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Figure A.1: Impulse responses in the absence of habit persistence (η = 0).

A The Quantitative Model of the U.S. Economy: Al-

ternative Specifications

A.1 Impulse Responses for the Restricted Models

Section 2.3 of the paper reports the estimated parameters for several restricted cases of the

general model. Figures A.1 – A.3 here show the predicted impulse response functions to a

monetary policy shock by the model for these restricted models.

In the absence of habit persistence (Figure A.1), output falls sharply two periods following

an unexpected increase in the interest rate, and then returns back to the initial situation. In
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Figure A.2: Impulse responses in the absence of indexation (γp = γw = 0).

contrast, in the presence of habit persistence as can be seen from Figure 6 in the text, output

falls by less two periods following the shock, but then continues to decrease before returning

to the initial level. Figure A.2 shows that in the absence of indexation to lagged inflation

(γp = γw = 0), inflation falls one period after the unexpected increase in the interest rate but

then returns gradually to the initial level. Instead, Figure 3 in the text indicates that in the

presence of indexation, inflation declines gradually but more persistently before returning to

the initial level. Finally, in the case of flexible wages, Figure A.3 below shows that the real

wage decreases more than in the case of wage stickiness in the first few quarters following a

monetary policy shock. This is associated also with a sharper reduction in output than is

the case when wages are sticky.
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Figure A.3: Impulse responses with flexible wages
(
ξ−1

w = 0
)
.

A.2 Estimated Parameters for Alternative Horizons

The parameter estimates reported in Table 3 of the text are based on impulse response

functions with a horizon of 12 quarters following the shock. In Table A.1 [printed at the end

of this appendix], we report as a robustness check the parameter estimates for the baseline

model based alternative horizons. The following Figures A.4 – A.8 show the corresponding

predicted impulse responses to a monetary policy shock in the baseline model, for the various

horizons.
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Horizon
6 8 12 16 20

Estimated parameters

ψ ≡ ϕ−1

1+βη2

0.8756
(0.1044)

0.7574
(0.1623)

0.6715
(0.3330)

0.6475
(0.2089)

0.6698
(0.0458)

η̃ ≡ η
1+βη2

0.5025
(0.0278)∗

0.5025
(0.0441)∗

0.5025
(0.0692)∗

0.5025
(0.0304)∗

0.5025
(0.0146)∗

ξp

0.0065
(0.0012)

0.0036
(0.0006)

0.0020
(0.0009)

0.0017
(0.0006)

0.0013
(0.0002)

ξw

0.0073
(0.0961)

0.0056
(0.4126)

0.0042
(0.1343)

0.0081
(0.0227)

0.0203
(0.0192)

ωw
19.559
(244.8)

19.545
(1360.1)

19.551
(595.1)

9.4925
(23.70)

4.2794
(2.9934)

γp

0.9374
(0.0707)

1
(0.4438)∗

1
(0.3800)∗

1
(0.1130)∗

1
(0.0463)∗

γw

1
(1.9813)∗

1
(18.578)∗

1
(10.908)∗

1
(1.7840)∗

1
(1.4887)∗

Implied parameters
ϕ 0.5739 0.6635 0.7483 0.7760 0.7502
η 1 1 1 1 1

κp ≡ ξpωp 0.0022 0.0012 0.0007 0.0006 0.0004
ω ≡ ωp + ωw 19.893 19.878 19.884 9.8258 4.6127
ν ≡ ωw/φ 14.700 14.659 14.663 7.1193 3.2096

µp ≡ θp

θp−1
1.0127 1.0069 1.0039 1.0032 1.0025

µw ≡ θw

θw−1
2.6976 1.9062 1.5361 1.5066 1.7018

Weights in loss function
λp 0.9870 0.9932 0.9960 0.9985 0.9997
λw 0.0130 0.0068 0.0040 0.0015 0.0003

(λx) 16 0.0269 0.0082 0.0026 0.0010 0.0003
δ 0.0273 0.0313 0.0351 0.0686 0.1248

Obj. function val. 3.419 5.979 13.110 20.310 27.035

Table A.1: Estimated structural parameters for the baseline model with different horizons
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Figure A.4: Impulse responses to a monetary policy shock with a horizon of 6 quarters.

B Welfare Criterion for the Quantitative Model

We assume that the policymaker maximizes the expectation of the unweighted average of

household utility functions

W0 = E0

{ ∞∑

t=0

βtUt

}
(B.1)

where

Ut ≡ u (Ct − ηCt−1; ξt)−
∫ 1

0
v

(
Hh

t ; ξt

)
dh. (B.2)

Recall that consumption is identical for all households, while labor supplied may vary across

households. In the text, we determine the equilibrium evolution of inflation, output, interest

rates using log-linear approximations to the exact equilibrium conditions. Thus we have
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Figure A.5: Impulse responses to a monetary policy shock with a horizon of 12 quarters.

characterized equilibrium fluctuations in those variables up to a residual of order O
(
‖ξ‖2

)
,

where ‖ξ‖ is a bound on the amplitude of exogenous disturbances. As shown in Woodford

(2003, ch. 6), we may compute a second-order approximation of (B.1) – (B.2) using a

log-linear approximation to the equilibrium conditions, provided that we expand around a

steady-state that is close to being optimal in the sense of achieving the maximum expected

utility. We thus assume that the steady-state level of output with zero inflation, Ȳ , is near

the efficient level of output.
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Figure A.6: Impulse responses to a monetary policy shock with a horizon of 16 quarters.

B.1 Natural Rate of Output

Before performing the approximation of (B.1) – (B.2), we determine the natural rate of

output, i.e., the equilibrium level of output under flexible prices, flexible wages, constant

levels of distorting taxes and of desired markups in the labor and products markets, and

with wages, prices and spending decisions predetermined only by one period. As mentioned

in footnote 36 of the text, we may alternatively have defined the natural rate of output

as the equilibrium level of output under flexible prices, flexible wages, when none of the

pricing or spending decisions are predetermined. This assumption would not affect any of

our conclusions about optimal monetary policy, as it is only the forecastable component of

the output gap that is forecastable one period in advance that matters both for the structural
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Figure A.7: Impulse responses to a monetary policy shock with a horizon of 20 quarters.

equations of the model and for evaluating welfare under alternative policies. For simplicity,

we thus assume that the natural rate of output is predetermined one period in advance, so

that the output gap xt is also predetermined.

To determine the natural rate of output, we first note that the first-order condition for

the optimal supply of labor by household h is given by

vh

(
Hh

t ; ξt

)

λt

=
wt (h)

Pt

(B.3)

at all dates t.

