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Abstract
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exposures for a profit maximizing financial institution with risk averse counterparties, and then
identifying a closed-form solution for the risk measure whose gradient delivers the correct
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ES generally yields economically inefficient allocations.
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1 Introduction
Practitioners have long wrestled with the problem of allocating capital to the various risks within a
financial institution. And, while no particular method will work for all types of decisions (see Mer-
ton and Perold (1993)), an attractive mathematical technology for allocation appeared in an aca-
demic literature starting with Schmock and Straumann (1999), Tasche (2000), andMyers and Read
(2001). Broadly speaking, these papers start with a differentiable risk measure and compute the
marginal capital increase required to maintain the risk measure at a threshold value as a particular
risk exposure within the portfolio is expanded, an approach referred to as “gradient” allocation or
“Euler” allocation. Allocations of capital using variants of the Euler technology are now widely
used in the course of pricing and performance measurement within the portfolios of financial in-
stitutions (see e.g. Society of Actuaries (2008) or McKinsey&Company (2011)).

The approach requires an arbitrarily chosen risk measure as a key input—and unfortunately,
excepting highly specialized circumstances,1 economic theory offers no guidance on the choice
of the measure.2 Yet the choice is not to be taken lightly: It has a profound influence on how
the institution perceives risk. For example, Value-at-Risk (VaR)—perhaps the most widely used
measure—is known to contain incentives for excessive risk-taking behavior (see Basak and Shapiro
(2001)), and its use has been fingered by some as playing a key role in the recent financial crisis
(see Nocera (2009)). Post-crisis soul-searching for alternatives to VaR has brought wider attention
to the debate on the statistical properties of risk measures, with the likely outcome that measures
such as Expected Shortfall (ES) will continue to gain traction among practitioners and regulators.
Indeed, the ascent of ES seems well underway.3 This ascent, however, has been predicated on the
technical properties of ES (e.g., coherence) and has occurred independently of any sound economic
reasoning.

In this paper, we reverse the usual approach: Rather than choosing a risk measure constraint
to determine the marginal cost of risk and the allocation of capital within the firm, we calculate the
latter quantities as by-products of the institution’s optimization problem. We then derive the risk
measure whose gradient yields the correct marginal costs and capital allocations.

The focus of our analysis is the optimal pricing behavior of a profit-maximizing financial insti-
tution with costly capital and risk-averse counterparties in the presence of a (possibly nonbinding)
regulatory constraint tied to a risk measure. We find that the optimal capital allocation rule de-
pends crucially on institutional context. As might be expected, in the scenario envisioned byMyers
and Read (with fully insured counterparties), the economically optimal allocation follows from the
gradient allocation principle as applied to the risk measure imposed by regulation. However, if

1Specifically, the issue is resolved trivially if consumer preferences are defined over a particular risk measure
(Zanjani (2002)), or if a particular risk measure is assumed to constitute the payoff function in a cooperative game
(see Denault (2001); Powers (2007)). Similarly, if the institutional preferences are defined by a particular risk-averse
utility function of outcomes, a particular risk measure may be implied (see e.g. Föllmer and Schied (2010) or Wächter
and Mazzoni (2010)). Alternatively, Adrian and Shin (2008) find a justification for using Value-at-Risk in a model
with a limited commitment and a specialized risk structure.

2Early papers in the literature, such as Myers and Read (2001), Tasche (2000), and Tasche (2004), implicitly
recognized this difficulty and ultimately alluded to regulation in justifying the choice of risk measure.

3Various papers make a case for ES over VaR (see e.g. Hull (2007), Jaschke (2001)), and both regulation and
practice appear to be moving in this direction as well. For instance, the International Actuarial Association (2004)
recommends using ES in a risk based regulatory framework, and ES was embedded in the Swiss Solvency Test and
appears to be viewed favorably by US regulators (cf. NAIC (2009)).
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the counterparties are not fully insured, the optimal allocation rule is not fully determined by the
regulatory constraint, even if that constraint is binding.

More specifically, when counterparties are not fully protected, the firm’s marginal cost asso-
ciated with the risk of a particular counterparty depends on how that risk affects the firm’s other
counterparties (and, thus, their willingness to pay for the firm’s contracts)—so the firm must price
contracts accordingly. The optimal allocation rule then ends up being a weighted average of an
“external” allocation rule implied by the regulatory constraint (if it binds) and an “internal” alloca-
tion rule driven by the institution’s uninsured counterparties. In the extreme case of no regulation,
the allocation rule simply boils down to the “internal” rule. Intermediate cases, however, could
feature marginal cost being driven mainly by the “internal” rule (if the regulatory constraint puts
firm capitalization close to the level it would have chosen in the absence of regulation) or the “ex-
ternal” constraint (if regulation forces the firm to hold far more capital than is privately optimal).

We show further that the “internal” allocation rule can be implemented by applying the gradient
allocation principle to a particular risk measure—the exponential of a weighted average of the
logarithm of portfolio outcomes in states of default, with the weights being determined by the
relative values placed on recoveries in the various states of default by the firm’s counterparties.
The weights are thus similar in concept to the “spectral” weights proposed by Acerbi (2002) as
a means of capturing the “subjective risk aversion” of a financial institution, with the weights
determined endogenously through the process of profit maximization. The risk measure itself is
evidently a “tail” risk measure, although the functional transformations ultimately cause it to be
non-convex.

We then derive closed form allocation formulas where possible, and we use numerical tech-
niques to compare the allocations resulting from the “internal” allocation rule to those arising from
the application of the gradient allocation method to ES. We show that ES-based allocations gen-
erally fail to weight default outcomes properly. Specifically, in cases where counterparties are
strongly risk averse or where potential losses are large relative to counterparty wealth, ES-based
allocations tend to underweight bad outcomes; in cases where counterparties are only weakly risk
averse or where potential losses are relatively small, ES-based allocations tend to overweight bad
outcomes. These differences flow from a fundamental difference in the basis for allocation under
the “internal” rule and under ES. The starting point for evaluation of a risk’s impact under ES
concerns its share of the institution’s losses in default states, whereas the starting point under the
“internal” rule is the risk’s share of recoveries—as a risk’s impact on recoveries in default states is
ultimately what counterparties care about.

This distinction underscores the key point of the paper: The true marginal cost of risk and
the associated allocation of capital should flow from the economic context of the problem. A risk
measure chosen for its technical properties such as coherence, rather than for the specific economic
circumstances, will generally fail to yield correct pricing and efficient allocation of capital from
the perspective of its user. In the concluding section, we consider how changing the perspective
of the user—from that of the firm owner/manager, as in this paper, to, say, a regulator—changes
the economic context and, hence, the appropriate measure of risk.
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2 Profit Maximization and Capital Allocation
To illustrate the main ideas, we will start by considering a greatly simplified environment without
securities markets and then generalize the results to the case where both the firm and its consumers
have access to securities markets (see Appendix D for the generalized treatment).

The representative financial institution we have in mind in this section is an insurance company,
and our language will reflect this in that we refer to the financial contracts as providing “insurance
coverage” and the counterparties of the institution as “consumers.” The setup obviously fits other
institutions providing similar contracts, such as reinsurance companies and private pension plan
sponsors—and can be applied with little modification to institutions selling insurance-like con-
tracts (such as credit default swaps) where the main risks emanate from risk in obligations to
counterparties. The model can also be adapted to fit other institutions where capital allocation
is relevant (such as commercial banks) but where the key risks emanate from the asset side of
the balance sheet, by including an additional set of choice variables for investments. The key
assumption of the model, however, is that the policyholders, counterparties, and/or debtholders of
the institution are exposed to the failure of the institution—and their preferences for solvency drive
the motivation for risk management.

Formally, we consider an insurance company that has N consumers, with consumer i facing a
loss Li modeled as a non-negative (square-integrable) random variable on the complete probability
space (Ω,F ,P). Thus, Li(ω) > 0 indicates that consumer i experienced a loss in the state ω ∈ Ω,
while Li(ω) = 0 indicates that she did not.

