logic for them is the same as the one for the value function, so we present
directly their characterization in segments [zj, z (j + 1)]. For m ∈ [0, z]

(ρ + κ + p)M0 (m) = ρ m−M ′
0 (m) c + (κ + p)M∗

(ρ + κ + p)w0 (m) = ρ (κ + p) (m∗ −m) + ρκz − w′0 (m) c + (κ + p)w∗

(ρ + κ + p)m0 (m) = ρ (κ + p)m−m′
0 (m) c + (κ + p)m∗

0

(ρ + κ + p) n0 (m) = ρ (κ + p)− n′0 (m) c + (κ + p)n∗

which can be written as:

(ρ + κ + p)F0 (m) = ρ σ0 m + ρ α0 − F ′0 (m) c + (κ + p)F ∗

for suitable choices of the constants σ0 and α0 (see the appendix for details)

7We implement the limit numerically, by solving it for a small value of ρ
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For m ∈ [zj, z (j + 1)] for j = 1, 2, ..., J − 2

(ρ + κ + p)Mj (m) = ρ m−M ′
j (m) c + κMj−1 (m− z) + pM∗

(ρ + κ + p)wj (m) = ρp (m∗ −m)− w′j (m) c + κ wj−1 (m− z) + p w∗

(ρ + κ + p)mj (m) = ρ pm−m′
j (m) c + κ mj−1 (m− z) + pm∗

(ρ + κ + p) nj (m) = ρp− n′j (m) c + κnj−1 (m− z) + pn∗

which is written as

(ρ + κ + p)Fj (m) = ρ σ m + ρα− F ′j (m) c + κFj−1 (m− z) + pF ∗

for some suitable choices of α and σ (see the appendix for details). Continuity of these function across the
segments gives:

Mj (zj) = Mj−1 (zj) ,

wj (zj) = wj−1 (zj) ,

mj (zj) = M j−1 (zj) ,

nj (zj) = nj−1 (zj)

and in general
Fj (zj) = Fj−1 (zj)

for j = 1, 2, ..., J − 1 and the appropriate boundary codnditions at m = 0 :

M0 (0) = M∗,

w0 (0) = ρ m∗ + w∗,

m0 (0) = m∗,

n0 (0) = ρ + n∗

or in general:
F0 (0) = ρ α∗ + F ∗

for a suitable choice of α∗ (see the appendix for details).
Now we can write the solution for F as a function of m∗, σ, σ0, α, α0 and α∗.

Proposition 3. The ODE-DDE for F has the following solution. Let m∗, σ ,σ0, α , α0 and α∗ be given.
Using m∗ define J as the smallest integer so that Jz ≥ m∗. Then Fj : [zj, z (j + 1)] → R has the form

Fj (m) = Gj + Sj (m− zj) +
j∑

i=0

Hji exp (λ (m− zj)) (m− zj)i

for some constants Gj, Sj, Hij and λ. These constants solve:

λ =
ρ + κ + p

−c
,

S0 =
ρ

ρ + κ + p
σ0 ,

G0 =
ρ

ρ + κ + p
α0 − c

ρ + κ + p
S0 +

(κ + p)
ρ + κ + p

F ∗,

H00 = ρα∗ + F ∗ −G0 .

9



for j = 0, 1, 2, ..., J − 2 :

Sj+1 =
ρ

ρ + κ + p
σ +

κ

ρ + κ + p
Sj ,

Gj+1 =
ρα + pF ∗

ρ + κ + p
+

κ

ρ + κ + p
[Gj − Sjz (j + 1)]− c

ρ + κ + p
Sj+1 + Sj+1z (j + 1) ,

Hj+1,0 = Gj + Sj z +
j∑

i=0

Hji exp (λz) (z)i −Gj+1

and
Hj+1, i =

1
i

κ

c
Hj,i−1

for i = 1, 2, ..., j + 1.
Finally, F ∗ must solve:

F ∗ = GJ−1 + SJ−1 (m∗ − z (J − 1)) +
J−1∑

i=0

HJ−1 i exp (λ (m∗ − z (J − 1))) (m∗ − z (J − 1))i

D.4 Code and Figures

The set of figures below use the matlab code cons jump formulas.m. That code uses the expressions above
to solve for M/c, W/M , n, M/M and n/ [(c + κz) / (2M)] for several combination of the jump intensity
κ, composition of cash consumption c/ (c + κz), and replenishing cash balance threshold m∗. We plot the
resulting values in different graphs. Using the homogeneity of the model, we normalize expected cash
consumption per year, c + κz = 365 so that m∗ = 20 is interpreted as a stock of cash that is equivalent to
20 days of expected cash consumption. In each graph we display 9 different solid lines, each line correspond
to a combination of (κ,m∗). The three values of κ are 5, 10 and 20 expected jumps per year; the 3 values
for m∗ are 20, 30 and 40 cash holding, in daily expected cash consumption units. The different values of
κ are denoted by lines of different colors, and the different values of m∗ are indicated by labels at the end
of each line. The points of a line correspond to different values of the share of cash purchases accounted
for the continuous consumption, c/ (c + zκ) going from z = 0 and hence c = 365 up to z̄ chosen to that
z̄κ / 365 = 2/3 i.e. so that cash consumption that occurs in jumps account for up to 2/3 of cash consumption.
The figures include also a dotted line with the prediction corresponding to the BT model. For completeness
we also considered the case where 2/3 < z̄κ ≤ 365 and c = 0, even though we view such a high value of
zκ as unrealistic (it is implausible that unexpected cash transaction would be so large, as discussed in the
introduction and footnote 6 therein).

The first lines of the code cons jump formulas.m allows to change the values of κ, m∗, p and z̄ for the 9
lines.

I. Case: 0 ≤ zκ/365 ≤ 2/3.

This case is obtained by running the matlab code cons jump formulas.m setting high zkappa = 2/3*365
and setting Fign intial=1.

Figures 1, 2, 3 and 4 plot curves with n the expected number of withdrawals per year in the horizontal
axis, and different statistics in the vertical axis. Figure 1 plots in the vertical axis the ratio of average cash
balances to expected daily cash consumption M/ (c + zκ) Figure 2 plots average withdrawal size relative to
average cash balances, W/M , Figure 3 plots average cash at the time to withdrawal to average cash holdings,
M/M and Figure 4 plots the ratio of the average number of withdrawals to the implied number in the BT
model, n [(c + κz) / (2M )].
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It is instructive to analyze the cases that correspond to the extremes of each of the curves. Consider the
extreme that correspond to c = 365 and z = 0. In all the figures, the 3 curves for the same value of m∗, all
start from the same point. The point is the same for all the values of κ because with z = 0 the value κ is
immaterial. For instance that Figure 1, all this values W/M = 2 in Figure 2 they trace the 2M n = 365, in
Figure 3 the correspond to the value of n/ [365/2M ] = 1. Notice that the point of this extreme coincide
with the BT model, whose predictions are in each figure recorded by the dotted line. The other extreme
correspond to the value of the ratio of purchases accounted by the jumps, z̄κ/365 equal to 2/3.

Figure I: Predictions of model with consumption jumps (zκ/365 ≤ 2/3)
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Figure 1,  M/(c+zκ) vs n, zκ/(c+zκ) < 0.66
blue κ = 5,  black κ = 10, red κ = 20
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Figure 2,  W/M vs n, zκ/(c+zκ) < 0.66
blue κ = 5,  black κ = 10, red κ = 20
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Figure 3,  MLow/M vs n, zκ/(c+zκ) < 0.66
blue κ = 5,  black κ = 10, red κ = 20
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Figure 4,  n/n
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T vs n, zκ/(c+zκ) < 0.66
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From Figures 1, 2 and 4 (the Panels of Figure I) it is clear that the statistics of this model are on the
opposite side of the BT model, relative to the data: the model predicts fewer withdrawals, each of a larger
dimension. In particular, in Figure 1 they are below the BT line, in Figure 2 they are above the BT line,
and in Figure 4 they are below the BT line. It is also clear that this model has no problem producing large
values of M/M (see Figure 3).
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II. Case: 0 ≤ zκ/365 ≤ 1.

This case is obtained by running the matlab code cons jump formulas.m setting high zkappa = 0.99*365
and setting Fign intial=5.