Next, the firm’s profits are given by

Πt (z) ≡ (1 + τ p) pt (z) yt (z)−WtHt (z)
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= (1 + τ p) pt (z)1−θp P
θp

t Yt −Wtf
−1

(
pt (z)−θp P

θp

t Yt/At

)
.

where 0 ≤ τ p < 1 is a subsidy for output that offsets the effect on imperfect competition

in goods markets on the steady-state level of output. To derive the last equation, we use

the usual Dixit-Stiglitz demand for good z, yt (z) = Yt (pt (z) /Pt)
−θp and we invert the

production function yt (z) = Atf (Ht (z)) .

In the case that prices are flexible but predetermined by one period, the optimal pricing

decision for the firm z, i.e., the price that would maximize profits at each period is given by

pt (z) = Et−1

[
µp

1 + τ p

Wt

Atf ′ (f−1 (yt (z) /At))

]
,

where the desired markup µp ≡ θp

θp−1
. Using again the demand for good z, we note that the

relative supply of good z must in turn satisfy

(
yt (z)

Yt

)−1/θp

= Et−1

[
µp

1 + τ p

Wt

Pt

1

Atf ′ (f−1 (yt (z) /At))

]
.

Because all wages are the same in the case of flexible wages, we have wt (h) = Wt and

Hh
t = Ht for all h. Thus (B.3) implies that when wages and prices are flexible, all sellers

supply a quantity Y n
t , determined at date t− 1, satisfying

1 = Et−1

[
µp

1 + τ p

vh (f−1 (Y n
t /At) ; ξt)

λn
t

1

Atf ′ (f−1 (Y n
t /At))

]
, (B.4)

where λn
t = Et−1λ

n
t denotes the marginal utility of income at date t in the case of flexible

prices, flexible wages, and in the case that prices and spending decisions predetermined by

one period. Note that in steady-state, (B.4) reduces to

vh

λ̄f ′
=

1 + τ p

µp

≡ 1− Φ

where Φ is a measure of inefficiency in the economy, at steady-state. As in Woodford (2003),

we assume that Φ is of order O (||ξ||) . Furthermore, using (2.4), we observe that in the

steady state, uc (1− βη) = λ̄, so that

vh = (1− Φ) (1− βη) ucf
′. (B.5)
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Log-linearizing (B.4) about this steady-state and solving for Ŷ n
t yields

ωŶ n
t = Et−1

[
(1 + ω) at − vhξ

vh

ξt + λ̂
n

t

]
(B.6)

where λ̂
n

t ≡ log
(
λn

t /λ̄
)
, and at ≡ log At.

In the case of flexible prices and wages, and in the case that consumption decisions for

period t are that prices and spending decisions predetermined by one period, the variable

µt, defined as µt ≡ λ̂t − ϕ
(
g̃t − Ỹt

)
, satisfies Et−1µt = 0 at all dates. It thus follows that

λ̂
n

t = −ϕEt−1

(
Ỹ n

t − g̃t

)
. (B.7)

Using this to substitute for λ̂
n

t in (B.6), we obtain

Et−1

{[
ω + ϕ (1− ηL)

(
1− βηL−1

)]
Ŷ n

t

}
= Et−1

[
(1 + ω) at − vhξ

vh

ξt + ϕg̃t

]
(B.8)

which implicitly determines the natural rate of output Ŷ n
t = Et−1Ŷ

n
t .

B.2 Approximation of Welfare Criterion

We now turn to the second-order Taylor expansion of each term on the right-hand side of

(B.2).

First term. The first term can be approximated as follows

u (Ct − ηCt−1; ξt) = Ȳ uc

{(
Ŷt − ηŶt−1

)
+

1

2

[(
Ŷ 2

t − ηŶ 2
t−1

)
− σ−1

(
Ŷt − ηŶt−1

)2
]

+σ−1
(
Ŷt − ηŶt−1

) (
gt − ηĜt−1

)}
+ t.i.p. + unf + O

(
‖ξ‖3

)
(B.9)

where σ ≡ − uc

uccȲ
, “t.i.p.” denotes terms independent of the actual policy such as constant

terms and terms involving only exogenous variables, and “unf” represents an unforecastable

term, i.e., a term zt such that Et−2zt = 0. To obtain (B.9), we have used the second-order

Taylor expansion

zt/z̄ = 1 + ẑt +
1

2
ẑ2

t + O
(
‖ξ‖3

)
(B.10)

where ẑt ≡ log (zt/z̄) , for any variable zt around its steady-state z̄.

91



Second term. A second-order approximation of v
(
Hh

t ; ξt

)
, integrated over the continuum

of different types of labor, yields

∫ 1

0
v

(
Hh

t ; ξt

)
dh = H̄vh

[
Ĥt +

1

2
(1 + ν) Ĥ2

t − νh̄tĤt +
1

2
θw (1 + νθw) varh log wt (h)

]

+t.i.p. + O
(
‖ξ‖3

)
(B.11)

as in Woodford (2003, chap. 6). To obtain this equation, we used (B.10), a second-order

approximation of (2.10)

Ĥt = EhĤ
h
t +

1

2

(
1− θ−1

w

)
varhĤ

h
t + O

(
‖ξ‖3

)
,

and the fact that a log-linear approximation of the demand for labor of type h by firm z,

Hh
t (z) = Ht (z) (wt (h) /Wt)

−θw , implies

varhĤ
h
t = θ2

wvarh log wt (h) + O
(
‖ξ‖3

)
.

We note Ehzt (h) for the mean value of zt (h) across all h’s and varhzt (h) for the corresponding

variance. We furthermore define

h̄t ≡ −ν−1vhξ

vh

ξt

and

ν ≡ H̄vhh

vh

> 0.

Following again Woodford (2003, chap. 6) we find, using an approximation of the production

function, that the aggregate demand for the composite labor input satisfies

Ĥt = φ
(
Ŷt − at

)
+

1

2
(1 + ωp − φ) φ

(
Ŷt − at

)2
+

1

2
(1 + ωpθp) θpφvarz log pt (z) + O

(
‖ξ‖3

)
,

where φ ≡ f/
(
H̄f ′

)
> 0 and ωp ≡ −f ′′Ȳ / (f ′)2 > 0. Combining this with (B.11), we obtain

∫ 1

0
v

(
Hh

t ; ξt

)
dh = H̄vhφ

[
Ŷt +

1

2
(1 + ω)

(
Ŷt − at

)2 − νh̄tŶt +
1

2
θp (1 + ωpθp) varz log pt (z)

+
1

2
θwφ−1 (1 + νθw) varz log wt (z)

]
+ t.i.p. + O

(
‖ξ‖3

)
, (B.12)

where ω = ωp + ωw, and ωw = φν.
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Assuming as in the text that prices and wages are reoptimized in each period with proba-

bility (1− αp) and (1− αw) respectively allows us to express varz log pt (z) and varz log wt (z)

in terms of the variability of aggregate inflation and aggregate wage inflation as follows. We

let

P̄t ≡ Ez log pt (z) , and V p
t ≡ varz log pt (z) ,

and note that

P̄t − P̄t−1 = Ez

[
log pt (z)− P̄t−1

]

= αpEz

[
log pt−1 (z) + γpπt−1 − P̄t−1

]
+ (1− αp)

(
log p∗t − P̄t−1

)

= (1− αp)
(
log p∗t − P̄t−1

)
+ αpγpπt−1.