The firm determines the optimal level of assets a for the company, as well as levels of insurance
coverage for the consumers, with the coverage indemnification level for consumer i denoted as a
function of the loss experienced and a parameter qi ∈ Φ (where Φ is a compact choice set), as
in Ii(Li, qi), where we require Ii(0, qi) = 0, i = {1, 2, . . . , N}. The latter function could take
a variety of forms. For example, if indemnification promised to consumer i amounts to full
reimbursement of losses subject to a policy limit qi, the promised indemnification would be:

Ii = Ii(Li, qi) = min {Li, qi} . (1)

A quota share arrangement, where the insurer agrees to reimburse qi per dollar of loss, would be
represented as:

Ii = Ii(Li, qi) = qi × Li. (2)
If a consumer experiences a loss, she claims to the extent of the promised indemnification. If

total claims are less than company assets, all are paid in full. If not, all claimants are paid at the
same rate per dollar of coverage. The total claims submitted are:

I = I(L1, L2, . . . , LN , q1, q2, . . . , qN) =
N∑

j=1

Ij(Lj , qj),

and we define the consumer’s recovery as:

Ri = min
{
Ii(Li, qi),

a

I
Ii(Li, qi)

}
.

Accordingly, {I ≥ a} = {ω ∈ Ω |I(ω) ≥ a} denote the states in which the company defaults
whereas {I < a} are the solvent states. The expected value of recoveries for the i-th consumer is
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whence given by:
ei = E [Ri] = E

[
Ri 1{I<a}

]
︸ ︷︷ ︸

=eZi

+E
[
Ri 1{I≥a}

]
︸ ︷︷ ︸

=eDi

.

There is a frictional cost—including agency, taxes, and monitoring costs—associated with
holding assets in the company. We represent the cost as a tax on assets:

τ × a, (3)

although it is also possible to represent frictional costs as a tax on equity capital, as in:

τ ×
(
a− E

[
N∑

i=1

min
{
Ii(Li, qi),

a

I
Ii(Li, qi)

}])
(4)

and this does not change the ensuing allocation result.
We denote the premium charged to the consumer i as pi, and consumer utility may be expressed

as:
vi(a,wi − pi, q1, ..., qN) = E [Ui (wi − pi − Li +Ri)] , (5)

where wi denotes consumer i’s wealth, and we write v ′i(·) = ∂
∂wi

vi(·).
The firm then solves:

max
a,{qi},{pi}

∑
pi −

∑
ei − τa, (6)

subject to participation constraints for each consumer:

vi(a,wi − pi, q1, ..., qN) ≥ γi ∀i (7)

and subject to a differentiable solvency constraint imposed by the regulator

s(q1, ..., qN) ≤ a, (8)

where s is imagined to arise from, for example, a risk measure with a set threshold dictating the
requisite capitalization for the firm.

In order to ensure differentiability of the objective function, it is necessary to impose conditions
on the distributions of the loss random variables. For instance, for a quota share arrangement
(2), the objective function will be continuously differentiable if the Li are jointly continuously
distributed (see Appendix A for details). For discrete loss distributions, on the other hand, if
Ii(Li, ·) is differentiable, it is evident that the objective function is only piecewise differentiable.
In this case, the analytic complications presented by the “kinks” may be overcome by considering
the one-sided derivatives similarly to Zanjani (2010). In what follows, with little loss of generality,
we simply assume that the solution lies in the differentiable region of the objective function. Let
λk be the Lagrange multiplier associated with the participation constraint (7) for consumer k, and
let ξ the multiplier associated with (8). The first order conditions for an interior solution are then:

[qi] −
∑

k

∂ek
∂qi

+
∑

k

λk
∂vk
∂qi

− ∂s

∂qi
ξ = 0, (9)

[a] −
∑

k

∂ek
∂a

− τ +
∑

k

λk
∂vk
∂a

+ ξ = 0, (10)

[pi] 1− λi
∂vi
∂w

= 0. (11)
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We show in Appendix B that a profit-maximizing firm will be able to achieve the optimum
by offering each consumer a smooth and monotonic premium schedule, where consumer i is free
to choose any level of qi desired. We denote the variable premium as p∗i (qi) and consider its
construction under the assumption that each consumer is a “price taker” and ignores the impact of
her own purchase at the margin on the level of recoveries in states of default. This assumption is
discussed in Zanjani (2010), who followed the transportation economics literature on congestion
pricing (Keeler and Small (1977)) by using the assumption when calculating the optimal consumer
pricing function.4 With this assumption in place, the marginal price change at the optimal level
of qi must satisfy: [

∂vi
∂qi

+ E
[
1{I≥a} U

′
i

a

I2
Ii
∂Ii
∂qi

]]
− ∂vi
∂w

∂p∗i
∂qi

= 0 (12)

with U ′
i = U ′

i (wi − pi − Li +Ri). The term in brackets represents how the consumer perceives
the marginal benefit of additional coverage, which, due to the aforementioned assumption, differs
from the true impact of coverage on the utility function by E

[
1{I≥a} U ′

i
a
I2 Ii

∂Ii
∂qi

]
.

Using (9) and (11), we see that (12) may be rewritten as:

∂p∗i
∂qi

=
∑

k

∂ek
∂qi

+
∂s

∂qi
ξ −
∑

k $=i

∂vk
∂qi

v′k
+

E
[
1{I≥a} U ′

i
a
I2 Ii

∂Ii
∂qi

]

v′i

or, simplifying and using (10):

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
∑

k

∂ek
∂a

+ τ −
∑

k

∂vk
∂a

v′k

]
+ E

[
1{I≥a}

∑

k

U ′
k

v′k

a

I2
Ik
∂Ii
∂qi

]
.

Moving on:

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
+

E
[
1{I≥a}

∑
k

U ′
k

v′k

1
I2 Ik

∂Ii
∂qi

]

∑
k

∂vk
∂a
v′k

×
∑

k

∂vk
∂a

v′k
× a

or
∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
+ φ̃i × a×

[
∑

k

∂vk
∂a

v′k

]
, (13)

where

φ̃i =
E
[
1{I≥a}

∑
k

U ′
k

v′k

1
I2 Ik

∂Ii
∂qi

]

E
[
1{I≥a}

∑
k

U ′
k

v′k

Ik
I

] . (14)

The last two terms of (13) imply an allocation of the marginal unit of capital to consumer that
“adds up” if two conditions are met. First, we require that:

∂Ii
∂qi

× qi = Ii, (15)

4The assumption is ubiquitous (although often implicit rather than stated) within many fields of economics. Its
importance here is that, without it, the marginal cost associated with each consumer’s risk will feature a cost related to
an implicit allocation of capital that will not “add up” across consumers to the total capital of the firm.
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as would be the case under a quota share arrangement, as in (2), or under (1) if all loss distributions
are binary (i.e., if a loss happens, it is of a fixed amount). If this holds, then it can be verified that:

a×
∑

φ̃i qi = a. (16)

Second, we require the “adding up” property on the regulatory constraint—which is satisfied under
conditions previously referenced:

∑ ∂s

∂qi
qi = a. (17)

When the foregoing conditions hold, the optimal marginal pricing condition (13) can be extended
to fully allocate all of the firm’s costs, including the cost of capital:

∑ ∂p∗i
∂qi

qi =
∑ ∂eZi

∂qi
qi + [P(I ≥ a) a+ τa] .

Note that the cost of capital as captured in the bracketed term breaks down as:
[
∑

k

∂ek
∂a

a + τa

]
=
∑

i

∂s

∂qi
qi ×

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
+
∑

i

φ̃i qi a×
[
∑

k

∂vk
∂a

v′k

]
.

So for any one individual consumer, their capital allocation has two components. The first derives
from an “internal” marginal cost—driven by the cross-effects of consumers on each other:

φ̃i qi a×
[
∑

k

∂vk
∂a

v′k

]

and the second originates from an “external” marginal cost imposed by regulators:

∂s

∂qi
qi ×

[

P(I ≥ a) + τ −
∑

k

∂vk
∂a

v′k

]

.

It is useful at this point to consider several different institutional scenarios.

Full Coverage by Deposit Insurance and Binding Regulation

If consumers are fully covered by deposit insurance, they are indifferent to the capitalization of
their financial institution. Mathematically, this means that

∑

k

∂vk
∂a

v′k
= 0,

so that (13) becomes:
∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi
[P(I ≥ a) + τ ] . (18)

Thus, the marginal cost of risk, and the attendant allocation of capital, is completely determined
by the gradient of the binding regulatory constraint. This is the world of Myers and Read, Tasche,
and others involved in the development of the gradient allocation principle. In this world, the
marginal cost of risk is indeed completely determined by an arbitrarily chosen risk measure.
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No Deposit Insurance and Non-Binding Regulation

At the opposite extreme is the case of an unregulated market with no deposit insurance. Here,
ξ = 0, so (cf. Eq. (10)):

∑

k

∂vk
∂a

v′k
= [P(I ≥ a) + τ ] ,

meaning that (13) becomes:

∂p∗i
∂qi

=
∂eZi
∂qi

+ φ̃i a× [P(I ≥ a) + τ ] . (19)

Thus, the marginal cost of risk and the attendant allocation of capital is driven completely by
“internal” considerations. Specifically, (14) indicates that the allocation is driven by the time-zero
value that affected consumers place on their contingent claims on recoveries in the various states
of default.