Now we analyze the case where we allow higher values of z, namely we continue the curves up to the
point where z̄ κ/ 365 = 1. The extreme of these curves require some discussion. Depending on the value
of κ and m∗, on this extreme of the curve, z can be even bigger than m∗. We consider first the case
where z > m∗, or equivalently, when 365 > m∗ κ. In this case the jump in consumption z is so large
than after the first jump there is a withdrawal. Hence, there are as many withdrawals as jumps, so the
average number of withdrawals is n = κ (In the figures this corresponds to κ = 5, 10 and 20). Since
c = 0, cash holdings are constant at m∗ before the withdrawal, and equal to this amount at the time of the
withdrawal, hence M = m∗ and M = m∗ = M . Finally, the withdrawal size is W = z > m∗, and thus
W/M = z/m∗ = 365 / (κ m∗) . Summarizing:

n = κ,

W

M
= 365 / (κ m∗) ,

M

M
= 1.

Now consider the general case, including the one for which z < m∗,or equivalently 365 < m∗ κ. In this
case J jumps are required for a withdrawal where J is the smallest integer such that zJ ≥ m∗. In this case
a withdrawal happens after the J jump, and hence n = κ/J . Cash holdings start at m∗. stay constant until
the next jump, at which time they decrease by z, until the Jth jump where there is a withdrawal. Hence:

M =
1
J

m∗ +
1
J

(m∗ − z) +
1
J

(m∗ − z) + · · ·+ 1
J

(m∗ − (J − 1) z)

= m∗ − (J − 1)
2

z

After the Jth jump, a withdrawal takes place and hence W :

W = m∗ + z − ((m∗ − (J − 1) z)) = Jz.

Thus
W

M
=

Jz

m∗ − (J−1)
2 z

After J − 1 withdrawals, cash balances are m∗ − (J − 1) z This is the amount that agents will have at the
time of the withdrawal, hence

M

M
=

m∗ − (J − 1) z

m∗ − (J−1)
2 z

These formulas are complicated by the fact that m∗ may not be an exact multiple of z. To simplify matters,
assume that it is, so that Jz = m∗ then or

n =
κ

J
=

365
m∗ = κ

1
κm∗/365

M

M
=

m∗/z − (J − 1)

m∗/z − (J−1)
2

=
2

κm∗
365 + 1

< 1,

W

M
=

Jz

m∗ − (J−1)
2 z

=
2

1 + 365
m∗κ

< 2
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Figure II: Predictions of model with consumption jumps (zκ/365 ≤ 1)
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Figure 5,  M/(c+zκ) vs n, zκ/(c+zκ) < 0.99
blue κ = 5,  black κ = 10, red κ = 20
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Figure 6,  W/M vs n, zκ/(c+zκ) < 0.99
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Figure 7,  MLow/M vs n, zκ/(c+zκ) < 0.99
blue κ = 5,  black κ = 10, red κ = 20
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Figures 5 to 8 (panels of Figure II) plot the same variables that are plotted in as Figure Figure I, except
that the curves are continued for values of z until zκ = 365. The implications of these curves vis-a-vis the
data are similar to the ones of Figures discussed above. The only notable exception is say for m∗ = 30 and
κ = 10. In this case the model, for values of zκ close to 365 can generate values of n/ [(c + zκ) / (2M)]
substantially larger than one, and values of W/M substantially smaller than 2. Nevertheless this correspond
to values of M/M very close to one, and to values of n close to 10 which are both counterfactual when
compared with the statistics in Table 1 of the paper. Indeed these cases correspond exactly to the analytical
formulas presented above with m∗ ≤ z and zκ = 365.
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E A model with costly random withdrawals

The dynamic model discussed in the paper has the unrealistic feature that agents withdraw every time a
match with a financial intermediary occurs, thus making as many withdrawals as contacts with the financial
intermediary, many of which of a very small size. In this section we extend the model to the case where
the withdrawals (deposits) done upon the random contacts with the financial intermediary are subject to
a fixed cost f , assuming 0 < f < b. The model produces a more realistic depiction of the distribution of
withdrawals, by limiting the minimum withdrawal size. In particular, we show that the minimum withdrawal
size is determined by the fixed cost relative to the interest cost, i.e. f/R, and that it is independent of p. On
the other hand, if f is large relative to b, the predictions gets closer to the ones of the BT model. Indeed, as
f goes to b, then there is no advantage of a chance meeting with the intermediary, and hence the model is
identical to the one of the previous section, but with p = 0.

In this section we formulate the dynamic programming problem for f > 0, solve its Bellman equation
and characterize its optimal decision rule. We also derive the corresponding invariant distribution and the
expressions for n, M , W , M . As several features of this case are similar to the previous one we streamline
the presentation and do not report results on comparative statics or welfare.

We skip the formulation of the total cost problem, that is exactly parallel to the one for the case of f = 0.
Using notation that is analogous to the one that was used above, the Bellman equation for this problem
when the agent is not matched with a financial intermediary is given by:

rV (m) = Rm + p min {V ∗ + f − V (m) , 0}+ V ′ (m) (−c−mπ) (4)

where V ∗ ≡ minm̂ V (m̂) and min {V ∗ + f − V (m) , 0} takes into account that it may not be optimal to
withdraw/deposit for all contacts with a financial intermediary. Indeed, whether the agent chooses to do so
will depend on her level of cash balances.

We will guess, and later verify, a shape for V (·) that implies a simple threshold rule for the optimal
policy. Our guess is that V (·) is strictly decreasing at m = 0 and single peaked attaining a minimum at a
finite value of m. Then we guess that there will be two thresholds, m and m̄, that satisfy:

V ∗ + f = V (m) = V (m̄) . (5)

Thus solving the Bellman equation is equivalent to finding 5 numbers m∗, m∗∗, m, m̄, V ∗ and a function
V (·) such that:

V ∗ = V (m∗) , 0 = V ′ (m∗) (6)

V (m) =





Rm + p (V ∗ + f)− V ′ (m) (c + mπ)
r + p

if m ∈ (0, m)

Rm− V ′ (m) (c + mπ)
r

if m ∈ (m, m̄)
Rm + p (V ∗ + f)− V ′ (m) (c + mπ)

r + p
if m ∈ (m̄, m∗∗)

(7)

and the boundary conditions:

V (0) = V ∗ + b , V (m) = V ∗ + b for m > m∗∗ . (8)

Hence the optimal policy in this model is to pay the fixed cost f and withdraw cash if the contact with
the financial intermediary occurs when cash balances are in (0,m) range, or to deposit if cash balances are
larger than m̄. In either case the withdrawal or deposits is such that the post transfer cash balances are equal
to m∗. If the agent contacts a financial intermediary when her cash balances are in (m, m̄) then, no action
is taken. If the agent cash balances get to zero, then the fixed cost b is paid and after the withdrawal the
cash balances are set to m∗. Notice that m∗ ∈ (m, m̄). Hence in this model withdrawals have a minimum
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size given by m∗ −m. This is a more realistic depiction of actual cash management.
Now we turn to the characterization and solution of the Bellman equation.

Proposition 4. For a given V ∗,m, m̄,m∗∗ satisfying 0 < m < m̄ < m∗∗ :
The solution of (7) for m ∈ (m, m̄) is given by:

V (m) = ϕ (m, Aϕ) ≡ (9)

≡ −Rc/ (r + π)
r

+
R m

r + π
+

( c

r

)2

Aϕ

[
1 + π

m

c

]− r
π

for an arbitrary constant Aϕ.
Likewise, the solution of (7) for m ∈ (0, m) or m ∈ (m̄, m∗∗) is given by:

V (m) = η (m,V ∗, Aη) ≡ (10)

≡
p (V ∗ + f)− R c

r+p+π

r + p
+

R m

r + p + π
+

(
c

r + p

)2

Aη

[
1 + π

m

c

]− r+p
π

for an arbitrary constant Aη.
Proof. The proposition is readily verified by differentiating (9) and (10) in their respective domains.