Similarly,

V p
t = varz

[
log pt (z)− P̄t−1

]

= Ez

{[
log pt (z)− P̄t−1

]2
}
−

[
Ez log pt (z)− P̄t−1

]2

= αpEz

{[
log pt−1 (z) + γpπt−1 − P̄t−1

]2
}

+ (1− αp)
(
log p∗t − P̄t−1

)2 −
(
P̄t − P̄t−1

)2

= αpV
p
t−1 +

αp

1− αp

(
P̄t − P̄t−1 − γpπt−1

)2
.

Using the log-linear approximation

P̄t = log Pt + O
(
‖ξ‖2

)
,

we obtain

V p
t = αpV

p
t−1 +

αp

1− αp

(
πt − γpπt−1

)2
+ O

(
‖ξ‖3

)

=
αp

1− αp

t∑

s=0

αt−s
p

(
πs − γpπs−1

)2
+ t.i.p. + O

(
‖ξ‖3

)
,

where we note that the price dispersion before the first period (period 0) is independent of

the policy that is chosen to apply in periods t ≥ 0. Taking the present discounted sum on

both sides of the last equation, we obtain

∞∑

t=0

βtV p
t =

αp

(1− αp) (1− αpβ)

∞∑

t=0

βt
(
πt − γpπt−1

)2
+ t.i.p. + O

(
‖ξ‖3

)
.
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Following the same steps with nominal wages, we obtain

∞∑

t=0

βtV w
t =

αw

(1− αw) (1− αwβ)

∞∑

t=0

βt (πw
t − γwπt−1)

2 + t.i.p. + O
(
‖ξ‖3

)
.

where

V w
t ≡ varz log wt (z) .

Using this, and taking the present discounted sum on both sides of (B.12), we obtain

∞∑

t=0

βt
[∫ 1

0
v

(
Hh

t ; ξt

)
dh

]
= H̄vhφ

∞∑

t=0

βt
[
Ŷt +

1

2
(1 + ω)

(
Ŷt − at

)2 − νh̄tŶt

+
1

2
θpξ

−1
p

(
πt − γpπt−1

)2
+

1

2
θwφ−1ξ−1

w (πw
t − γwπt−1)

2
]

+t.i.p. + O
(
‖ξ‖3

)
,

where ξw and ξp are defined in (2.12) and (2.15) respectively. Next, using (B.5), and recalling

that Φ is of order O (||ξ||) , we obtain

∞∑

t=0

βt
[∫ 1

0
v

(
Hh

t ; ξt

)
dh

]
= Ȳ uc (1− βη)

∞∑

t=0

βt
[
(1− Φ) Ŷt +

1

2
(1 + ω)

(
Ŷt − at

)2 − νh̄tŶt

+
1

2
θpξ

−1
p

(
πt − γpπt−1

)2
+

1

2
θwφ−1ξ−1

w (πw
t − γwπt−1)

2
]

+t.i.p. + O
(
‖ξ‖3

)
,

Combining the two terms. Taking the present discounted sum on both sides of (B.9),

and subtracting the previous equation, we obtain

∞∑

t=0

βtUt = Ȳ uc

∞∑

t=0

βt
{(

Ŷt − ηŶt−1

)
+

1

2

[(
Ŷ 2

t − ηŶ 2
t−1

)
− σ−1

(
Ŷt − ηŶt−1

)2
]

+σ−1
(
Ŷt − ηŶt−1

) (
gt − ηĜt−1

)

− (1− βη)
[
(1− Φ) Ŷt +

1

2
(1 + ω)

(
Ŷt − at

)2 − νh̄tŶt

]
− (1− βη)

2
L̃t

}

+t.i.p. + O
(
‖ξ‖3

)
,

where

L̃t ≡ θpξ
−1
p

(
πt − γpπt−1

)2
+ θwφ−1ξ−1

w (πw
t − γwπt−1)

2 .
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Using (B.8), and given that

∞∑

t=0

βtzt−1 = z−1 + β
∞∑

t=0

βtzt = β
∞∑

t=0

βtzt + t.i.p.

for any variable zt, we can rewrite our welfare function as

W0 = E0

∞∑

t=0

βtUt = −Ȳ uc (1− βη) E0

∞∑

t=0

βt
{
−ΦŶt +

1

2

[
ω + ϕ

(
1 + βη2

)]
Ŷ 2

t − ηϕŶtŶt−1

−
[
ω + ϕ

(
1 + βη2

)]
Ŷ n

t Ŷt + ϕβηŶ n
t+1Ŷt + ϕηŶ n

t−1Ŷt +
1

2
L̃t

}
+ t.i.p. + O

(
‖ξ‖3

)
.(B.13)

We now conjecture that there exist constants δ, δ0 and x̂∗ such that the previous expres-

sion can be expressed in terms of

1

2

[(
Ŷt − Ŷ n

t

)
− δ

(
Ŷt−1 − Ŷ n

t−1

)
− x̂∗

]2
= −x̂∗Ŷt + x̂∗δŶt−1 +

1

2

(
Ŷ 2

t + δ2Ŷ 2
t−1

)
− δŶtŶt−1

−Ŷ n
t Ŷt − δ2Ŷ n

t−1Ŷt−1 + δŶ n
t Ŷt−1 + δŶtŶ

n
t−1 + t.i.p.

This implies that

∞∑

t=0

βt δ0

2
(xt − δxt−1 − x̂∗)2 =

∞∑

t=0

βtδ0

[
−x̂∗ (1− βδ) Ŷt + Ŷ 2

t

(
1 + βδ2

)
/2− δŶtŶt−1

−
(
1 + βδ2

)
Ŷ n

t Ŷt + δŶtŶ
n
t−1 + δβŶ n

t+1Ŷt

]
+ t.i.p.

where xt ≡ Ŷt − Ŷ n
t . Matching the coefficients on the right-hand side of the last equation

with the corresponding coefficients in (B.13) yields a set of three independent equations in

the unknown δ0, δ, and x̂∗ :

Φ = δ0x̂
∗ (1− βδ) (B.14)

ω + ϕ
(
1 + βη2

)
= δ0

(
1 + βδ2

)
(B.15)

ηϕ = δ0δ. (B.16)

We know from (B.16) that δ0 = ηϕ
δ

, and from (B.15) that δ satisfies

δ
[
ω + ϕ

(
1 + βη2

)]
− ηϕ

(
1 + βδ2

)
= 0 (B.17)

or equivalently

P (ϑ) ≡ β−1ϑ2 − χϑ + η2 = 0 (B.18)
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where

ϑ ≡ ηδ−1

χ ≡ ω + ϕ (1 + βη2)

βϕ
> 0.