General Case: Uninsured Consumers and Binding Regulation

In general, we may imagine the case where both of the considerations isolated above—an “exter-
nal” regulatory constraint, and “internal” concerns driven by counterparty preferences—are influ-
encing the marginal cost of risk. In this case, (13) remains in its original form:

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]
+ φ̃i × a×

[
∑

k

∂vk
∂a

v′k

]
, (20)

but we are now able to see more clearly the two influences on capital allocation. When the
regulatory constraint binds, we know that:

P(I ≥ a) + τ >
∑

k

∂vk
∂a

v′k
,

with the interpretation that regulation is forcing the institution to hold assets beyond the level
that would be privately efficient from the perspective of serving its counterparties. However, the
extent of this distortion is key to identifying whether internal counterparty concerns or external
regulatory concerns guide capital allocation. If regulation comes close to replicating the private
market outcome:

P(I ≥ a) + τ ≈
∑

k

∂vk
∂a

v′k
,

then the second term in (13) will be unimportant relative to the third term, and internal counterparty
concerns will dominate. On the other hand, if regulation has the effect of pushing institutional
capitalization well beyond the level that would prevail in the private market:

P(I ≥ a) + τ )
∑

k

∂vk
∂a

v′k
,

then the second term in (13) will overshadow the third term, and external regulatory concerns will
dominate.
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3 Capital Allocation and Risk Measures
Having solved the institution’s optimization problem and—as a by-product—the ensuing allocation
of costs to the risks within its portfolio, we could very well terminate the discussion. However,
the solution offers little obvious consolation to a practitioner faced with the problem of allocating
capital in a real-world setting, where contracts may not be easily mapped to our specification and
preferences may be hard to assess. It is in the hands of the practitioner where the Euler allocation
principle gains traction, since the principle yields an implementable approach to allocation. With
the Euler method, it is “only” necessary to calculate the partial derivatives of a suitable risk measure
with respect to each exposure evaluated at the current portfolio.5

Although it is not always derived in this way, the Euler method is implied by the maximization
of profits subject to a risk measure constraint. To illustrate, assume a company’s profit function π
depends on the parameters (volumes) qi, 1 ≤ i ≤ N, and on capital a. Then maximizing profits
subject to the risk measure constraint

ρ (q1, q2, . . . , qN) χρ ≤ a

yields
∂π

∂qi
=

(
−∂π
∂a

)
χρ

∂ρ

∂qi

at the optimal values a∗, q∗i , 1 ≤ i ≤ N.Here ρ is a suitable differentiable risk measure evaluated at
the aggregate claims

∑N
j=1 Ij(Lj , qj) and χρ is an exchange rate that converts risk to capital, which

is often chosen to be unity if risk is measured in monetary units. Hence, for the optimal portfo-
lio, the risk-adjusted marginal return on marginal capital ∂π/∂qi∂ρ/∂qi

for each exposure is the same and
equals the cost of a marginal unit of capital − ∂π

∂a . In other words, if the marginal performance of
risk i as measured by its marginal return on marginal risk capital χρ ∂ρ

∂qi
exceeds (respectively, falls

below) the cost of a marginal unit of capital, then increasing (respectively, decreasing) the weight
qi of that exposure by a small amount improves the overall performance of the portfolio.6 Akin to
the results of Tasche (2000) on the suitability of capital allocation principles, this motivates the in-
terpretation of the marginal capital weighted by the corresponding volume χρ ∂ρ

∂qi
q∗i as the amount

of capital allocated to exposure i. In particular, for a homogenous risk measure, the allocations to
the respective risks “add up” to the entire capital:

N∑

j=1

χρ
∂ρ

∂qj
q∗j

(
−∂π
∂a

)
= χρ ρ

(
−∂π
∂a

)
= a∗

(
−∂π
∂a

)

=⇒
N∑

j=1

χρ
∂ρ

∂qj
q∗j = a∗.

5This is not at all to say that this task is simple. In fact, the computational complexity associated with evaluating
economic capital presents a serious problem for financial institutions and frequently leads them to adopt second-best
calculation techniques (see e.g. Gordy and Juneja (2010) or Bauer et al. (2010)). However, the availability of a suitable
model for the different risk within a company’s portfolio and their interplay clearly is a necessity for the derivation for
any coherent allocation of capital.

6Cf. Section 6.3.3 “Economic Justification of the Euler Principle” in McNeil et al. (2005).
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We refer to McNeil et al. (2005) and references therein for more details on the Euler principle,
and to Denault (2001), Kalkbrenner (2005), and Myers and Read (2001) for alternative derivations
of the Euler principle based on cooperative game theory, formal axioms, or a contingent claim
approach, respectively.

Regardless of its provenance, the Euler method’s strength is the feasibility of implementation,
so this raises the question of whether our allocation can be implemented using the Euler technology.
That is, is it possible to identify a risk measure that would yield, after application of the Euler
approach, the economically correct capital allocations identified in Section 2? In what follows,
we derive this very risk measure.

Assume our institution is operating at the optimum, i.e. assets, premium schedules, and con-
tracts are fixed at their optimal values a∗, p∗i (·), q∗i , 1 ≤ i ≤ N. Consider first the case of binding
regulation and full coverage by deposit insurance, i.e. the first case from Section 2. As might be
expected, here the optimal allocation at the (optimal) margin can be derived by the Euler principle
with profit function

π (q1, . . . , qN , a) =
∑

k

p∗k(qk)−
∑

k

ek(q1, . . . , qN , a)− τ a, (21)

and risk measure constraint
s (q1, q2, . . . , qN) ≤ a,

which yields (cf. (18))
N∑

j=1

∂s

∂qj
q∗j [P(I ≥ a∗) + τ ] = a∗ [P(I ≥ a∗) + τ ]

=⇒
N∑

j=1

∂s

∂qj
q∗j = a∗.

For the second polar case with no deposit insurance and no binding regulation, i.e. for the
second case from Section 2, we introduce the probability measure P̃ on (Ω,F) via its Radon-
Nikodym derivative

∂P̃
∂P =

∑
k

U ′
k

v′k

Ik
I 1{I≥a∗}

E
[∑

k
U ′
k

v′k

Ik
I 1{I≥a∗}

] ,

where I , U , etc. are evaluated at the concurrent (optimal) values a∗, p∗i (q∗i ), q∗i , 1 ≤ i ≤ N. Note
that P̃ is absolutely continuous with respect to P but the measures are not equivalent since under
P̃ all the probability mass is concentrated in default states. On the set of strictly positive P̃-square
integrable random variables

L2
+

(
Ω,F , P̃

)
=
{
X ∈ L2

(
Ω,F , P̃

)
|X > 0 P̃-a.s.

}
,

we define the risk measure7
ρ̃(X) = exp

{
EP̃ [log{X}]

}
.

7While its functional form seems similar to that of the so-called entropic risk measure (which has recently gained
popularity in the mathematical finance literature (see e.g. Föllmer and Schied (2002) or Detlefsen and Scandolo
(2005))), note that the roles of the exponential function and the logarithm are interchanged.
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Obviously ρ̃ is monotonic, positive homogenous, and it satisfies the constancy condition ρ̃(c) = c
for c > 0 (see Frittelli and Gianin (2002) for a discussion of properties of risk measures). However,
ρ̃ is neither translation-invariant nor sub-additive, and is therefore not coherent and not convex. In
fact, ρ̃ is not even a monetary risk measure and thus may not qualify for the use as an external risk
measure.8 However, it is the correct risk measure for internal capital allocation based on the Euler
principle.

More precisely, define χ̃ρ = a∗

ρ̃(
∑N

j=1 Ij(Lj ,q∗j ))
as the “exchange rate” between units of risk and

capital. Then the application of the Euler principle with profit function π (q1, . . . , qN , a) as in (21)
and risk measure constraint

ρ̃

(
N∑

j=1

Ij(Lj , qj)

)

︸ ︷︷ ︸
=ρ̃(q1,...,qN )

χ̃ρ ≤ a,

yields (cf. (19))

N∑

j=1

χ̃ρ
∂ρ̃

∂qj
q∗j [P(I ≥ a∗) + τ ] =

N∑

j=1

χ̃ρ EP̃
[
∂Ij/∂qj

I

]
ρ̃ q∗j [P(I ≥ a∗) + τ ] (22)

=
N∑

j=1

φ̃j q
∗
j a

∗ [P(I ≥ a∗) + τ ] = a∗ [P(I ≥ a∗) + τ ]

=⇒
N∑

j=1

χ̃ρ
∂ρ̃

∂qj
q∗j = a∗.