Next we are going to list a system of 5 equations in 5 unknowns that describes a C1 solution of V (m)
on the range [0, m∗]. The unknowns in the system are V ∗, Aη, Aϕ,m,m∗. Using Proposition 4, and the
boundary conditions (5), (6) and (8), the system is given by the following 5 equations:

ϕm (m∗, Aϕ) = 0 (11)
ϕ (m∗, Aϕ) = V ∗ (12)

η (m,V ∗, Aη) = V ∗ + f (13)
η (0, V ∗, Aη) = V ∗ + b (14)

ϕ (m,Aϕ) = V ∗ + f . (15)

In the proof of Proposition 5 we show that the solution of this system can be found by solving one
non-linear equation in one unknown, namely m. Once the system is solved it is straightforward to extend
the solution to the range: (m∗,∞) .

Proposition 5. There is a solution for the system (11)-(15). The solution characterizes a C1 function that
is strictly decreasing on (0, m∗) , convex on (0, m̄) and strictly increasing on (m∗,m∗∗). This function solves
the Bellman equations described above. The value function satisfies

V (0) =
R

r
m∗ + b . (16)

Proof. See Appendix E.1.

Next we present a proposition about the determinants of the range of inaction m∗−m, or equivalently
the size of the minimum withdrawal.
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Proposition 6. The scaled range of inaction (m∗ −m) / (c + m∗π) solves

f

R (c + m∗π)
=

(
m∗ −m

c + m∗π

)2
[

1
2

+
∑

k=1

1
(k + 2)!

(
m∗ −m

c + m∗π

)k

Πk+1
j=2 (r + jπ)

]
, (17)

hence it can be written as

m∗ −m

c + m∗π
=

√
2 f

R (c + πm∗)
+ o

((
f

R (c + πm∗)

)2
)

, (18)

and for π = 0 it is increasing in f/R with elasticity smaller than 1/2.
Proof. See Appendix E.1.

The quantity c + m∗π is a measure of the use of cash per period when m = m∗. The quantity m∗ −m also
measures the size of the smallest withdrawal. Hence (m∗ −m) / (c + m∗π) is a normalized measure of the
minimum withdrawal. The proposition shows that for π = 0 the minimum withdrawal does not depend on p
and b, and that, as the approximation above makes clear, it is analogous to the withdrawal of the BT model
facing a fixed cost f and an interest rate R. Quantitatively, these properties continue to hold for π > 0.

The next proposition examines the expected number of withdrawals n.

Proposition 7. The expected number of cash withdrawals per unit of time,
n (m∗/c, m/c, π, p), is

n =
p

(p/π) log (1 + (m∗ −m) π/c) + 1− (1 + mπ/c)−
p
π

(19)

and the fraction of agents with cash balances below m is given by

H (m) =
1− (1 + mπ/c)−

p
π

(p/π) log (1 + (m∗ −m)π/c) + 1− (1 + mπ/c)−
p
π

. (20)

Proof. See Appendix E.1.

Inspection of equation (19) confirms that when m∗ > m the expected number of withdrawals (n) is no
longer bounded below by p. Indeed, as p → ∞ then n → [(1/π) log (1 + (m∗ −m)π/c)]−1

, which is the
reciprocal of the time that it takes for an agent that starts with money holding m∗ (and consuming at rate
c when the inflation rate is π) to reach real money holdings m.

As in the case of f = 0, for any m ∈ [0,m] the density h (m) solves the ODE given by equation

∂h (m)
∂m

=
(p− π)

(πm + c)
h (m) (21)

The reason is that in this interval the behavior of the system is the same as the one for f = 0. On the
interval m ∈ [m, m∗] the density h (m) solves the following ODE:

∂h (m)
∂m

=
−π

(πm + c)
h (m) . (22)

In this interval the chance meetings with the intermediary do not trigger a withdrawal, hence it is as if p = 0.
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Proposition 8. For H(m) as given in (20), the CDF H (m) for m ∈ [0,m] is

H (m) = H (m)

(
1 + π

c m
) p

π − 1
(
1 + π

c m
) p

π − 1
(23)

for m ∈ [m,m∗]

H (m) = [1−H (m)]
log

(
1 + π

c m
)− log

(
1 + π

c m∗)

log
(
1 + π

c m∗)− log
(
1 + π

c m
) + 1 . (24)

Proof. See Appendix E.1.

Using the previous density, the average money holdings M
(

m∗
c , m

c , π, p
)

is

M =
∫ m

0

mh (m) dm +
∫ m∗

m

mh (m) dm

whose closed form expression can be found in the online Appendix L.5.
The average withdrawal W

(
m∗
c , m

c , π, p
)

is given by

W = m∗
[
1− p

n
H (m)

]
+

[ p

n
H (m)

] ∫ m

0
(m∗ −m) h (m) dm

H (m)
(25)

whose closed form expression can be found in the online Appendix L.6. To understand this expression notice
that n−pH (m) is the number of withdrawals in a unit of time that occur because agents reach zero balances,
so if we divide it by the total number of withdrawals per unit of time, n, we obtain the fraction of withdrawals
that occur when agents reach zero balances. Each of these withdrawals is of size m∗. The complementary
fraction gives the withdrawals that occur due to a chance meeting with the intermediary. Conditional on
having money balances in (0,m) then a withdrawal of size (m∗ −m) happens with frequency h (m) /H (m) .

By the same reasoning than in the f = 0 case, the average amount of money that an agent has at the
time of withdrawal, M, satisfies

M = 0
[
1− p

n
H (m)

]
+

[ p

n
H (m)

] ∫ m

0
m h (m) dm

H (m)
.

As in the f = 0 model the relation M = m∗ −W holds. Inserting the definition of M into the expression

for M we obtain M = p
nM

[
1−

Rm∗
m

mh(m)dm

M

]
.

E.1 Proofs for the model with costly withdrawals

Proof of Proposition 5. Recall the 5 equation system in (11)-(15). We use repeated substitution to
arrive to one non-linear equation in one unknown, namely m. Equations (11) and (12) yield V ∗ = R/r m∗.
Replacing V ∗ by this expression yields (12), so we have a system of 4 equations in 4 unknowns. We use (11)
to define Aϕ (m∗) as its solution, i.e. ϕm (m∗, Aϕ (m∗)) = 0, which yields

Aϕ (m∗) =
rR

c (r + π)

[
1 + π

m∗

c

]1+ r
π

. (26)
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To solve for Aη (m∗) we use (14) and rV ∗ = Rm∗ to get:

Aη (m∗) =
r + p

c2

(
Rm∗ + br + p (b− f) +

Rc

r + p + π

)
(27)

Next we replace Aη and Aϕ into (13) and (15) so we get two non-linear equations:

η (m, (m∗R/r) , Aη (m∗)) = (m∗R/r) + f

ϕ (m, Aϕ (m∗)) = (m∗R/r) + f

The first equation, using (27) to substitute for Aη(m∗), yields

m∗
1 (m) =

(
r + p

R

)

 c

r + p

(
p f

c
− R

(r + p + π)

)
+

(
R

r+p+π

)
m + b

(
1 + π

c m
)− r+p

π − f

1− (
1 + π

c m
)− r+p

π


 (28)

Notice that for π > 0, m∗
1 (m) is continuous in (0,∞) and that:

lim
m→0

m∗
1 (m) = +∞ and lim

m→∞
m∗

1 (m)
m

=
(

r + p

r + p + π

)
< 1.

The second equation, using (26) to substitute for Aϕ(m∗), yields

m∗ = σ (m∗,m) ≡
[

r

r + π

]
m +

c

(r + π)




[
1 + π m∗

c

]1+ r
π

[
1 + π

c m
] r

π
− 1


− f

r

R
. (29)

We define m∗
2 (m) as the solution to m∗

2(m) = σ (m∗
2(m),m). Notice that σ is increasing in m∗ with

∂σ (m,m)
∂m∗ = 1 ,

∂σ (m∗, m)
∂m∗ > 1 for m∗ > m, and σ (m,m) = m− f

r

R

so that m∗
2(m) is well defined and continuous on [0,∞), that m∗

2(0) < ∞ and that m∗
2 (m) > m for all m.

Using the properties of m∗
1(·) and m∗

2(·) the intermediate value theorem implies that there is an m̂ ∈ (0,∞)
such that m∗

1 (m̂) = m∗
2 (m̂).