Because P (ϑ) is a quadratic polynomial satisfying P (0) = η2 ≥ 0 and P (1) = − ω
βϕ

< 0,

the two roots of (B.18) satisfy

0 ≤ ϑ1 < 1 < ϑ2

for all values of η ∈ [0, 1] . Consider the larger root

ϑ = ϑ2 =
β

2

(
χ +

√
χ2 − 4η2β−1

)
> 1.

Using the definition of ϑ, we have

δ = ηϑ−1,

so that δ satisfies 0 ≤ δ ≤ η ≤ 1. Given a value for ϑ, we may then compute δ0 = ϑϕ.

Combining this with (B.14), we obtain

x̂∗ =
Φ

ϑϕ (1− βδ)
.

We can thus rewrite the welfare criterion (B.13) as

W0 = −ΩE0

∞∑

t=0

βt
[
λp

(
πt − γpπt−1

)2
+ λw (πw

t − γwπt−1)
2 + λx (xt − δxt−1 − x̂∗)2

]

+t.i.p. + O
(
‖ξ‖3

)
, (B.19)

where

Ω ≡ Ȳ uc (1− βη)

2

(
θpξ

−1
p + θwφ−1ξ−1

w

)
> 0

λp ≡ θpξ
−1
p

θpξ
−1
p + θwφ−1ξ−1

w

> 0, λw ≡ θwφ−1ξ−1
w

θpξ
−1
p + θwφ−1ξ−1

w

> 0

λx ≡ ϑϕ

θpξ
−1
p + θwφ−1ξ−1

w

> 0,

and where the weights are normalized so that λp + λw = 1.
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C Optimal Target Criterion for the Quantitative Model

This section characterizes the optimal target criterion in the estimated structural model of

Section 2, along the lines proposed in Giannoni and Woodford (2002a, 2002b).

C.1 Analytical Derivation

The constraints relevant for optimal monetary policy are the aggregate supply equation

(2.14) and the wage inflation equation (2.11). However, because there is no constraint on

what the surprise component Et−1µt may be (except that it must be unforecastable at date

t− 2), the only constraint implied by the wage inflation equation is

Et−1

(
πw

t+1 − γwπt

)
= ξwEt−1 (ωwxt+1 + ϕx̃t+1)+ξwEt−1

(
wn

t+1 − wt+1

)
+βEt−1

(
πw

t+2 − γwπt+1

)
.

(C.1)

In addition, the identity

wt = wt−1 + πw
t − πt (C.2)

must be satisfied at all dates. The constraints (2.14), (C.1) – (C.2) generalize the constraints

(1.29) – (1.31) of section 1.4.

Because of the delays assumed in the underlying model, the variables πt, π
w
t , wt, and xt

are all determined at date t − 1. It will thus be convenient to define the variables π̄t ≡
Etπt+1 = πt+1 and π̄w

t ≡ Etπ
w
t+1 = πw

t+1, and w̄t ≡ Etwt+1 = wt+1, all determined at date

t. Furthermore, because consumption at date t is determined at date t− 2, the output gap

satisfies

xt = vt−2 + st−1

where vt−2 is an endogenous variable determined at date t − 2 and st−1 is an exogenous

variable determined at date t− 1 and unforecastable at date t− 2.

The objective function (3.1) can then be rewritten as

E0

∞∑

t=0

βt
[
λp

(
π̄t−1 − γpπ̄t−2

)2
+ λw

(
π̄w

t−1 − γwπ̄t−2

)2
+ λx (vt−2 + st−1 − δvt−3 − δst−2 − x̂∗)2

]
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= βE0

∞∑

t=0

βt
[
λp

(
π̄t − γpπ̄t−1

)2
+ λw (π̄w

t − γwπ̄t−1)
2 + βλx (vt − δvt−1 − δst − x̂∗)2

]
+ tip

where tip represents again terms independent of policy adopted at date 0, such as endogenous

variables determined before date 0. Note that to get the second line we also used the fact

that st is unforecastable, so that E0ztst+1 = E0 [zt (Etst+1)] = 0 for any date t ≥ 0 and any

variable zt determined at date t or earlier.

A policy that is optimal from a timeless perspective (Woodford, 2003, chap. 7; Giannoni

and Woodford, 2002a) from some date t0 onward minimizes the expected value of the terms

in this objective function that can be affected at date t0 or later, conditional upon the state

of the world at date t0, subject to the constraints that π̄t0 , π̄
w
t0
, and

ξw(ηϕvt0 + β−1w̄t0)− Et0(π̄
w
t0+1 − γwπ̄t0)

take certain values. These latter constraints are defined in such as way as to result in an

optimal policy problem that is recursive in form. This requires that these constraints be of a

self-consistent form, such that the solution to the constrained optimization problem satisfies

relations of the same form (changing only the time subscripts) at all later dates. Thus the

initial constraints are of a type that the central bank would wish to commit itself to satisfy

at all dates later than t0.

Combining the objective function with the constraints (2.14), (C.1) – (C.2), the La-

grangian for this problem can be written in the form

Lt0 = Et0

∞∑

t=t0

βt−t0

{
1

2

[
λp

(
π̄t − γpπ̄t−1

)2
+ λw (π̄w

t − γwπ̄t−1)
2 + βλx (vt − δvt−1 − δst − x̂∗)2

]

+ϕ1,t

[
π̄t − γpπ̄t−1 − ξpωpvt−1 − ξpw̄t − βπ̄t+1 + βγpπ̄t

]

+ϕ2,t

[
π̄w

t+1 − γwπ̄t − ξw

(
ωwvt + ϕ

[(
1 + βη2

)
vt − ηvt−1 − βηvt+1

])
+ ξww̄t+1

−βπ̄w
t+2 + βγwπ̄t+1

]
+ ϕ3,t [w̄t − w̄t−1 − π̄w

t + π̄t]
}

−ϕ1,t0−1π̄t0 + ϕ2,t0−1

[
ξwηϕvt0 + β−1ξww̄t0 − (π̄w

t0+1 − γwπ̄t0)
]
+ β−1(ϕ2,t0−1 − ϕ2,t0−2)π̄

w
t0
.

Here the terms on the final line are added to reflect the additional constraints on initial out-

comes mentioned in the previous paragraph. The particular notation used for the Lagrange
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multipliers associated with these constraints has been chosen so as to result in first-order

conditions of a time-invariant form, making clear the recursive character of the optimization

problem in the case of a suitable definition of the initial constraint values.