Hence, the correct internal capital allocation can be implemented by the Euler principle relying on
the risk measure ρ̃— a risk measure that, surprisingly, is neither coherent nor convex.

For intermediate cases, i.e. with binding regulation but uninsured consumers—the third and
general case from Section 2—the introduced framework for the Euler principle does not immedi-
ately apply since we now look at two risk measure constraints

{
s(q1, . . . , qN) ≤ a,
ρ̃(q1, . . . , qN) χ̃ρ ≤ a.

Thus, the allocation is determined by the gradients of both risk measures as well as the associated
Lagrange multipliers for s and ρ̃, which at the optimum (q∗1, . . . , q

∗
N , a

∗) equal (cf. (20))
[
P(I ≥ a) + τ −

∑

k

∂vk
∂a

v′k

]

and [
∑

k

∂vk
∂a

v′k

]

,

8While sub-additivity is subject of an ongoing debate (see e.g. Heyde et al. (2006) or Dhaene et al. (2008)), at
least translation invariance is generally deemed adequate for an external risk measure and even “necessary for the
risk-capital interpretation [...] to make sense” (see p. 239 in McNeil et al. (2005)).
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respectively. More specifically, we have

N∑

j=1

∂s

∂qj
q∗j

[

P(I ≥ a∗) + τ −
∑

k

∂vk
∂a

v′k

]

+
N∑

j=1

χ̃ρ
∂ρ̃

∂qj
q∗j

[
∑

k

∂vk
∂a

v′k

]

= a∗ [P(I ≥ a∗) + τ ]

=⇒
N∑

j=1

(
∂s

∂qj
q∗j (1− ζ) + χ̃ρ

∂ρ̃

∂qj
q∗j ζ

)
= a∗

=⇒
N∑

j=1

∂

∂qj
((1− ζ) s+ ζ χ̃ρ ρ) q

∗
j = a∗,

where the weight ζ is defined as

ζ =

∑
k

∂vk
∂a
v′k

P(I ≥ a) + τ
.

Hence, the Euler principle still applies, but the supporting risk measure is a weighted average
between the external risk measure s and the internal risk measure ρ. The weights are determined
by the consumers’ marginal preference for capitalization of the company relative to their marginal
utility of own wealth. To determine which considerations—external or internal ones—dominate,
it is therefore necessary to assess the consumers’ proclivity for capitalization. However, to gain
insights on how the counterparty-driven internal allocation effectively differs from the allocation
based on the external risk measure, it is sufficient to study the ensuing risk measure ρ̃. In particular,
we are interested how the economic weight assigned to various outcomes under ρ̃ differs from what
would be obtained from the use of more popular risk measures.

To this end, we evaluate ρ̃ as a function of the aggregate loss I =
∑N

j=1 Ij(Lj , q∗j ). We have

ρ̃(I) = exp
{
EP̃ [log{I}]

}
= exp

{

E
[
∂P̃
∂P log{I}

]}

= exp

{

E
[

E
[
∂P̃
∂P

∣∣∣∣∣ I

]

log{I}
]}

= exp




E



E




∑

k
U ′
k

v′k

Ik
I 1{I≥a∗}

E
[∑

k
U ′
k

v′k

Ik
I

∣∣∣ I ≥ a∗
]

∣∣∣∣∣∣
I



 log{I}

∣∣∣∣∣∣
I ≥ a∗










= exp
{
E
[
ψ̃(I) log{I}

∣∣∣ I ≥ a∗
]}

, (23)

which illustrates that ρ̃ in this sense is in fact a tail risk measure, and hence is related to Expected
Shortfall (ES).

Here, the weights ψ̃(·) perform a role similar to the risk spectrum within the so-called spec-
tral risk measures as introduced in Acerbi (2002). According to the author, the “subjective risk
aversion of an investor can be encoded” in this function, which may justify overweighting bad
outcomes, but he does not provide guidance on how to choose an explicit form. To close this gap,
Dowd et al. (2008) provide some ad-hoc examples whereas Sriboonchitta et al. (2010) andWächter
and Mazzoni (2010) attempt to establish theoretical links of the risk spectrum to the preferences of
the user of the risk measure—or, depending on its application, the preferences of an external sup-
plier such as a regulator—by relying on results from robust statistics and the dual theory of choice,
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respectively. In contrast, in our setting the weights represent an adjustment to objective probabil-
ities based on the value placed by claimants on recoveries in various states of default. Thus, the
pivotal characteristics for our weights lie in the primitives of the firm’s profit maximization prob-
lem (namely, the preferences of counterparties)—which ultimately determine the overall choice of
capitalization as well as the values consumers place on state contingent recoveries—rather than
in a subjectively specified concave preference function for the firm, which will generally fail to
capture limited liability.

In the absence of weights, however, it is worth noting that the concavity of the logarithmic
function will, in the course of the application of the Euler allocation methods, tend to penalize
bad outcomes less heavily than ES. In fact, it is evident from (23) that the Euler method will
effectively weight all aggregate loss outcomes in excess of the firm’s capital equally, regardless of
size, when ψ̃(·) ≡ 1. The reason for this is that ψ̃(·) ≡ 1 implies that the firm’s counterparties
are risk-neutral, and, thus, the value of the firm in all states of default, regardless of how extreme
the default, is simply the firm’s assets. At the margin, the counterparties evaluate changes in risk
simply from the perspective of how the expected value of recoveries from the firm are affected,
and recoveries in mild states of default are weighted no differently from severe ones. This is also
the reason why ρ̃ is not sub-additive or translation-invariant: Adding a constant in high loss states
is less precarious than in low loss states because of limited liability.

Under risk aversion, on the other hand, ψ̃(·) ,= 1, and counterparties may well weight recov-
eries under severe states of default more heavily than mild ones. The answer to the question of
how counterparty-driven allocation effectively differs from the allocation based ES then lies in the
nature of the weights. For instance, if a specification satisfied

∂P̃
∂P = ψ̃(I) = const× I × 1{I≥a}, (24)

Equation (22) implies that the resulting counterparty-driven allocation would be identical to a
gradient allocation based on the ES (for a suitably chosen level—see the next section for details).
Similarly, it is conceivable that other specifications may result in qualitatively different outcomes,
in either direction. The next section sheds more light on these issues by considering a variety of
situations (including one which satisfies (24)).

4 Comparison of Capital Allocation Methods
In this section, we consider the practical implications of allocating capital based on the method
discussed in the previous sections. In particular, we compare the resulting allocations to those
obtained when applying the Euler technique to Expected Shortfall—perhaps the most widely en-
dorsed measure within the academic and practitioner community. We then illustrate in the context
of several examples.

4.1 The Case of Exponential Losses
Assume that there are N identical consumers with wealth level w in a regime with non-binding
regulation that face independent, Exponentially distributed losses Li ∼ Exp(ν), 1 ≤ i ≤ N .
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Assume further that all consumers exhibit a constant absolute risk aversion of α < ν, and that their
participation constraint is given by the autarky level

γ = γi = E [U(w − Li)] = −e−αw
ν

ν − α
.

Then, the optimization problem (6)/(7)/(8) may be written as





maxa,q,p

{
N × p−N × q ×

[
1
νΓN−1,ν

(
a
q

)
− νN−1

(N−1)!e
−ν a

q

(
a
q

)N−1 (
1
ν +

1
N

a
q

)]

−a× Γ̄N,ν

(
a
q

)
− τ × a

}

subject to
γ ≤ e−α(w−p)

{
ν

ν−(1−q)α

[
ΓN−1,ν

(
a
q

)
− e

− a
q (ν−(1−q)α)

νN−1

((1−q)α)N−1 ΓN−1,(1−q)α

(
a
q

)]

+
∑∞

k=0

(
α
ν

)k (N−1)!
(N−1+k)!e

−ν a∑N−1
j=0

(a ν)j

j!
(N−j+k−1)!
(N−j−1)! Γ̄N−j+k,ν

(
a
(

1−q
q

))}
,

(25)
where Γ̄m,b(x) = 1 − Γm,b(x) and Γm,b(·) denotes the cumulative distribution function of the
Gamma distribution with parametersm and b (see the Appendix C for the derivation of (25)).