For π < 0 the range of the functions defined above is [0,−π/c]. By a straightforward adaptation of the
arguments above one can show the existence of the solution of the two equations in this case.

Next we verify the guesses that the value function V (m) is decreasing in a neighborhood of m = 0 and
single peaked. The convexity of V (m) is equivalent to showing that Aϕ > 0 and Aη > 0 which can be readily
established from (26) and (27) provided b > f. Moreover, since Aϕ > 0 and Aη > 0, then V (m) is strictly
decreasing on (0,m∗) .

We extend the value function to the range (m∗,∞) . Given the values already found for V ∗ and Aϕ we
find m̄ as the solution to ϕ (m̄,Aϕ) = V ∗ + f , i.e. m̄ solves:

(
R

r + π

)
m̄ +

( c

r

)2

Aϕ

[
1 +

π

c
m̄

]− r
π

= V ∗ + f +
Rc/ (r + π)

r
.

Now given V ∗ and m̄ we find the constant Āη by solving η
(
m̄, V ∗, Āη

)
= V ∗ + f

Āη =
(

r + p

c

)2 (
1 +

π

c
m̄

) r+p
π

(
V ∗ + f − p (V ∗ + f)−Rc/ (r + p + π)

r + p
− R

r + p + π
m̄

)
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Given V ∗ and Āη we find m∗∗ as the solution of η
(
m∗∗, V ∗, Āη

)
= V ∗ + b.

Now we establish that V is strictly increasing in (m∗,m∗∗) . For this notice that since η
(
m̄, V ∗, Āη

)
=

ϕ (m̄,Aϕ) then by inspecting the Bellman equation (7) it follows that they have the same derivative with
respect to m at m̄. Since ϕ (m̄,Aϕ) is convex this derivative is strictly positive. There are two cases. If
Āη is positive then η

(
m̄, V ∗, Āη

)
is convex in this range and hence V is increasing. If Āη is negative then

η
(
m̄, V ∗, Āη

)
is concave but it is increasing since it cannot achieve a maximum since it is the sum of a linear

increasing and a bounded concave function.

Proof of Proposition 6. In Proposition 4 we show that V (m) is analytical in the interval [m, m∗].
Using V i(·) to denote the ith derivative of V (·) we can write

V (m) = V (m∗) +
∞∑

i=1

1
i!

V i (m∗) (m−m∗)i

Using f = V (m) − V (m∗) we write: f =
∑∞

i=1(1/i!)V i (m∗) (m−m∗)i. Next we find an expression for
V i (m∗). Differentiating the Bellman equation (4) w.r.t. m in a neighborhood of m∗ yields

R− [r + π]V 1(m) = V 2 (m) [c + πm] (30)

evaluating at m∗, using that V 1 (m∗) = 0 we obtain V 2 (m∗) = R
c+πm∗ . Differentiating (30) repeatedly and

using induction yields

[r + (1 + i) π]V i+1 (m) = −V
i+2

(m) [c + πm] for i ≥ 1 (31)

Solving the difference equation in (31) evaluated at m∗ gives

V
i+1

(m∗) = (−1)i−1 R

(c + m∗π)i
Πi

j=2 [r + jπ] for i ≥ 2 (32)

Using V 1 (m∗) = 0, V 2 (m∗) = R
c+πm∗ and (32) for higher order derivatives into f =

∑∞
i=1(1/i!)V i (m∗) (m−m∗)i

and rearranging, yields equation (17).

For π = 0, z = (m∗ −m) /c solves f/(Rc) = z2 ψ(z) where ψ(z) = 1/2 +
∑∞

k=1

(
rkzk/(k + 2)!

)
. Since

ψ > 0 and increasing in z then (m∗ −m)/c is increasing in f/(Rc) with elasticity smaller than 1/2.

Proof of Proposition 7. The proof for n is analogous to the one of the baseline model with f =
0. Let t be the time to deplete balances from m∗ to m, it solves: (m∗ −m) = c

∫ t

0
eπs ds, or t =

(1/π) log (1 + (m∗ −m)π/c). The distribution of the time between withdrawals for this model has den-
sity equal to zero over the (0, t) with the right truncation denoted by t̄ which solves: m = c

∫ t̄

0
exp (π s) ds

ort̄ = (1/π) log (1 + mπ/c) Thus, the expected time between withdrawals is given by: t + (1 − e−pt̄)/p.
Substituting the above expressions into this formula and taking the reciprocal value yields equation (19) in
the paper.

Now we turn to the derivation of H(m). After each withdrawal the agent spends t units of time with
m ∈ (m,m∗). The fundamental theorem of Renewal Theory implies that the expected time that an agent
spends with m ∈ (m,m∗) in a period of length T converges to n t as T → ∞. By the ergodic theorem
n t = H(m∗)−H(m) = 1−H(m). Replacing the expressions for n and t yields the desired result.

Proof of Proposition 8. By repeated differentiation of (23) (respectively (24)) it is readily verified
that (21) is satisfied on the domain (0,m) (respectively 22 on the domain (m,m∗)). The proof is completed
by verifying that the piecewise definition of H satisfies the boundary conditions that H(0) = 0, H(m∗) = 1,
and that both (23) and (24) evaluated at m equal H(m).
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F Testing the f = 0 model vs the f > 0 model

We examined the extent to which imposing the constraint that f = 0 diminishes the ability of the model to
fit the data. To do so we reestimated the model letting f/c vary across province-years-households type, and
compared the fit of the restricted (f = 0) with the unrestricted model using a likelihood ratio test.

Table V: Testing the f > 0 vs. f = 0 model

Household w/o ATM Household w. ATM
- Hp. f = 0 is rejectedc 2% 19%

c Percentage of estimates where the null hypothesis of f = 0 is rejected by a likelihood ratio test
at the 5% confidence level. Based on a comparison between the likelihood for the restricted model
(f = 0) with the likelihood for a model where f/c is allowed to vary across province-year-type.

Table V reports the percentage of province-years-consumption cells where the null hypothesis of f = 0 is
rejected at a 5% confidence level. It appears that only for a small fraction of cases (19% for those cells that
correspond to households with ATM cards, and 2% for those without cards) there may be some improvement
in the fit of the model by letting f > 0. We explored two approaches to estimate the f > 0 model. In one case
we let f/c vary across province-years-household type, in the other case we fixed f/c to a common, non zero
value for all province-year-types (aggregating all the cash consumption levels). We argue that while there is
an improvement in the fit for a relatively small fraction of province-years by letting f > 0, as documented
in Table V, the variables in our data set do not provide us with the type of information that would allow
the parameter f to be identified. Indeed, our findings (not reported) show that when we let f > 0 and
estimate the model for each province-year-type, the average as well as median t-statistic of the parameters
(p, b/c, f/c) are very low, and the average correlation between the estimates is extremely high. Additionally,
there is an extremely high variability in the estimated parameters across province-years.8 We conclude that
the information in our data set does not allow us to estimate p, b/c and f/c with a reasonable degree of
precision. As we explained when we introduced the model with f > 0, the reason to consider that model
is to eliminate the extremely small withdrawals that the model with f = 0 implies. Hence, what would
be helpful to estimate f is information on the minimum size of withdrawals, or some other feature of the
withdrawal distribution.

G Pairwise Estimates (exactly identified)

This Appendix presents estimates of the structural parameters p, b/c obtained using only 2 of the 4 variables
(M/c, W/M , n, M/M) used in the main text. As discussed in the paper, the model is then exactly identified
(rather than over-identified). This approach allows us to analyze how the resulting vector of p, b/c estimates
varies according to the pair of variable is used.

Table VI presents a synopsis of the estimates for p, b/c obtained using different pairs of observables.
As for the case studied in the main body of the paper, each estimation exercise is based on about 1,500
estimation cells. The table reports the mean, the median and the standard deviation of these estimates. It
appears that the estimates obtained using M/c and n are extremely similar to the ones obtained using W/M
and n. Smaller values of p, b/c are obtained, especially for Household with ATM, when the variables M/M
and n are used. These results highlight one of the tensions that our model faces in fitting the cash patterns
described in Table 1 of the paper. As can be seen from Figure 1 in the paper, fitting values of M/M of
about 0.4 or lower requires values of p2 · b/c that predict values of W/M that are too high compared to the
data. For this reason, the estimates that do not make use of the statistics on M/M produce values for p, b/c

8The results are available upon request. In the case where f/c is fixed at the same value for all province-years, the average
t-statistics are higher, but the estimated parameters still vary considerably across province-years.
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that are greater. The estimates displayed in the main body of the paper (Table 3), which are based on all 4
observables, trade off the fit between the various observables. The resulting imperfect fit is used in testing
for over-identification restrictions.