The associated system of first-order conditions is given by

0 = λp

[(
π̄t − γpπ̄t−1

)
− βγp

(
Etπ̄t+1 − γpπ̄t

)]
− βλwγw

(
Etπ̄

w
t+1 − γwπ̄t

)

+ϕ1,t − βγpEtϕ1,t+1 −
(
ϕ1,t−1 − βγpϕ1,t

)
− βγw

(
ϕ2,t − ϕ2,t−1

)
+ ϕ3,t (C.3)

0 = λw (π̄w
t − γwπ̄t−1) +

(
ϕ2,t−1 − ϕ2,t−2

)
− ϕ3,t (C.4)

0 = −ξpϕ1,t + ξwϕ2,t−1 + ϕ3,t − βEtϕ3,t+1 (C.5)

0 = λx [(vt − δvt−1 − δst − x̂∗)− βδEt (vt+1 − δvt − δst+1 − x̂∗)]

−ξpωpEtϕ1,t+1 + ξwEt

[
B (L) ϕ2,t+1

]
(C.6)

for each t ≥ t0, where

B (L) ≡ ϕ (ηβ − L) (1− ηL)− ωwL

≡ B0 + B1L + B2L
2.

The optimal plan must in addition satisfy a transversality condition. The latter is however

necessarily satisfied as we restrict our attention to bounded solutions of the above first-order

conditions. A policy that is optimal from a timeless perspective must result in an equilibrium

that satisfies these conditions for all t ≥ t0, for some values of the initial Lagrange multipliers

ϕ1,t0−1, ϕ2,t0−1, and ϕ2,t0−2. The target criteria that we propose imply particular values for

these multipliers as functions of the state of the world in period t0 − 1; the relations that

identify the initial multipliers are ones that also hold in each period t ≥ t0 in the optimal

equilibrium.

As in Giannoni and Woodford (2002a, 2002b), we combine these first-order conditions

to obtain conditions for optimality that involve only target variables, i.e., inflation, wage

inflation, and the output gap. As mentioned in the text, we find it more convenient to

express the target criteria in terms of the real wage rather than wage inflation. Furthermore,

to simplify the algebra, we specialize the analysis to the case γp = γw = 1, in accordance
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with our estimates (as well as the model of Christiano et al., 2001). In this case, adding

(C.3) to (C.4), and using (C.2) to replace π̄w
t with π̄t + w̄t − w̄t−1 yields

Et

{(
1− βL−1

)
(1− L)

(
at + ξ1,t

)}
= 0 (C.7)

for all t ≥ t0, where the variable at and the new multiplier ξ1,t are defined as

at ≡ π̄t + λww̄t

ξ1,t ≡ ϕ1,t + ϕ2,t−1,

and we recall that λp + λw = 1. As at and ξ1,t are bounded, (C.7) is equivalent to

(1− L)
(
at + ξ1,t

)
= 0 (C.8)

in the sense that (C.7) holds for all t ≥ t0 if and only if (C.8) holds for all t ≥ t0. In addition,

if (C.8) holds for all t ≥ t0, then we must have

at + ξ1,t = ā, (C.9)

where ā is a constant satisfying

ā ≡ at0−1 + ξ1,t0−1

= π̄t0−1 + λww̄t0−1 + ϕ1,t0−1 + ϕ2,t0−2. (C.10)

Note that the value of ā is not uniquely determined by the state of the world at date t0,

because of the dependence of the above expression on the value of the initial multipliers.

The values of these will depend on our specification of the constraints on initial outcomes,

and the requirement of self-consistency alone will not uniquely determine what the initial

multipliers will be. (Below, we exhibit a one-parameter family of optimal targeting rules, in

which ā is an arbitrary parameter.)

Applying the linear operator Et [(1− βL−1) (·)] to (C.4), using (C.2) to eliminate π̄w
t and

using (C.5),we obtain

Et

{(
1− βL−1

)
(1− L)

[
λw (π̄t + w̄t) + ϕ2,t−1

]}
= ξ2,t (C.11)
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for all dates t ≥ t0, where the new multiplier ξ2,t is defined as

ξ2,t ≡ ξpϕ1,t − ξwϕ2,t−1.

Note that the variable
(
ξ2,t − ξpξ1,t

)
satisfies

ξ2,t − ξpξ1,t = Et−1

(
ξ2,t − ξpξ1,t

)
. (C.12)

Subtracting (C.11) from (C.7) yields

Et

{(
1− βL−1

)
(1− L)

(
λpπ̄t + ϕ1,t

)}
= −ξ2,t. (C.13)

Then multiplying (C.13) by ξp and subtracting from it ξw times (C.11), one obtains

Et

{
A (L) ξ2,t+1

}
= bt (C.14)

for all t ≥ t0, where

A (L) ≡ (L− β) (1− L) +
(
ξp + ξw

)
L (C.15)

bt ≡ Et

{(
1− βL−1

)
(1− L)

[
ξwλw (π̄t + w̄t)− ξpλpπ̄t

]}
.

Because the quadratic polynomial A (L) satisfies A (0) = −β < 0, A (1) = ξp + ξw > 0 and

A (+∞) = −∞, it must have two positive real roots, one smaller than 1 and one larger than

1. Factoring A (L) = −β (1− µ1L) (1− µ2L) , where 0 < µ1 < 1 < µ2 and µ2 = (βµ1)
−1 ,

we can rewrite equation (C.14) equivalently as

Et

{
(1− µ1L)

(
1− µ−1

2 L−1
)
βµ2ξ2,t

}
= bt.

Given that ξ2,t and bt are both bounded variables, and that
∣∣∣µ−1

2

∣∣∣ < 1, the previous equation

is equivalent to

(1− µ1L) ξ2,t = dt (C.16)

for all dates t ≥ t0, where

dt ≡ µ1Et

{(
1− µ−1

2 L−1
)−1 (

1− βL−1
)

(1− L)
[(

ξwλw − ξpλp

)
π̄t + ξwλww̄t

]}
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is a function of target variables.

Note that

dt + ξpat = Et−1

(
dt + ξpat

)
, (C.17)

as a consequence of (C.9), (C.12), and (C.16). This is a restriction on the path of target

variables at all dates t ≥ t0.