For the allocation of capital to the individual consumers, we trivially obtain

q φ̃i = N−1, i = 1, 2, . . . , N,

which is the same when applying the Euler technique with any risk measure. More specifically,

q φ̃i
Eq. (14)
=

E
[
1{qL≥a}E

[∑N
j=1U

′
(
w− p− Lj + aLj

L

)
Lj

L
Li
L

∣∣∣L
]]

E
[
1{qL≥a}

∑N
j=1U

′
(
w− p− Lj + aLj

L

)
Lj

L

] =
1

N
E
[
ψ̂(L)

∣∣∣ qL ≥ a
]
,

where L =
∑

j Lj ,

ψ̂(l) = 1{ql≥a} ĉN,ν,α,a,q

∞∑

k=0

(k + 1) (α(l − a))k

(N + k)!
, (26)

and ĉN,ν,α,a,q is a constant ensuring that E
[
ψ̂(L)

∣∣∣ qL ≥ a
]
= 1.

For the risk measure ρ̃, we have

ρ̃(I) = ρ̃(q L) = exp
{
E
[
ψ̃(I) log{I}

∣∣∣ I ≥ a
]}

= exp
{
E
[
ψ̂(L) log{qL}

∣∣∣ qL ≥ a
]}

,

with ψ̂(·) the corresponding weighting function.9 Hence, the risk measure ρ̃ in this case naturally
accounts for risk aversion (α) as well as for diversification effects (N).

For the allocation based on the Expected Shortfall (ES) according to the Euler principle, it is
well known that (see e.g. Dhaene et al. (2009)):10

ai
a

=
qE [Li| q L ≥ a]

E [I| I ≥ a]
=

E [E[Li|L]| q L ≥ a]

E [L| q L ≥ a]
=

1

N
E [const× L| q L ≥ a] ,

9The derivation of these equations, a closed form solution for ĉN,ν,α,a,q as well as a representation of ψ̂(·) not
involving an infinite sum for implementation purposes all are provided in Appendix C.

10Here, we always assume that the confidence level is chosen corresponding to the counterparty-driven allocation,
namely P(q L ≥ a) in this case.
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i.e. the Expected Shortfall can be associated with a linear weighting function of the loss states.
Since ψ̂(·) is increasing and strictly convex for all risk aversion levels α > 0, there always exists a
loss level l0 such that the weighting function for the counterparty-driven allocation will be higher
for all loss levels greater than l0. In this sense, the allocation based on ρ̃ always appears more
conservative in the current setting. However, we also see that for fixed parameters,

ψ̂(l) −→ (P (q L ≥ a))−1 >
a

E [qL| q L ≥ a]
, N → ∞,

which is the left end-point for the Expected Shortfall weighting function. Similarly, for α = 0, we
obtain ψ̂(l) ≡ (P (q L ≥ a))−1, i.e. a flat weighting function. Thus, for large enough companies
or risk-neutral consumers, the weight on relatively low loss levels will always be higher for the
counterparty-driven allocation, rendering it to appear less conservative.

Exponential Losses: Parametrizations

Nr. N ν τ α w a p q

1 5 2.0 0.050 0.25 3.0 1.4663 0.2598 0.5713
2 5 2.0 0.050 1.25 3.0 4.0036 0.7401 0.9494

Table 1: Parametrizations of the Exponential Losses model.

To further analyze this relationship, in Table 1 we present two parametrizations of the setup and
the corresponding optimal parameters a, p, and q as solutions of the program (25). The properties
are as expected: a, p, and q all are increasing in risk aversion. Figure 1 plots the weighting
function ψ̂ against the linear weighting function associated with the Expected Shortfall for varying
risk aversion levels. We find two qualitatively different shapes:11 For the high risk aversion level,
ψ̂ crosses the linear weighting function once from below; thus, in this case, relatively lower loss
states are weighted more heavily for the allocation based on the Expected Shortfall, whereas the
weighting is higher for the counter-party driven allocation in high loss states. For the low risk
aversion level, ψ̂ crosses the linear weighting function twice; in this case, the weighting function
within the new risk measure ρ̃ puts more mass on low and extremely high loss states, while the
weights are smaller for intermediate loss states.

Hence, when relying on the Expected Shortfall for the purpose of internal capital allocation, the
loss-specific weights may be too conservative or not conservative enough, depending on, among
other factors, company size or the risk aversion level. These considerations are naturally taken into
account by the risk measure ρ̃.

11Analyses with respect to other parameters such as company sizeN or the expected loss 1/ν show similar results.
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Figure 1: Weighting function ψ̂ for varying risk aversion parameter α.

4.2 The Case of Homogenous Bernoulli Losses
Again, we consider N identical consumers with wealth level w in a regime with non-binding
regulation whose preferences are given by the (same) smooth utility function U(·). However, in
contrast to the previous section, we now assume that the consumers face Bernoulli distributed
losses Li, 1 ≤ i ≤ N, with loss level l and loss probability π. Their participation constraint once
again is given by the autarky level

γ = γi = E [U(w− Li)] .

In this case, the optimization problem (6)/(7)/(8) takes the form





maxa,q,p
{
N ×

(
p− π ×

∑N−1
k=0

(
N − 1

k

)
πk (1− π)N−1−k ×

[
q l 1{

k< a
ql−1

} + a
k+1 1

{
k≥ a

ql−1
}
])

− τ × a

}

subject to
γ ≤ (1− π)U(w− p) + π ×

∑N−1
k=0

(
N − 1

k

)
πk (1− π)N−1−k ×[

U (w− p− (1− q)l) 1{
k< a

ql−1
} + U

(
w− p− l + a

k+1

)
1{

k≥ a
ql−1

}
]
.

(27)
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For the allocation to the individual consumer, similarly to the previous section, we obtain

q φ̃i =
1

N
E



 1

E
[
1{|Γ|≥ a

q l}U
′
(
w− p− l + a

|Γ|

)]1{|Γ|≥ a
q l} U

′
(
w− p− l +

a

|Γ|

)



︸ ︷︷ ︸
=ψ̄(|Γ|)

=
1

N
,

where |Γ| denotes the number of total losses. And the risk measure now takes the form

ρ̃(I) = ρ̃(q l |Γ|) = exp
{
E
[
ψ̃(I) log{I}

∣∣∣ I ≥ a
]}

= exp

{
E
[
ψ̄(|Γ|) log{q l |Γ|}

∣∣ |Γ ≥ a

q l

]}
,

whereas for the Expected Shortfall based allocation, again similarly to Section 4.1,

ai
a

=
qE [Li|q L ≥ a]

E [I|I ≥ a]
=

1

N
E
[
const |Γ|| |Γ| ≥ a

ql

]
,

so again it can be associated with a linear weighting function.
Hence, in this case, the weighting function for ρ̃ is a composition of the marginal utility and a

reciprocal function. As such, it will always be increasing if consumers are risk averse, and again
we obtain a flat allocation for the risk neutral case. For w ≥ p + l, a sufficient condition for the
concavity of ψ̄ is a level of relative prudence smaller than two (see e.g. Kimball (1990) for the
concept of relative prudence). However, for high levels of relative prudence, a convex shape is
possible. Thus, again, it is not immediately clear how the counterparty-driven allocation compares
to the linear weighting implied by the Expected Shortfall measure.

Homogeneous Bernoulli Losses: Parametrizations

Nr. Type N l π τ α/γ w a p q

1 CARA 100 3.00 0.10 0.05 0.1 5.0 24.8970 0.2727 0.9762
2 CARA 100 3.00 0.10 0.05 1.0 5.0 40.4654 1.0585 0.9969
3 CRRA 10 3.25 0.45 0.05 0.5 5.0 12.9492 1.2893 0.8704
4 CRRA 10 3.25 0.45 0.05 1.0 5.0 16.5461 1.6882 0.9350
5 CRRA 10 3.25 0.45 0.05 2.0 5.0 19.5488 2.1840 0.9693

Table 2: Parametrizations of the Bernoulli model.