Table VI: (p, b/c) estimates

w ATM wo ATM
Results using M/c and n
p b/c p b/c

Mean 42 0.06 9 0.07
Median 40 0.03 7 0.05
STD 19 0.09 7 0.07

Results using W/M and n
p b/c p b/c

Mean 36 0.03 10 0.13
Median 34 0.02 8 0.07
STD 17 0.03 6 0.14

Results using M/M and n
p b/c p b/c

Mean 18 0.01 6 0.14
Median 15 0.006 5 0.06
STD 11 0.01 4 0.30

Table VII: Correlation of estimates obtained from different pairs

Household with ATM
Results for p

(M/c , n) (W/M , n) (M/M , n)
(M/c , n) 1 0.8 0.5
(W/M , n) 0.8 1 0.4

Results for b
(M/c , n) (W/M , n) (M/M , n)

(M/c , n) 1 0.4 0.02
(W/M , n) 0.4 1 0.05

Household without ATM
Results for p

(M/c , n) (W/M , n) (M/M , n)
(M/c , n) 1 0.9 0.6
(W/M , n) 0.9 1 0.5

Results for b
(M/c , n) (W/M , n) (M/M , n)

(M/c , n) 1 0.5 0.3
(W/M , n) 0.5 1 0.4

Table VII reports the correlation between the values of p (or b/c) estimated using different pairs of ob-
servables. For instance, the value of 0.8 that appears in position (1,2) of the table is the linear correlation
coefficient between the estimates of b produced using (M/c, n) and those obtained using (W/M , n). It
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appears that the correlation is positive and significantly different from zero (under the assumption of in-
dependence) for all cell except for two entries where the value if not statistically different from zero (the
estimates for b for Households with ATM produced using the M/M , n pair).

H Estimation with Household level heterogeneity

The estimation strategy pursued in the main body of the paper is based on two key assumptions: (i) the
parameters b/c and p are the same for all households in a given cell, (ii) the variables (M/c, W/M , n, M/M)
are observed with a classical measurement error. An alternative estimation strategy, developed in section
5.3 of the paper, also assumes that the household variables are observed with classical measurement error,
but posits that the parameters b/c and p differ for each households, and are given by a simple function of
household level variables.

The next section considers yet another strategy where the estimation incorporates heterogeneity in the
parameters p and b/c at the household level and NO measurement error.

H.1 Household level unobserved heterogeneity (no measurement error).

In the first case we let each household have its own pair of parameters b/c and p, assuming that we observe
(M/c, W/M,n, M/M) with no error. With no need to assume a functional form for the distribution of the
parameters (p, b/c) this allows us to estimate the model for each household separately. Note that unless the
four observables (M/c, W/M , n, M/M) for a given households can be rationalized by the two parameters
(p, b/c)the observations will be inconsistent for this household. To address this stochastic singularity (that
comes from having four observables, no measurement error and only two parameters), we estimate the model
using only two observables: (M/c, n), the two variables for which we have more observations. To be concrete
we apply this estimation strategy to a subset of households: those in a province (e.g. province # 1 in our
sample: Turin), a year (say 1993 or 2002), those with or without ATM cards, and those from a third-tile of
the cash consumption distribution. We label the estimates for such set of households as HH estimates and
compare them with two Cell estimates obtained using the mean of the observables at the cell level. One
cell-estimate uses the mean of two observables (M/c, n), so that the only difference with the HH estimates is
that it produces one parameter vector for the whole cell instead of one parameter vector for each households.
The other cell-estimate uses the mean of the cell for four observables (M/c, W/M , n, M/M) and ASSUMES
MEASUREMENT ERROR, which is the benchmark case considered in the paper. This allows to compare
the effect of using two vs four observables.

The HH estimates produce a distribution of the parameters (p, b/c) for each cell. In the tables below,
each of the cell at which we estimate the model corresponds to a different column. The estimation at
the household level are in the top panel, where we report its mean, median and standard deviation of the
estimated parameters across households. Similar results were obtained for other provinces and HH types
(not reported for reasons of space).

We detect a very large heterogeneity on the values of the parameters, reflecting the large variability of
M/c and n across households in a given cell. Indeed the mean value of the parameter b/c is greatly affected
by some of the extreme values estimated. The bottom panel of the tables displays the estimated value of
the parameters using the means at the cell level, labeled as ”2 var” and ”4 vars”. The median value of the
estimated parameters at the household level is close to the value estimated using the cell means, especially
so when it is compared with the estimation using the same two observables.

In this section we have compared two extreme assumptions. One assumption, used for our benchmark
estimates, is that all heterogeneity within a cell is accounted for measurement error. The large dispersion
of the observables (M/c, n) in a given cell is then accounted for by a the large value of the variance of the
measurement error σ2

j . The other assumption is that all the heterogeneity within a cell is due to differences
in the parameters across agents. In this case the large dispersion in the observables (M/c, n) in a given cell
is accounted for by the large heterogeneity of the estimated parameters (p, b/c). In summary, the median of

22



Table VIII: HH with ATM; (p, b/c) estimates, Turin, 1993

Cash exp. group low med. high low med. high
Parameter p Parameter b/cday · 100

HH estimates
Mean 29 26 46 1011 13 103

Median 27 17 33 7 4 3
stds. 24 35 53 1013 31 105

Cell mean estimates
– 2 vars 28 17 37 7 3 2
– 4 vars (as in paper) 13 20 31 5 2 2

Table IX: HH with ATM; (p, b/c) estimates, Turin, 2002

Cash exp. group low med. high low med. high
Parameter p Parameter b/cday · 100

HH estimates
Mean 38 23 37 1012 40 25
Median 22 16 33 47 8 5
stds. 51 22 28 1013 215 115

Cell mean estimates
– 2 vars 27 20 36 26 7 5
– 4 vars (as in paper) 11 12 19 8 3 2

the estimates that allow for household level heterogeneity is remarkably close to the value that is estimated
using the mean of the cell level. However, the dispersion on the estimated parameters p, b/c is huge, so much
that the mean estimated values for the parameter b/c are meaningless. We find that this heterogeneity is too
large to reflect purely differences across households. Hence we do not pursue further the estimation strategy
at the household level. An alternative estimation strategy, pursued in the section 5.3 of the paper, combines
both measurement error and heterogeneity.

I Estimation under alternative cell definitions

This appendix reports the estimation results of the model with random free withdrawals obtained under five
alternative aggregation and selection of the raw data.

The baseline aggregation used in the estimates of Section 5 includes all households with a deposit account
for whom the survey data are available (see the paper for details). The elementary household data were
aggregated at the province-year-household type (ATM/noATM and 3 consumption groups), providing us
with a total of about 1,800 observations per type of withdrawal technology (ATM, no ATM) to be fitted
(103 provinces * 6 years * 3 consumption groups), each one based on approximately 13 elementary household
observations. Four additional aggregations of the data were explored. Table X provides a quick synopsis
that is helpful to compare the results obtained from our benchmark specification (reported in column 4 for
ease of comparison) with the ones produced by those alternatives.

The first alternative aggregation of the data, reported in column 1 of Table X, differs from the baseline
case in that it does not split households according to their consumption level. This increase by about 3 times
the number of elementary household observations used for the estimate of (p, b/c) in a given province-year-
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household type. The value of the point estimates is close the one obtained in the baseline exercise, though
the greater number of underlying observation increases the statistical significance of the estimates.