Furthermore, using the identities

ϕ1,t =
(
ξp + ξw

)−1 (
ξwξ1,t + ξ2,t

)

ϕ2,t−1 =
(
ξp + ξw

)−1 (
ξpξ1,t − ξ2,t

)
,

we can eliminate ϕ1,t and ϕ2,t−1 from (C.6) and obtain

et =
(
ξp + ξw

)−1
Et

[
ξpξw (ωpL−B (L)) ξ1,t+2 +

(
ξpωpL + ξwB (L)

)
ξ2,t+2

]
(C.18)

where

et ≡ λxEt

[(
1− βδL−1

)
(vt − δvt−1 − δst − x̂∗)

]

= λxEt

[(
1− βδL−1

)
(xt+2 − δxt+1 − x̂∗)

]
. (C.19)

Using (C.9) and (C.16) to substitute for Etξi,t+j terms in (C.18), we obtain

et −
(
ξp + ξw

)−1
Et

{
ξpξw (B (L)− ωpL) (at+2 − ā)

}

=
(
ξp + ξw

)−1
Et

{
ξwB0dt+2 +

(
ξpωp + ξwB0µ1 + ξwB1

)
ξ2,t+1 + ξwB2ξ2,t

}

=
(
ξp + ξw

)−1
Et

{
ξwB0dt+2 +

(
ξpωp + ξwB0µ1 + ξwB1

)
dt+1 +

(
ξpωpµ1 + ξwµ2

1B
(
µ−1

1

))
ξ2,t

}

or equivalently

ht = α2ξ2,t (C.20)

where

ht ≡ et − Et {C (L) (at+2 − ā) + D (L) dt+2}
C (L) ≡

(
ξp + ξw

)−1
ξpξw (B (L)− ωpL) ≡ C0 + C1L + C2L

2

D (L) ≡
(
ξp + ξw

)−1 [
ξwB0 + ξw (B0µ1 + B1) L + ξpωpL

]
≡ D0 + D1L
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and

α2 ≡
(
ξp + ξw

)−1 (
ξwµ2

1B
(
µ−1

1

)
+ ξpωpµ1

)
.

Equation (C.20) is a restriction that must be satisfied by the projected paths of the target

variables at all dates t ≥ t0, and that depends only on the multiplier ξ2,t. Let us suppose, in

addition, that (C.20) holds at date t0 − 1. (This can be arranged through a suitable choice

of the constraints on initial outcomes; and the constraint that is needed is self-consistent,

since relation (C.20) must hold at all later dates in an optimal equilibrium, regardless of the

way in which the initial constraints are defined.) Then, quasi-differencing (C.20), and using

(C.16) to substitute for the multiplier, we finally obtain

(1− µ1L) ht = α2dt (C.21)

for every t ≥ t0.

In the case of initial constraints of the kind just hypothesized, both (C.17) and (C.21)

must be satisfied by the processes {at, dt, et} at all dates, for some value of ā. We furthermore

note that the choice of ā is arbitrary, since for any value of ā, the assumption of initial

Lagrange multipliers such that

at0−1 = ā (C.22)

would be an example of a relation between the multipliers and the lagged endogenous vari-

ables that also holds at all later dates in the constrained-optimal equilibrium. Nor is there

any contradiction between our assumption of initial constraints that imply that (C.20) holds

at t0−1 and an assumption of initial constraints that imply (C.22) for some arbitrary choice

of ā. For the former assumption requires that

ξpϕ1,t0−1 − ξwϕ2,t0−2

be a certain function of the lagged endogenous variables, while the latter requires that

ϕ1,t0−1 + ϕ2,t0−2

be another function of the lagged variables (that depends on ā). Because these two combi-

nations of the lagged multipliers are linearly independent, it is possible to choose the initial
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constraints so that both relations are simultaneously satisfied. Thus (C.17) and (C.21) are

two criteria to define define optimal policy, and that involve only the projected paths of the

target variables, where the choice of the constant ā in the definition of ht is arbitrary.

C.1.1 Special case: Flexible wages

To give some intuition about the two target criteria (C.17) and (C.21) it may be useful to

consider the special case in which wages are flexible (ξw → +∞), in addition to maintaining

γw = γp = 1, as the optimal target criteria are simple to characterize analytically. In this

case, we have λw = 0, λp = 1, and the roots of (C.15) satisfy µ1 → 0 and µ2 → +∞. It

follows that at = πt+1 and dt = 0.

The short-run optimal target criterion (C.17) reduces thus to

πt+1 = Et−1πt+1.

This indicates that under optimal policy, the central bank has to make inflation totally

predictable two periods in advance.

The long-run optimal target criterion (C.21) reduces in turn to

0 = ht

= et − Et {C (L) (at+2 − ā)}
= et − ξpEt {(ϕ (ηβ − L) (1− ηL)− ωL) (πt+3 − ā)}
= et − ξpEt

{[
ϕηβL−1 −

(
ϕ

(
1 + βη2

)
+ ω

)
+ ηϕL

]
(πt+2 − ā)

}

= et + ξpϕϑEt

{[
−βδL−1 +

(
1 + βδ2

)
− δL

]
(πt+2 − ā)

}

where we use (B.17) to obtain the last equality. Using (C.19) to substitute for et, we can

then write

Et

{(
1− βδL−1

)
(1− δL) [πt+2 + φxt+2]

}
= (1− βδ) [(1− δ) ā + φx̂∗] , (C.23)

where

φ =
λx

ξpϕϑ
= θ−1

p ,
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when we use the definition of the weight λx. As |βδ| < 1, a commitment to (C.23) at all

dates t ≥ t0 is then equivalent to a commitment to

Et [(πt+2 − δπt+1) + φ (xt+2 − δxt+1)] = (1− δ)π∗, (C.24)

at all dates t ≥ t0, where

π∗ ≡ ā + (φ/1− δ)x̂∗.

C.2 Numerical Characterization of the Optimal Target Criteria

We now describe how the optimal target criteria (C.17) and (C.21) derived above can be

rewritten as (3.3) – (3.7) in the text.

C.2.1 Short-run target criterion

Noting that the variable dt satisfies

dt = µ1Et

{[
−L +

(
1 + β − µ−1

2

)
+

(
µ−1

2 − β
) (

1− µ−1
2

)
L−1

(
1− µ−1

2 L−1
)−1

]

×
[(

ξwλw − ξpλp

)
π̄t + ξwλww̄t

]}
,

we can rewrite the short-run target criterion (C.17) as

mt = Et−1mt (C.25)

where

mt ≡ µ1Et

{[(
1 + β − µ−1

2

)
+

(
µ−1

2 − β
) (

1− µ−1
2

)
L−1

(
1− µ−1

2 L−1
)−1

]

×
[(

ξwλw − ξpλp

)
π̄t + ξwλww̄t

]}
+ ξp (π̄t + λww̄t) .