Table 2 now displays several parametrizations in this setup for different Constant Absolute
Risk Aversion (CARA) and Constant Relative Risk Aversion (CRRA) utility functions, where the
optimal parameters a, p, and q are determined as solutions of program (27); again, they exhibit the
expected relationships. Figure 2 now shows the weighting function ψ̄ for parametrizations 1 and
2 (CARA utility) as well as the corresponding weighting function for the Expected Shortfall (ES)
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and risk-neutral consumers (α = 0). In contrast to the previous section, ψ̄ is concave in both cases.
We again we obtain two qualitatively different relationships: For the low risk aversion, ψ̄ crosses
the linear weighting function from above, implying a less conservative state-specific allocation; for
the strong risk averter, on the other side, the crossing is from below, ensuing a more conservative
configuration. So yet again, risk aversion appears to play an important role.
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Figure 2: Weighting function ψ̄ for varying absolute risk aversion parameter α; parametrizations 1
and 2 (CARA utility).

For the CRRA case, the contract and firm parameters were chosen so that wealth is close to
premium level plus losses, since for w = p + l, ψ̄ will be concave (convex) if and only if relative
prudence is smaller (greater) than two. In particular, for log-utility, where relative prudence is
constant and equals two, the weighting will be linear and, therefore, identical to the Expected
Shortfall weights. This can also be seen from Figure 3, where the weighting functions for different
relative risk aversion levels γ are plotted: For log-utility and w ≈ p + l, the ES weighting and ψ̄
are roughly identical. In contrast, for the lower constant relative risk aversion—and consequently
a lower level of relative prudence—the crossing is from above and the shape is concave (panel
(b)). For the higher level of constant relative risk aversion and whence more prudent consumers,
the crossing is from above and the shaper of ψ̄ is convex (panel (c)).12

12The observation that for γ = 1 we obtain the Expected Shortfall is a curious analogy to the so-called power
spectral risk measures from Dowd et al. (2008), who show that these measures degenerate into the Expected Loss for
γ = 1, and that there is a qualitative difference between the case γ < 1 and γ > 1.
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Figure 3: Weighting function ψ̄ for varying relative risk aversion parameter γ; parametrizations 3,
4, and 5 (CRRA utility).
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Thus, we find that for the shape of the weighting function ψ̄ and accordingly for the comparison
of the resulting statewise allocation with that implied by the Expected Shortfall, other characteris-
tics of the consumers’ utility functions (in addition to risk aversion) are relevant. In particular, we
can give a positive answer to the existence question raised towards the end of Section 3: Indeed,
there exist special cases where the weighting is linear so that the counterparty-driven allocation
and the Expected Shortfall based allocation are identical, although in general—of course—they
will differ.

4.3 The Case of Heterogenous Bernoulli Losses
Similarly to the last section, we consider consumers that face Bernoulli distributed losses. How-
ever, in contrast to the previous setup, we now allow for heterogeneity in consumer preferences as
well as in the losses. More specifically, we assume that there are m groups of consumers, where
group i contains Ni identical consumers with wealth level wi and utility function Ui(·) that face
independent losses li occurring with a probability πi, i = 1, . . . , m. The participation constraint
again is given by their autarky levels:

γi = E [Ui(wi − Li)] = πi Ui(wi − li) + (1− πi)Ui(wi).

The optimization problem (6)/(7)/(8) can then be easily set up by noticing that the number of losses
in the different groups follow independent Binomial(Ni, πi) distributions.

For the counterparty-based allocation, we obtain for each group i

qi φ̃i = c̃
N1∑

k1

. . .
Ni∑

ki

. . .
Nm∑

km

(
N1

k1

)
. . .

(
Ni

ki

)
. . .

(
Nm

km

)

×πk1
1 . . . πki

i . . . πkm
m (1− π1)

N1−k1 . . . (1− πi)
Ni−ki . . . (1− πm)Nm−km

×



1{k1q1l1+...+kmqmlm≥a}






m∑

j=1

kj U ′
(
wj − pj − lj + qj lj

a
k1q1l1+...+kmqmlm

)
lj

v′j (k1q1l1 + . . . + kmqmlm)










︸ ︷︷ ︸
=const×∂P̃

∂P

× ki qi li
k1q1l1 + . . . + kmqmlm

, (28)

where c̃ is a constant such that
∑

i qi φ̃i = 1. Thus, while the analytical form of the weights
ψ̃(I) = E

[
∂P̃
∂P

∣∣∣ I
]
is less transparent in this case, again we notice that they immediately depend

on the marginal utilities of recoveries in various states of default. For the allocation based on the
Expected Shortfall, on the other hand, we obtain

ai
a

= const
N1∑

k1

. . .
Ni∑

ki

. . .
Nm∑

km

(
N1

k1

)
. . .

(
Ni

ki

)
. . .

(
Nm

km

)

×πk1
1 . . . πki

i . . . πkm
m (1− π1)

N1−k1 . . . (1− πi)
Ni−ki . . . (1− πm)Nm−km

1{k1q1l1+...+kmqmlm≥a}(ki qi li), (29)

i.e. it is of a similar form as (28) but now 1) does not contain the adjustment based on the marginal
utilities ∂P̃∂P , and 2) the state-specific loss for consumer i, (ki qi li), is not scaled by the aggregate
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loss—which, in the counterparty-driven allocation, is a consequence of the proportional partition-
ing of the recoveries in states of default.

To assess the consequences of these adjustments, we consider the case of identical group sizes
Ni = N , identical CARA preferences and wealth levels throughout the population, identical loss
probabilities πi = π, but differing loss levels. More specifically, in Table 3, we present model
parametrizations for a setup with m = 3 groups, whose members face loss levels l1 = 1, l2 = 2,
and l3 = 3, respectively. For the first five parametrizations, the only difference in the assumed
parameters is the group size but remarkably the influence on premiums {pi} and the choice pa-
rameters {qi} is marginal, and may be completely attributable to numerical inaccuracies. Since the
participation constraint binds, it appears that the solution features an adjustment of the asset level
such that the utility level is the same in all cases. In particular, since the resulting asset level is
concave in the group size due to obvious diversification effects, this implies that the companies’
monopoly rents increase disproportionately in relation to the firm size.

Heterogenous Bernoulli Losses: Parametrizations

Nr. α N π τ w a p1 p2 p3 q1 q2 q3

1 1.00 2 0.1 0.01 5 5.37 0.16 0.49 1.06 0.99 0.99 1.00
2 1.00 5 0.1 0.01 5 8.84 0.16 0.49 1.06 0.99 1.00 1.00
3 1.00 10 0.1 0.01 5 13.63 0.16 0.49 1.06 0.99 1.00 1.00
4 1.00 15 0.1 0.01 5 17.86 0.16 0.49 1.06 0.99 1.00 1.00
5 1.00 25 0.1 0.01 5 25.76 0.16 0.49 1.06 0.99 1.00 1.00
6 1.25 10 0.1 0.01 5 14.07 0.18 0.60 1.31 0.99 1.00 1.00

Table 3: Parametrizations of the heterogeneous Bernoulli model with CARA preferences and loss
levels (l1, l2, l3) = (1, 2, 3).

Figure 4 shows the counterparty-based allocation of capital to the three groups for parametriza-
tions 1 through 5 as well as the corresponding allocations based on the Expected Shortfall (ES). At
first glance, the two graphs look roughly identical. More specifically, for small group sizes, both
of them entail a disproportionate allocation of capital to the high loss group (l = 3), whereas for an
increasing group size, the allocations become more and more linear. This clearly is a consequence
of diversification: For small group sizes, and individual loss in the high loss group is closely linked
to a company default, whereas for extremely large group sizes, individual losses in either group
become essentially independent of company default. Taking into account that positive contribu-
tions for either allocation (28) or (29) are only accrued in states where 1) the individual in view
incurs a loss and 2) the company defaults, the similarity of the graphs becomes understandable.
In particular, this effect appears to dominate other influences stemming from, for instance, risk
aversion.

To demonstrate that such effects are present nonetheless when adjusting the focus, Figure 5
illustrates the allocation of capital to the low (l = 1) and high (l = 3) loss group for parametrization
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Figure 4: Allocation for varying company sizes N ; parametrizations 1-5.

6 and varying levels of absolute risk aversion. Obviously, the allocation based on the expected
shortfall (ES) is independent of consumer preferences. For the counterparty-driven allocation, on
the other hand, we find a decreasing and slightly concave dependence for the low loss group (panel
(a)), and an increasing and slightly convex relationship for the high loss group (panel (b)). In
particular, there exist risk aversion levels for which either of the allocations yield higher/lower
charges for the high/low loss group, although in this case moderate levels of risk aversion cause
the counterparty-driven allocation to penalize the high loss group more heavily.
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Figure 5: Allocation for varying absolute risk aversion parameter α; parametrization 6.