Table X: Estimation outcomes over five different datasets
Dataseta: py (raw) py (filt.) ryc (filt.) pyc (raw) pyc (filt)

Households with ATM
N. of estimates 576 563 532 1,654 1,454
Mean N. of HH per est. 39 17 16 14 6

% of estimates where:
- Hp. f = 0 rejected 40 33 42 19 17
- F (θ, x) < 4.6 42 47 38 57 60

Mean estimate of p 22 29 27 22 29
mean t-stat 4.9 4.4 4.4 3.1 3.0
Corr. w. Bank Branchesb 0.1 0.0 0.0 0.1 0.1

Mean estimate of b/c · 100 2.6 2.5 2.5 4.0 3.8
mean t-stat 4.5 3.3 3.5 2.8 2.3
Corr. w. Bank Branchesb -0.2 -0.2 -0.3 -0.2 -0.2

Households without ATM
N. of estimates 550 538 535 1,539 1,411
Mean N. of HH per est. 30 14 13 11 5

% of estimates where:
- Hp. f = 0 rejected 9 6 3 2 1
- F (θ, x) < 4.6 49 66 70 64 74

Mean estimate of p 7 7 7 8 8
mean t-stat 3.7 3.1 3.0 2.4 2.1
Corr. w. Bank Branchesb 0.0 0.0 -0.1 0.0 0.1

Mean estimate of b/c · 100 6.7 6.2 5.8 7.7 7.4
mean t-stat 4.2 3.3 3.3 2.7 2.3
Corr. w. Bank Branches b -0.3 -0.2 -0.3 -0.3 -0.2

Notes: Sample statistics computed on the distribution of the estimates after trimming the (p, b/c) distribution tails
of the highest and lowest percentiles (1 per cent from each tail). The variable b/c is measured as a percentage of
the daily cash expenditure.

-a The labels XYZ on this line denote the type of aggregation applied to the elementary household data: X refers
to whether data were aggregated at the province (p) or region (r) level; Y indicates that data were aggregated at the
year level, Z (either empty or equal to c) indicates whether households were clustered within the relevant observation
unit, e.g. in each province-year (py), on the basis of their cash expenditure level (3 bins were considered for the
province-year dataset, 5 bins for the region-year dataset). The label (raw/filt.) indicates whether the aggregation
is based on the raw data or on a filtered dataset which excludes households who receive more than 50% of income
in cash and/or violate the cash-holdings identity by more than 200%.

-b Correlation coefficient between the estimated values of (p, b/c) and the number of bank branches per capita
measured at the province level. All variables are measured in logs.

Two alternative aggregations of the data exclude households who receive more than 50% of their income
in cash or violate the cash flow identity of equation (33) by more than 200%. This choice removes households
for whom cash inflows are an important source of replenishment (as this channel is ignored by our baseline
model) and observations affected by large measurement error. This selection criterion roughly halves the
number of elementary observations. The estimation results obtained from these data when one or three
consumption groups are considered (columns 2 and 5 of Table X, respectively) are extremely similar to the
ones of the baseline case (column 4).
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The last experiment that we report involves aggregation of the household data at the regional, rather than
province, level (a region is a geographical unit which contains several provinces (there are 103 provinces and
20 regions in Italy). This allows us to consider a finer grid of consumption classes, namely 5 for the instance
reported in the third column of the Table, thus increasing the mean number of elementary observations used
in each estimation cell. Again, as the table shows, the results are similar to the ones produced by the other
approaches.

J Cash-Flow Identity: theory and evidence

We derive the following relationship
c = nW − πM (33)

between the average (real) cash balances M , average (real) withdrawal amount, W , average (real) consump-
tion flow c, average number of withdrawals n per unit of time, and the inflation rate π for a (large) class
of cash management policies. In what follows we fixed a particular path and denote the real cash balances
at time t by m (t), and let τi be the times at which there are withdrawals for this sample path and wi the
corresponding withdrawals amounts. In between withdrawals cash balances satisfy

dm (t)
dt

= −c−m (t) π

At times t = τi, a withdrawal of size wi occurs, defined as an upward jump on m :

wi ≡ lim
t↓τi

m (t)− lim
t↑τi

m (t) > 0.

Thus we have that

m (t) = m (0)−
∫ T

0

(c + πm (s)) ds +
N(T )∑

i=1

wi

where N (T ) denotes the number of (upward) jumps up to time T in the path:

N (T ) ≡ {N : τN ≤ T ≤ τN+1} .

Dividing by T and rearranging:

m (t)−m (0)
T

= −c− π
1
T

∫ T

0

m (s) ds +
[
N (T )

T

] 
 1

N (T )

N(T )∑

i=1

wi




Defining :

M ≡ lim
T→∞

1
T

∫ T

0

m (s) ds, n ≡ lim
T→∞

N (T )
T

, and W ≡ lim
T→∞

1
N (T )

N(T )∑

i=1

wi

where M, n, W are the average money balances, average number of withdrawals per unit of time, and the
average amount of withdrawal. Assuming that, for almost all paths, the limits M, n and W are well defined,
and that the process is ergodic, so that these time averages converge to the unconditional expectations for
almost all paths, we obtain equation 33. In all the models we analyze, these limits exist and coincide for all
paths as a consequence of basic results on renewal theory, but of course their validity is much more general.

An illustration of the extent of the measurement error can be derived by assuming that the data satisfy
the identity in (33). Figure III reports a histogram of the logarithm of n (W/c)− π (M/c) for each type of
household. In the absence of measurement error, all the mass should be located at zero. It is clear that the
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Figure III: Measurement error: deviation from the cash flow identity
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data deviate from this value for many households.9 At least for households with an ATM card, we view the
histogram as well approximated by a normal distribution (in log scale).

K Maximum likelihood and the criterion function

Let

L (θ; x) =
J∏

j=1

nj∏

i=1

1
(
2πσ2

j

)1/2
exp


−1

2

[
xj

i − f j (θ)
σj

]2



=
J∏

j=1

(
2πσ2

j

)−nj/2 ×
J∏

j=1

nj∏

i=1

exp


−1

2

[
xj

i − f j (θ)
σj

]2



or

ln L (θ; x) = −1
2

J∑

j=1

nj log (2π)− 1
2

J∑

j=1

nj log
(
σ2

j

)− 1
2

J∑

j=1

nj∑

i=1

[
xj

i − f j (θ)
σj

]2

where L (θ;x) is the likelihood function, xj
i the i observation of the j variable, and f j (θ) the prediction

of the model of the j variable for the parameter vector θ. The number nj is the size of the sample of the
variable j. The idea behind this is that the variable xj

i is measured with error εj
i which is normal with mean

zero and variance σ2
j so that

xj
i = f j (θ) + εj

i .

9Besides measurement error in reporting, which is important in this type of survey, there is also the issue of whether
households have an alternative source of cash. An example of such as source occurs if households are paid in cash. This will
imply that they do require fewer withdrawals to finance the same flow of consumption or, alternatively, that they effectively
have more trips per periods.
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It is assumed that the errors are independent across variables as well as observations. Define

F (θ;x) ≡
J∑

j=1

(
nj

σ2
j

)(
1
nj

nj∑

i=1

xj
i − f j (θ)

)2

as the criterion function that we minimize. Let σj be the sample analog, i.e.

σ2
j ≡ var

(
xj

)
=

1
nj

nj∑

i=1

[
xj

i −
(

1
nj

nj∑

i=1

xj
i

)]2

Proposition 9. The likelihood is related to the criterion function as follows:

ln L (θ;x) = −1
2

J∑

j=1

nj log (2π)− 1
2

J∑

j=1
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Thus
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Corollary I: The score of the likelihood. Let M be the dimensionality of θ. The n element of the score
is given by

sn (θ; x) ≡ ∂ log L (θ; x)
∂θn

= −1
2

∂F (x; θ)
∂θn

= −1
2

∂F (x; θ)
∂θn

= −
J∑

j=1

(
nj

σ2
j

)(
1
nj

nj∑

i=1

xj
i − f j (θ)

)
∂f j (θ)

∂θn

K.1 Computing the Information matrix

Corollary II: Information matrix. Let M be the dimensionality of θ. The n,m of the M ×M information
matrix I (θ) is defined as:

In,m (θ) = E

[
∂ log L (θ;x)

∂θn

∂ log L (θ; x)
∂θm

]
= E [sn (θ, x) sm (θ, x)]
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which in our case becomes

In,m (θ) = E [sn (θ, x) sm (θ, x)]

= E




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
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1
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Corollary III: Akaike. For the Akaike criteria, let’s Fk (x; θ) be the objective function with k variables
and thus

ln Lk (θ;x) = −1
2

J∑

j=1

nj log (2π)− 1
2

J∑

j=1

nj log
(
σ2

j

)− 1
2

J∑

j=1

nj

−1
2
Fk (x; θ) .