Here we note that the terms at date t− 1 cancel out on both sides of equation (C.25). We

can then rewrite mt as

mt =
[
ξp + µ1

(
1 + β − µ−1

2

) (
ξwλw − ξpλp

)]
π̄t
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+µ1

(
µ−1

2 − β
) (

1− µ−1
2

) (
ξwλw − ξpλp

) ∞∑

k=0

µ−k
2 Etπ̄t+k+1

+
[
ξpλw + µ1

(
1 + β − µ−1

2

)
ξwλw

]
w̄t + µ1

(
µ−1

2 − β
) (

1− µ−1
2

)
ξwλw

∞∑

k=0

µ−k
2 Etw̄t+k+1

or as

mt = Sπ

∞∑

k=1

απ
kEtπt+k + Sw

∞∑

k=1

αw
k Etwt+k (C.26)

where Sπ and Sw are the sums of coefficients and απ
k , αw

k are the weights defined by

Sπ = ξp + µ1

(
1 + β − µ−1

2

) (
ξwλw − ξpλp

)
+ µ1

(
µ−1

2 − β
) (

1− µ−1
2

) (
ξwλw − ξpλp

) ∞∑

k=0

µ−k
2

= ξp + µ1

(
ξwλw − ξpλp

)

απ
1 =

[
ξp + µ1

(
1 + β − µ−1

2

) (
ξwλw − ξpλp

)]
/Sπ

απ
k = µ1

(
µ−1

2 − β
) (

1− µ−1
2

) (
ξwλw − ξpλp

)
µ−k+2

2 /Sπ, for k ≥ 2

and

Sw = ξpλw + µ1

(
1 + β − µ−1

2

)
ξwλw + µ1

(
µ−1

2 − β
) (

1− µ−1
2

)
ξwλw

∞∑

k=0

µ−k
2

= λw

(
ξp + ξwµ1

)

αw
1 = λw

[
ξp + ξwµ1

(
1 + β − µ−1

2

)]
/Sw

αw
k = µ1λwξw

(
µ−1

2 − β
) (

1− µ−1
2

)
µ−k+2

2 /Sw, for k ≥ 2.

Finally, we may rewrite (C.25) – (C.26) more compactly as

Ft (π) + φw [Ft (w)− wt] = Et−1 {Ft (π) + φw [Ft (w)− wt]} (C.27)

which corresponds to the target criterion given by (3.3), (3.5). The expression Ft (z) refers

to the weighted average of forecasts of the variable z given by

Ft (z) ≡
∞∑

k=1

αz
kEtzt+k (C.28)

where the sums
∑∞

k=1
απ

k =
∑∞

k=1
αw

k = 1, and

φw =
Sw

Sπ

=
λw

(
ξp + ξwµ1

)

ξp + µ1

(
ξwλw − ξpλp

)

lies between 0 and 1.
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C.2.2 Long-run target criterion

To express the long-run target criterion (C.21) as in (3.6) – (3.7), we rewrite at, dt, and et

as follows

at = αaqt

where αa = [1, λw] and

qt ≡
[

π̄t

w̄t

]
= Et

[
πt+1

wt+1

]
.

Similarly,

dt = αdqt−1 + Et

{ ∞∑

k=0

αd
kqt+k

}

where

αd = −µ1

[(
ξwλw − ξpλp

)
, ξwλw

]

αd
0 = −

(
1 + β − µ−1

2

)
αd

αd
k =

(
β − µ−1

2

) (
1− µ−1

2

)
µ1−k

2 αd, for all k ≥ 1.

Next, it is convenient to write

ht ≡ et − Et {C (L) (at+2 − ā) + D (L) dt+2} = et − Et

{ ∞∑

k=0

αh
kqt+k

}
+ C (1) ā

where

αh
0 = C2α

a + D1α
d

αh
1 = C1α

a + D1α
d
0 + D0α

d

αh
2 = C0α

a + D1α
d
1 + D0α

d
0

αh
k = D1α

d
k−1 + D0α

d
k−2, for all k ≥ 3.

In addition, the variable et defined in (C.19) may be expressed as

et = λx [SxFt (x)− (1− βδ) x̂∗] (C.29)
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where Ft (x) is again of the form (C.28) and the weights are given by

Sx = 1 + βδ2 − δ − βδ

αx
1 = −δ/Sx

αx
2 =

(
1 + βδ2

)
/Sx

αx
3 = −βδ/Sx

αx
k = 0, for all k ≥ 4.

Using this, we can rewrite the long-run target criterion (C.21) as

∞∑

k=0

(
αh

k + α2α
d
k

)
Etqt+k − λxSxFt (x) = (1− µ1) [C (1) ā− λx (1− βδ) x̂∗]− α2α

dqt−1

+µ1

∞∑

k=0

αh
kEt−1qt+k−1 − µ1λxSxFt−1 (x) .

Premultiplying each of the infinite sums by the sum of coefficients

[Sπ0, Sw0] =
∞∑

k=0

(
αh

k + α2α
d
k

)

[Sπ1, Sw1] = −α2α
d + µ1

∞∑

k=0

αh
k,

and dividing on both sides by Sπ0, we can equivalently the rewrite the above long-run target

criterion as in (3.6) – (3.7), i.e., as

F ∗
t (π) + φ∗wF ∗

t (w) + φ∗xFt (x) = (1− θ∗π)π∗ + θ∗πF 1
t−1 (π) + θ∗wF 1

t−1 (w) + θ∗xFt−1 (x) (C.30)

where

φ∗w =
Sw0

Sπ0

, φ∗x = −λxSx

Sπ0

θ∗π =
Sπ1

Sπ0

, θ∗w =
Sw1

Sπ0

, θ∗x = φ∗xµ1

and the constant π∗ is given by

π∗ = (1− µ1) [C (1) ā− λx (1− βδ) x̂∗] /(Sπ0 − Sπ1).
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The constant π∗. As explained in section C.1, the constant ā is arbitrary. It follows from

this that the constant π∗ is similarly arbitrary: rules with different values of π∗ bring about

equilibria that are each optimal, under a suitable choice of the initial constraints. As noted

in the text, in this model there is no welfare significance to any absolute rate of inflation, only

to the rate of change of inflation (and to wage inflation relative to price inflation). However,

we find nonetheless that an optimal policy rule must involve some long-run inflation target

π∗, that remains invariant over time. For purposes of our comparison between historical

policy and the optimal target criteria, we assume a long-run inflation target equal to the

long-run value for inflation under historical policy, as implied by our estimated VAR model

of the historical data.

C.3 Historical Time Series for the Target Criteria

This section describes the calculations underlying section 3.3 of the text in which we assess

to what extent, under actual policy, the evolution of projections of inflation, the real wage

and the output gap have satisfied the optimal target criteria. To perform the projections of

future variables, we use the structural VAR (2.2) which we can rewrite in terms of deviations

from a long-run steady-state as

Ẑt = BẐt−1 + Uēt

where Ẑt ≡ Z̄t − Z lr and B = T−1A, U = T−1. The vector Z̄t is given by

Z̄t =
[
it, ŵt+1, πt+1, Ŷt+1, it−1, ŵt, πt, Ŷt, it−2, ŵt−1, πt−1, Ŷt−1

]′
,

and its long-run value satisfies Z lr = (I −B)−1 T−1a. Because we assume that the errors ēt

are unforecastable, the VAR has the property that EtẐt+k = BkẐt for all k > 0.