5 Conclusion
The early literature on capital allocation recognized that risk measure selection was a thorny issue
that could be resolved only through careful consideration of institutional context. The subsequent
literature on capital allocation celebrated, refined, and justified (in mathematical terms) the tech-
nique of Euler allocation technique while ignoring the institutional context, with the consequence
that the demon of arbitrary risk measure selection has never been exorcised. The demon, how-
ever, cannot and should not be ignored: Risk measure selection has a profound influence on an
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organization’s perception of the cost of risk.
Instead of starting with a risk measure, this paper starts with primitives and calculates the

marginal cost of risk from the perspective of a profit-maximizing firm with risk averse counterpar-
ties. But, recognizing ease of implementation is paramount to various users of capital allocation
methods—who will not generally have access to the blackboard parameters of a profit maximiza-
tion problem—we take the additional step of identifying the risk measure whose gradient yields
allocations consistent with marginal cost. To get economically correct allocations, one of course
needs considerable information to choose the appropriate weighting function, yet the problem of
weighting functions is generally true of spectral risk measures as well—so, from the standpoint of
practice, this measure starts from an economically correct foundation for the context of a profit-
maximizing firm and offers no greater level of complication than is already present.

Surprisingly, this risk measure is neither coherent nor convex; nevertheless, it is the only one
that yields the appropriate allocation of capital for the profit-maximizing firm. We have shown
that ES-based allocation could either be underweighting or overweighting severe states of default,
depending on the nature of customer risk aversion, and this raises the interesting possibility that a
transition away from a system of regulation based on risk measure-based solvency assessment to
one based on market (counterparty) discipline will not necessarily mitigate the oft-lamented failure
of financial institutions to penalize “tail” risk.

The reason for the difference in allocations derives from a fundamental difference in the source
of marginal cost in an economic model based on counterparty risk aversion and one based on the
imposition of ES or spectral ES. In the economic model, marginal cost derives from the impact
of the expansion of a particular risk exposure on the recoveries of the counterparties to the firm,
which is determined by the assets of the firm and the value that counterparties place on those assets
in various states of default—while other risk measures such as ES tend to focus on loss outcomes
themselves rather than actual recoveries. In general, we have shown that the marginal cost of risk
to the firm depends on the risk preferences of its counterparties, even in cases where it faces a
binding regulatory constraint—so much that the influence of the regulatory constraint on capital
allocation could be dominated by the influence of counterparty risk preferences.

The calculations in this paper are done from the perspective of a profit-maximizing firm, but
one could also contemplate the calculus of a regulator or social planner. In some cases, the cal-
culus will be similar. For example, a regulator without responsibility for unpaid losses (i.e., if no
deposit insurance scheme exists) but in a context where counterparties are uninformed will view
risk in manner similar to the profit-maximizing firm. However, a regulator responsible for un-
paid losses would have to consider the extent of that responsibility in selecting a risk measure, as
well as other issues—such as bankruptcy costs not internalized by private firms and the produc-
tion cost technology associated with deposit insurance—that would determine the optimal level of
capitalization for financial institutions as well as the social cost of risk. These issues are of course
complex and well beyond the scope of this paper, but they are intriguing areas for future research.
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Appendix

A On the Differentiability of the Objective Function
To keep the presentation concise, we limit our attention to the objective function only and solely
consider the case ofN = 2 consumers under a quota share agreement; similar considerations apply
for the constraints and the case of N > 2 consumers. Denote the corresponding losses by L1 and
L2 with corresponding (joint) probability density function f(x, y). Then the objective function (6)
can be written as

∑

i

pi −
∑

i

E
[
min

{
qi Li,

a

q1 L1 + q2 L2
qi Li

}]
− τ a

=
∑

i

pi −
∑

i

∫ ∞

0

∫ ∞

0

min

{
qi xi,

a

q1 x1 + q2 x2
qi xi

}
f(x1, x2) dx1 dx2 − τa.

Obviously, this function is (continuously) differentiable with respect to p i. For the differentiability
with respect to a and qi, problems may only arise for the summands of the second term. Without
loss of generality, we focus on the first summand. Here,

∫ ∞

0

∫ ∞

0

min

{
q1 x1,

a

q1 x1 + q2 x2
q1 x1

}
f(x1, x2) dx1 dx2

=

∫ ∞

0

∫ a−q2 x2
q1

0

q1 x1 f(x1, x2) dx1 dx2 +

∫ ∞

0

∫ ∞

a−q2 x2
q1

a

q1 x1 + q2 x2
q1 x1 f(x1, x2) dx1 dx2.

By the Leibniz rule, after some simple calculus the derivatives with respect to a, q1, and q2 are thus
given by

∂

∂a
=

∫ ∞

0

∫ a−q2 x2
q1

0

q1 x1

q1 x2 + q2 x2
f(x1, x2) dx1 dx2

∂

∂q1
=

∫ ∞

0

∫ a−q2 x2
q1

0

a q2 x1 x2

(q1 x2 + q2 x2)2
f(x1, x2) dx1 dx2, and

∂

∂q2
= −

∫ ∞

0

∫ a−q2 x2
q1

0

a q1 x1 x2

(q1 x2 + q2 x2)2
f(x1, x2) dx1 dx2,

respectively, which are obviously continuous for a, q1, q2 > 0.

B Implementation of the Solution to (6)/(7)/(8) via a Premium
Schedule

In the text we consider the solution of maximizing (6) subject to (7) and (8). We claim further
that—if the consumer acts as a “price taker” with respect to the recovery rates offered by the
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company within the various states of default—that the company can implement the optimum by
offering a smooth and monotonically increasing premium schedule that allows each consumer
to freely choose the level of coverage desired for the premium indicated by the schedule. It is
subsequently shown that the marginal price increase associated with coverage must satisfy (13)
when evaluated at the optimum. It remains to be shown that this premium schedule exists and can
be used to implement the optimum.

A complication arises in modeling the consumer as a price-taker with free choice of coverage
level. To introduce the consumer’s ignorance of his own influence on recoveries, we define price
schedule described above as p∗i (·) and modify the original utility function to

ṽi (wi − p∗i (qi), qi; ã, q̃1, . . . , q̃N) = E
[
Ui

(
wi − p∗i (qi)− Li + R̃i

)]
, (30)

where

R̃i = R̃i (qi; ã, q̃1, . . . , q̃N ) = min

{
Ii(Li, qi),

ã
∑N

j=1 Ij (Lj , q̃j)
Ii(Li, qi)

}
.

The idea here is to fix recovery rates by fixing the quantities ã and {q̃i}, leaving the consumer with
the free choice of qi—but with the caveat that this choice does not influence recovery rates.

The firm’s objective function is identical to the previous one, except that 1) the firm now spec-
ifies a price function rather than a single price point, and 2) the firm fixes the recovery rates for
purposes of consumer incentive compatibility by choosing ã and {q̃i} instead of the “true” levels
of a and {qi}:

max
ã,{p∗i (·)},{q̃i}

{∑
p∗i (q̃i)−

∑
ei − τ ã

}
(31)

The firm still faces the previous constraints (7) and (8),

vi (ã,wi − p∗i (q̃i), q̃1, . . . , q̃N) ≥ γi,

s (q̃1, . . . , q̃N) ≤ a,

and in addition the new constraint:

q̃i ∈ argmax
qi

ṽi(wi − p∗i (qi), qi ; ã, q̃1, ..., q̃N), ∀i. (32)

Equation (32) is an incentive compatibility constraint requiring the choice of coverage level to be
consistent with the consumer optimizing, given her perception of own utility (which ignores her
own impact on recovery rates) and the selected pricing function.

It is evident that the firm’s profits under this maximization can be no better than those achieved
under the original program (maximizing (6) subject to (7) and (8)), since we have simply added
another constraint and choosing the premium schedule at different points than q̃i is immaterial to
the company’s profits. It is therefore clear that, given optimal choices â, {q̂i}, and {p̂i} to the
original program, the firm would maximize profits under the new setup if it could choose those
same asset and coverage levels and find a pricing function p∗i (·) that both satisfies p∗i (q̂i) = p̂i and
induces consumers to choose the original solution:

q̂i ∈ argmax
qi

ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N), ∀i.

The following lemma shows that this function exists.
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Lemma B.1. Suppose â, {q̂i}, and {p̂i} are the optimal choices maximizing (6) subject to (7)
and (8). Then, for each i, there exists a smooth, monotonically increasing function p∗

i (·) satisfying:

1. p∗i (q̂i) = p̂i.