Then we compare:

A (k, θ) = −2 lnLk (θ; x) + 2k +
2k(k + 1)

(n− k − 1)

where n =
∑J

j=1 nj . Since the first three terms of the ln L do not depend on k, we can compare:

Ã (k, θ) = Fk (x; θ) + 2k +
2k(k + 1)

(n− k − 1)
.

In our case, we have that k is either 6, (p, b, σj) for j = 1, ..., 4 or k is 7 for (p, b, f, σj) for j = 1, ..., 4. The
typical values of n are about 80, since we have n ∼= 4 × 20, i.e. about 20 observations for each of the four
variables.

L Technical Notes

L.1 Alternative data sources for ATM withdrawals

In this appendix we compare data on average ATM withdrawals drawn from two sources: our households
survey data (SHIW ) and the data drawn from banks’ records as reported in the ECB Blue Book (2006).
Table 12.1a in the bluebook reports the total number of cash withdrawals at ATMs in a year. Table 13.1a
gives the total value of cash withdrawals at ATMs in a year. The average withdrawal computed as the ratio
of these two numbers for the years 2001, 2002 and 2004 is 162, 205 and 169 euros, respectively (these years
are the closest to those of the SHIW survey years). In the household survey we compute the analogue
statistics for the years 2000, 2002 and 2004 obtaining 177, 185 and 205 euros, respectively. For each year
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the latter statistics were computed as the ratio between the sum across households of the amount of cash
withdrawn from ATMs and the sum across households of the number of withdrawals from ATMs. For each
household, the total amount of cash withdrawn from ATM was given by the average ATM withdrawal times
the number of ATM withdrawals. These statistics differ from the statistics on W reported in Table 1 in the
paper for three reasons. First because even for households with ATM card W includes withdrawals done at
the bank desk (which are larger on average). Second W is measured in 2004 euros. Third W reports the
average withdrawal per household, so the weighting is different.

L.2 Solution for the Value Functions ODEs

ODEs of the form:
f (x) = a0 + a1x + (a2 + a3x) f ′ (x)

appear in this paper as Bellman equations. Their solution is

f (x) = A0 + A1x + A

[
1 +

A2

A3
x

]A3

To see this notice that

f ′ (x) = A1 + A A3

(
A2

A3

)[
1 +

A2

A3
x

](A3−1)

which requires:

A0 + A1x + A

[
1 +

(
A2

A3

)
x

]A3

= a0 + a1x + (a2 + a3x)

(
A1 + A A3

(
A2

A3

)[
1 +

A2

A3
x

](A3−1)
)

Solving the system of equations defined by the previous equality yields:

A0 = a0 + a2a1/ (1− a3) A1 = a1/ (1− a3) A2 = 1/a2 A3 = 1/a3

L.3 Expressions for the model with f = 0 when π = 0

This appendix collects the expression that are obtained in the case of π = f = 0. In most cases they are
obtained using L’Hopital rule in the corresponding formulas for the general case. The expression for m∗ is

exp
(

m∗

c
(r + p)

)
= 1 +

m∗

c
(r + p) + (r + p)2

b

cR
. (34)

and the expression for the value function is

V (m) =

[
pV ∗ (r + p)−Rc

(r + p)2

]
+

[
R

r + p

]
m +

(
c

r + p

)2

A exp
(
−r + p

c
m

)
.

The expression for the expected number of trips per unit of time n is

n (m∗; c, 0, p) =
p

1− e−m∗ p
c

(35)
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The expression for the density of the distribution of real cash balances is

h (m) =
p
c exp

(
mp
c

)

exp
(

m∗p
c

)− 1
(36)

The expression for aggregate money balances

M = c

[
1

1− e−
p
c m∗

m∗

c
− 1/p

]
. (37)

L.4 Expressions for the model with f > 0 when π = 0

This appendix collects the expression that are obtained in the case of f > 0 and π = 0. In most cases they
are obtained using L’Hopital rule in the corresponding formulas for the general case. For a given V ∗ and
0 < m < m̄ the solution of V (m) for m ∈ (m, m̄) is given by:

V (m) = ϕ (m,Aϕ) ≡

≡
[−Rc

r2

]
+

[
R

r

]
m +

( c

r

)2

Aϕ exp
(
−r

c
m

)
.

and

V (m) = η (m,V ∗, Aη) ≡[
p (V ∗ + f) (r + p)−Rc

(r + p)2

]
+

[
R

r + p

]
m +

(
c

r + p

)2

Aη exp
(
−r + p

c
m

)
.

for m ∈ (0, m) or m ∈ (m̄, m∗∗). The range of inaction (m∗ −m) is given by:

f c

R
= [m∗ −m]2


1

2
+

∞∑

j=3

1
j!

[
(m∗ −m)

r

c

]j−2


 (38)

Calculations for m∗−m for the case of π = 0. To see how we obtain the result for π = 0, start with
the expression for z∗ = m∗−m:

z∗ =
1

r/c

(
exp

[
z∗

r

c

]
− 1

)
− f

r

R
.

Write this expression as:

exp
[
z∗

r

c

]
= 1 +

[
z∗

r

c

]
+

[
z∗

r

c

]2


1

2
+

∞∑

j=3

1
j!

[
z∗

r

c

]j−2




hence
f c

R
= [m∗ −m]2


1

2
+

∞∑

j=3

1
j!

[
z∗

r

c

]j−2




The CDF for π = 0.
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For m ∈ (0, m) we have

H (m) =
A0

p/c
exp (pm/c)−B0 (39)

H (m) =
1− exp (−p (m/c))

p (m∗ −m) /c + 1− exp (−p (m/c))

A0 =
H (m) (p/c)

[exp (pm/c)− 1]
(40)

B0 =
A0

p/c
(41)

For m ∈ (m,m∗) we have

H (m) =
A1

π
log

(
1 + π

m

c

)
−B1 (42)

[1−H (m)] =
p (m∗ −m) /c

p (m∗ −m) /c + 1− exp (−pm/c)

A1 =
1−H (m)

(m∗ −m) /c
(43)

B1 = A1m
∗/c− 1 (44)

The average money holdings and withdrawals for π = 0

M = m∗ − A0

(p/c)

{
[exp (pm/c)− 1]

(p/c)
−m

}
(45)

−A1

c

(
(m∗)2 − (m)2

)
+ [A1m

∗/c− 1] (m∗ −m)

where A0, A1 and B1 are given in (40),(43) and (44).
If π = 0 the average withdrawal W is given by:

W = m∗
[
1− p

n
H (m)

]
+

[ p

n
H (m)

] ∫ m

0
(m∗ −m) h (m) dm

H (m)
(46)

where ∫ m

0
(m∗ −m)h (m) dm

H (m)
= m∗ −m−

[exp(pm/c)−1]
(p/c) −m

exp (pm/c)− 1

L.5 Expression (with derivation) for M when f > 0

∫ m

0

mh (m) dm =
[
H (m)m−H (0) 0−

∫ m

0

H (m) dm

]

where

∫ m

0

H (m) dm =
∫ m

0

A0

p/c

(
1 + π

m

c

) p
π

dm−B0 (m) =
A0

p/c

[(
1 + π

c m
) p

π +1 − 1
(p + π) /c

−m

]
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and
∫ m∗

m

mh (m) dm =

[
m∗ −H (m) m−

∫ m∗

m

H (m) dm

]

∫ m∗

m

H (m) dm =
∫ m∗

m

c

π
A1 log

(
1 + π

m

c

)
dm−B1 (m∗ −m)

where ∫ m∗

m

log
(
1 + π

m

c

)
dm =

c

π

(
1 + π

m

c

) [
log

(
1 +

π

c
m

)
− 1

]
|m∗
m

Hence
∫ m∗

m

H (m) dm = A1

( c

π

)2
{(

1 +
π

c
m∗

) [
log

(
1 + π

m∗

c

)
− 1

]

−
(
1 +

π

c
m

) [
log

(
1 +

π

c
m

)
− 1

]}
−B1 (m∗ −m)

Thus

M = m∗ −
∫ m

0

H (m) dm−
∫ m∗

m

H (m) dm

= m∗ − c

p
A0

[(
1 + π

c m
) p

π +1 − 1
(p + π) /c

−m

]

−A1

( c

π

)2
{(

1 +
π

c
m∗

) [
log

(
1 + π

m∗

c

)
− 1

]
−

(
1 +

π

c
m

) [
log

(
1 +

π

c
m

)
− 1

]}

+(m∗ −m)
(

c

π
A1 log

(
1 + π

m∗

c

)
− 1

)

where

A0 =
p

c

1[[
1 + π

c m
] p

π − 1
]H (m)

A1 =
(1−H (m)) (π/c)

log
(
1 + π m∗

c

)− log
(
1 + π

c m
)

L.6 Expression (with derivation) for W when f > 0

.
The expression ∫ m

0
(m∗ −m)h (m) dm

H (m)

is the expected withdrawal conditional on being done by an agent with m > 0, or conditional on being a
withdrawal that happens due to a chance meeting with the intermediary.