Using this, we can compute for each date t the weighted average of future inflation

forecasts as follows

Ft (π) =
∞∑

k=1

απ
kEtπt+k =

∞∑

k=1

απ
k P̃EtZ̄t+k−1

= πlr + PẐt,
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where P̃ is a (1× 12) vector with a 1 in the third element and zeros elsewhere, πlr ≡ P̃Z lr,

and P ≡ P̃
∑∞

k=1
απ

kBk−1. Similarly, we can compute for each date t the weighted average

of real wage forecasts

Ft (w) =
∞∑

k=1

αw
k Etwt+k = WẐt,

where W ≡ W̃
∑∞

k=1
αw

k Bk−1 and W̃ is a (1× 12) vector with a 1 in the second element and

zeros elsewhere. (Note that the long-run value of the variable ŵ, i.e., the percent deviation

in the real wage from its trend is zero).

C.3.1 Short-run target criterion

A historical time series for the adjusted inflation projection (3.3) is obtained by computing

for each date t:

Ft (π) + φw [Ft (w)− wt] =
(
πlr + PẐt

)
+ φw

(
WẐt − W̃ Ẑt−1

)

A historical time series for the optimal target (3.5) is then obtained by computing for each

date t:

Et−1 {Ft (π) + φw [Ft (w)− wt]} =
(
πlr + PBẐt−1

)
+ φw

(
WB − W̃

)
Ẑt−1.

C.3.2 Output gap projections

In addition to inflation projections and real wage projections described above, the long-run

target criterion (3.6) – (3.7) involves also projections of the output gap. This raises some

difficulties that we address in this subsection.

Let us first consider the simple case in which the natural rate of output displays only

negligible fluctuations. In this case, the output gap considered in the target criterion (3.6)

– (3.7) corresponds to the deviation of (log) real output from a linear trend (as is the case

in Figures 12 and 13 of the text), i.e., to the time series Ŷt used in the VAR. The weighted

average of future output gap forecasts with the weights used in (C.29) is then simply obtained
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by computing

Ft

(
Ŷ

)
= Et

∞∑

k=1

αx
kŶt+k = EtRZ̄t+2 = RB2Ẑt

where

R = [0, 0, 0, αx
3 , 0, 0, 0, α

x
2 , 0, 0, 0, α

x
1 ] .

Again, we note that the long-run value of the variable Ŷt is zero and that αx
k = 0 for all

k ≥ 4.

We now turn to the alternative case in which fluctuations in the natural rate of output

are recovered from the residuals to the estimated equations of the model. First, we note that

the weighted average of projection of future output gaps relevant for the target criterion

(3.6) – (3.7), i.e., with the weights used in (C.29) satisfies

Ft (x) = Et

∞∑

k=1

αx
kxt+k = S−1

x Et

[
−δx+1 +

(
1 + βδ2

)
xt+2 − βδxt+3

]

= S−1
x Et

{(
1− βδL−1

)
(xt+2 − δxt+1)

}
. (C.31)

Second, we multiply the price inflation equation (2.14) by ξw and add it to the wage inflation

equation (2.11) multiplied by ξp to obtain

ξwξpEt−1

{[
ωp + ωw + ϕ

(
1 + βη2

)
− ϕηL− ϕβηL−1

]
xt

}
=

[
ξw + β

(
ξw + ξp

)
γp

]
πt

−
(
ξwγp + ξpγw

)
πt−1 − βξwEt−1πt+1 + ξpπ

w
t − βξpEt−1π

w
t+1 + ξwξpEt−1µt

It is convenient to note, using (B.17), that the left-hand-side is in fact equal to

ξwξpϑϕEt−1

{(
1− βδL−1

)
(xt − δxt−1)

}

where 0 ≤ δ < η is the same value as the one entering the policymaker’s objective function,

and where ϑ ≡ η/δ > 1. Next, using the wage identity (1.31) to substitute for πw
t , we obtain

ξwξpϑϕEt−1

{(
1− βδL−1

)
(xt − δxt−1)

}
=

(
ξw + ξp

) (
1 + βγp

)
πt −

(
ξwγp + ξpγw

)
πt−1

−β
(
ξw + ξp

)
Et−1πt+1 − ξpwt−1 + ξp (1 + β) wt

−βξpEt−1wt+1 + ξwξpEt−1µt. (C.32)
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Thus, by combining (C.31), (C.32) and noting that Etµt+2 = 0, we obtain a historical time

series for projections of future output gaps

Ft (x) = S−1
x QEtZ̄t+2

= S−1
x QB2Ẑt.

where

Q =


0,− β

ξwϑϕ
,−

β
(
ξw + ξp

)

ξwξpϑϕ
, 0, 0,

1 + β

ξwϑϕ
,

(
ξw + ξp

) (
1 + βγp

)

ξwξpϑϕ
, 0, 0,− 1

ξwϑϕ
,−

(
ξwγp + ξpγw

)

ξwξpϑϕ
, 0


 .

Again, it turns out that the constant QB2Z lr is equal to 0 when γp = γw = 1, which is the

case that we consider here.

C.3.3 Long-run target criterion

A historical time series for the projections (3.6) is obtained by computing for each date t:

F ∗
t (π) + φ∗wF ∗

t (w) + φ∗xFt (x) =
(
πlr + P ∗Ẑt

)
+ φ∗wW ∗Ẑt + φ∗xS

−1
x QB2Ẑt

where the weights απ∗
k and αw∗

k are those underlying (C.30), and P ∗ ≡ P̃
∑∞

k=1
απ∗

k Bk−1,

W ∗ ≡ W̃
∑∞

k=1
αw∗

k Bk−1. Similarly, we can compute a historical time series for the optimal

target (3.7)

π∗t ≡ π∗ + θ∗πF 1
t−1 (π) + θ∗wF 1

t−1 (w) + θ∗xFt−1 (x)

= π∗ + θ∗π
(
πlr + P 1Ẑt−1

)
+ θ∗wW 1Ẑt−1 + θ∗xS

−1
x QB2Ẑt−1,

where the weights απ1
k and αw1

k are those underlying the weighted sums on the right-hand

side of (C.30) and P 1 ≡ P̃
∑∞

k=1
απ1

k Bk−1, W 1 ≡ W̃
∑∞

k=1
αw1

k Bk−1. Note that the weighted

averages Ft (x) and Ft−1 (x) are identical.

In the case that the natural rate of output displays only negligible fluctuations so that

the output gap considered is Ŷt, the contribution to the projections due to output gap

fluctuations is given by

φ∗xFt

(
Ŷ

)
= φ∗xRB2Ẑt.
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The contribution to the optimal target due to output gap fluctuations is then given by

θ∗xFt−1

(
Ŷ

)
= θ∗xRB2Ẑt−1.
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