∫ m

0

(m∗ −m)h (m) dm = m∗H (m)−
∫ m

0

mh (m) dm
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∫ m

0

mh (m) dm = mH (m)−
∫ m

0

H (m) dm

with ∫ m

0

H (m) dm =
A0

p/c

[(
1 + π

c m
) p

π +1 − 1
(p + π) /c

−m

]

Thus ∫ m

0

(m∗ −m) h (m) dm = (m∗ −m)H (m) +
A0

p/c

[(
1 + π

c m
) p

π +1 − 1
(p + π) /c

−m

]

(
A0

p/c

)
/H (m) =

1
(
1 + π

c m
) p

π − 1
so

∫ m

0
(m∗ −m)h (m) dm

H (m)
= (m∗ −m) +

A0

p/c

[(
1 + π

c m
) p

π +1 − 1
(p + π) /c

−m

]

= (m∗ −m) +
(1+ π

c m)
p
π

+1−1

(p+π)/c −m
(
1 + π

c m
) p

π − 1

L.7 Solving for b and f

Here we describe how to find b and f given (m∗, m, r, π,R) For convenience we rewrite equation (29) for
m∗

2 (·) :

m∗ =
[

r

r + π

]
m +

c

(r + π)




[
1 + π m∗

c

]1+ r
π

[
1 + π

c m
] r

π
− 1


− f

r

R

to find f. It is given by:

f =

[
r

r+π

]
m + c

(r+π)

(
[1+π m∗

c ]1+
r
π

[1+ π
c m]

r
π

− 1
)
−m∗

r/R

Given f and (m∗, m, r, π,R, p) use equation (28) for m∗
1 (·) :

m∗ =

(
c

r+p

) [
p f
c − R

(r+p+π)

]
(

R
r+p

) +

[
R

r+p+π

]
m + b

[
1 + π

c m
]− r+p

π − f

(
R

r+p

) [
1− [

1 + π
c m

]− r+p
π

]

to find b. It is given by

b =

(
m∗ − ( c

r+p )[ p f
c − R

(r+p+π) ]
( R

r+p )

) (
R

r+p

) [
1− [

1 + π
c m

]− r+p
π

]
−

[
R

r+p+π

]
m + f

[
1 + π

c m
]− r+p

π

L.8 Weights used in the estimation

Table XI displays the average weights Nj/σ2
j used in estimation, the average Nj (across provinces and years),

and the estimated value of σ2
j . The latter are estimated as the variance of the residual of a regression of

34



each of the j variables at the household level against dummies for each province-year combination (separate
regressions are used for households with and without ATM cards).

Table XI: Weights used in estimation

log(M/c) log(W/M) log(n) log(M/M)
Households with ATM

Average weight (Nj/σ2
j ) 30 17 22 14

Variance (σ2
j ) 0.46 0.42 0.53 0.82

Average # of Households in
province-year-consumption cell (Nj) 13.5 6.3 12 9.5

Households without ATM
Average weight (Nj/σ2

j ) 26 14 12 11
Variance (σ2

j ) 0.41 0.51 0.62 0.82
Mean # of Households in

province-year-consumption cell (Nj) 10.7 7.4 7.6 7.6
Notes: There is a total of 3,189 estimation cells (the available observations of the cartesian product of 6
years, 103 provinces, ATM ownership and 3 consumption groups).

L.9 Identification of p, b using (W/M , n) or (M , n)

Figures IV and V supplement the information of Figure 2 in the paper, showing how one can identify the
values of p, b/c using either the pair (W/M, n) or the pair (M/M, n) as an alternative to (M/c, n). As for
figure 2 in the main text, each dot represents the mean across households of a given province-year-type, its
size proportional to the size of the province. Blue dots denote households with ATM card. The thick black
lines represent the theoretical loci predicted by the model discussed in Section 5.1 of the paper.

L.10 Decomposition of the cost of financing c

Let v(R, π, p, b/c)/c be the per unit cost of financing cash purchases given the vector (R, π, p, b/c), which is
then expressed in number of days of cash purchases. To measure the Reduction in cost in # cash days in
Table XII we define

∆vt,i ≡ v(R0,i, π0,i, p0,i, (b/c)0,i)/c0,i − v(Rt,i, πt,i, pt,i, (b/c)t,i)/ct,i (47)
∆vt,i,(p,b) ≡ v(R0,i, π0,i, p0,i, (b/c)0,i)/c0,i − v(R0,i, π0,i, pt,i, (b/c)t,i)/ct,i (48)

∆vt,i,(R,π) ≡ v(R0,i, π0,i, p0,i, (b/c)0,i)/c0,i − v(Rt,i, πt,i, p0,i, (b/c)0,i)/ct,i (49)

for each year t and province type i, where (Rt,i, πt,i, pt,i, (b/c)t,i) are the estimated values for year-province-
type t, i and where we use 0 to denote the value in the first year of the sample, 1993. The first row of the
table reports the mean of ∆vt,i across provinces, i.e. the total reduction in cost. The second row reports
the mean of ∆vt,i,(p,b) across provinces, i.e. the reduction in cost due to the change in technology. The third
row reports the mean of ∆vt,i,(R,π) across provinces, i.e. the reduction in cost due to the disinflation. The
fourth row computes the percentage of the total cost due to the changes in technology, by taking the ratio
of the entries reported in the second and third rows. Notice that the sum of the second and third rows does
not add up to the first row due to the interactions of (p, b) with (R, π).
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Figure IV: Theory vs. data (province-year mean): W/M, n

1 1.5 2 2.5 3 3.5 4 4.5

−2

−1.5

−1

−0.5

0

0.5

1

Theory (solid lines) vs Data (dots)
dot size = # obs,  empty = HHs w/o ATM,  filled = HHs w/ATM 

W
/M

 : 
 a

ve
ra

ge
 w

ith
dr

aw
al

 to
 m

on
ey

 h
ol

di
ng

s 
(in

 lo
gs

)

n :     number of withdrawals per year (in logs)

p = 0  (Baumol−Tobin)

p = 5 p = 10 p = 20 p = 35 p = 60

Figure V: Theory vs. data (province-year mean): M/M,n
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Table XII: Total and counterfactual cumulative reductions in the cost of financing c

Reduction in cost in # cash days for HH w/o ATM
1993 1995 1998 2000 2002 2004

Total, due to p, b, R, π 0 0.268 1.28 1.46 1.6 1.55
due to p, b 0 0.102 0.769 0.986 1.07 0.938
due to R, π 0 0.184 0.747 0.846 1.01 1.09
due to p, b, % of total - 35.6 50.7 53.8 51.4 46.2

Reduction in cost in # cash days for HH w. ATM
1993 1995 1998 2000 2002 2004

Total, due to p, b, R, π 0 0.187 0.785 0.87 0.93 0.882
due to p, b 0 0.0842 0.464 0.544 0.56 0.427
due to R, π 0 0.066 0.432 0.499 0.629 0.678
due to p, b, % of total - 56 51.8 52.1 47.1 38.6

Figure VI: Cost of financing cash purchases (per year)
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