2. q̂i ∈ argmaxqi ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N).

Proof. Start by noting that it is evident that the constraints (7) all bind. Note further that the
function of x

g(x) = ṽi(wi − x, 0 ; â, q̂1, ..., q̂N)

is monotonically decreasing and, hence, invertible, so that we may uniquely define:

p∗i (0) = g−1(γi), (33)

which obviously satisfies
ṽi(wi − p∗i (0), 0 ; â, q̂1, ..., q̂N) = γi.

Furthermore, let p∗i (·) be a solution to the differential equation (initial value problem)13

∂p∗i (x)

∂x
=

∂
∂qi

ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N)
∂
∂w ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N)

, p∗i (0) = g−1(γi), (34)

on the compact choice set for qi. Due to Peano’s Theorem, we are guaranteed existence of such
a function and that it is smooth. Morevoer, since ∂ṽi

∂w ,
∂ṽi
∂qi

> 0, we know that the function is
monotonically increasing.

Moving on, by construction we know that:

ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N )

= γi +

∫ qi

0

[
∂

∂qi
ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N )− ∂

∂w
ṽi(wi − p∗i (x), x ; â, q̂1, ..., q̂N )× ∂p∗i (x)

∂x

]
dx

= γi + 0, qi > 0. (35)

In particular,
ṽi(wi − p∗i (q̂i), q̂i ; â, q̂1, ..., q̂N ) = γi,

which, since it is evident that the constraints (7) all bind in the original optimization, can be true if
and only if

p∗i (q̂i) = p̂i,

proving the first part of the lemma. Moreover, (35) directly implies that

q̂i ∈ argmax
qi

ṽi(wi − p∗i (qi), qi ; â, q̂1, ..., q̂N).

proving the second part.
13Here, ∂ṽi

∂w and
∂ṽi
∂qi

denote the derivatives with respect to the first and the second argument of ṽ i, respectively.
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C Identities in Section 4.1

Derivation of Equation (25)
For consumer N , LN ∼ Exp(ν) and the loss incurred by “the other” consumers is L−N =∑N−1

i=1 Li ∼ Gamma(N − 1, ν). Then

e = eN = E
[
q LN 1{q(L−N+LN )<a}

]
︸ ︷︷ ︸

part i.

+ aE
[

q LN

q (L−N + LN )
1{q(L−N+LN )≥a}

]

︸ ︷︷ ︸
part ii.

.

For part ii., note that LN
L−N+LN

is Beta(1, N−1) distributed independent ofL−N+LN ∼ Gamma(N, ν).
Hence, part ii. can be written as

aP
(
L−N + LN ≥ a

q

)
E
[

LN

L−N + LN

]
= a Γ̄N,ν

(
a

q

)
N−1.

For part i., we have

q E
[
LN 1{q(L−N+LN )<a}

]

= q

∫ ∞

0

∫ ∞

0
1{i+l<a/q} l ν e−ν l

νN−1

(N − 2)!
iN−2 e−ν i dl di

= q
νN

(N − 2)!

∫ a/q

0

∫ a/q−i

0
le−ν l dl iN−2 e−ν i di

= q
νN

(N − 2)!

∫ a/q

0

[
1

ν2
− 1

ν

(
a

q
+

1

ν

)
e−ν a/q eν i + i

1

ν
e−ν a/q eν i

]
iN−2 e−ν i di

= q
νN−2

(N − 2)!

∫ a/q

0
iN−2 e−ν i di− q

νN−1

(N − 2)!
e−ν a/q

[(
a

q
+

1

ν

)∫ a/q

0
iN−2 di−

∫ a/q

0
iN−1 di

]

=
q

ν
ΓN−1,ν(a/q)− q

νN−1

(N − 1)!
e−ν a/q

(
a

q

)N−1 [1
ν
+

1

N

a

q

]
.

Therefore, since all consumers are identical, the objective function (6) takes the form displayed in
(25). For condition (7), on the other hand, we have

V = VN = E [U (w− p− LN +RN )]

= E
[
U (w− p− (1− q)LN ) 1{q(L−N+LN )<a}

]
︸ ︷︷ ︸

part i.

+E
[
U

(
w− p− LN + a

LN

L−N + LN

)
1{q(L−N+LN )≥a}

]

︸ ︷︷ ︸
part ii.
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For part i, we obtain

E
[
U (w − p− (1− q)LN ) 1{q(L−N+LN )<a}

]

= −
∫ ∞

0

∫ ∞

0
1{i+l<a/q}e

−α(w−p−(1−q)l) ν e−ν l
νN−1

(N − 2)!
iN−2 e−ν i dl di

= −e−α(w−p)
∫ a/q

0

1

ν − α(1 − q)

[
1− e−a/q(ν−(1−q)α)−i(1−q)ν+iν

] νN−1

(N − 2)!
iN−2 e−ν i di

= e−α(w−p)

[
1

ν − α(1− q)
ΓN−1,ν(a/q)−

e−
a
q (ν−(1−q)α)νN−1

((1− q)α)N−1
ΓN−1,(1−q)α

(
a

q

)]
.

For part ii., note that

E
[
U

(
w− p− ((L−N + LN )− a)

LN

L−N + LN

)
1{q(L−N+LN )≥a}

]

=

∫ 1

0

∫ ∞

0
e−α(w−p−(l−a)y)1{l≥a/q}

νN

(N − 1)!
lN−1 e−ν l (N − 1) (1 − y)N−2 dl dy

= −e−α(w−p)
∫ ∞

a/q

νN

(N − 1)!
e−ν l lN−1

∫ 1

0
e(α(l−a))y(N − 1) (1 − y)N−2 dy

︸ ︷︷ ︸
mgfBeta(1,N−1)(α(l−a))

dl

= −e−α(w−p)
∫ ∞

a/q

νN

(N − 1)!
e−ν l lN−1

∞∑

k=0

(α(l − a))k

(N − 1 + k)!
dl

= −e−α(w−p)
∞∑

k=0

N−1∑

j=0

(
N − 1

j

)
aj e−ν a

αk

(N − 1 + k)!

(N + k − j − 1)!

ν−j+k

×
∫ ∞

a/q

νN+k−j

(N + k − j − 1)!
e−ν (l−a) (l − a)N+k−j−1 dl

= −e−α(w−p)
∞∑

k=0

N−1∑

j=0

(N − 1)!

(N − 1 + k)!

(aν)j

j!
e−ν a

(α

ν

)k (N + k − j − 1)!

(N − 1− j)!
Γ̄N−j+k,ν

(
a

(
1− q

q

))
.

Derivation of Equation (26)
Similar to the previous part, for consumer N with L =

∑N
i=1 Li:

E
[

N∑

j=1

U ′
(
w− p− Lj + a

Lj

L

)
Lj

L

LN

L

∣∣∣∣∣L

]

=
N−1∑

j=1

E
[
U ′
(
w− p− (L− a)

Lj

L

)
Lj

L

LN

L

∣∣∣∣L
]

︸ ︷︷ ︸
part i.

+E
[
U ′
(
w− p− (L− a)

LN

L

)(
LN

L

)2
∣∣∣∣∣L
]

︸ ︷︷ ︸
part ii.

.

Note that Lj

L , LN
L ∼ Beta(1, N − 1) and for the joint distribution

fLj
L ,

LN
L

(x, y) = (1− x− y)N−3 (N − 2) (N − 1) 1{x,y≥0,x+y≤1}, j ,= N.
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Whence, for part i.,

E
[
U ′
(
w− p− (L− a)

LN−1

L

)
LN−1

L

LN

L

∣∣∣∣L
]

= α e−α(w−p)

∫ 1

0

∫ 1−x

0

eα(L−a)x x y (N − 1) (N − 2) (1− x− y)N−3 dy dx

= α e−α(w−p)

∫ 1

0

eα(L−a)xx

∫ 1−x

0

y (N − 1) (N − 2) (1− x− y)N−3 dy
︸ ︷︷ ︸

=(1−x)N−1

dx

= α e−α(w−p) β(2, N)

∫ 1

0

eα(L−a)x 1

β(2, N)
x (1− x)N−1 dx

︸ ︷︷ ︸
=mgfBeta(2,N)(α(L−a))

= α e−α(w−p) 1

N(N + 1)
(N + 1)!

∞∑

k=0

(k + 1) (α(L− a))k

(N + k + 1)!
,

whereas for part ii.,

E
[

U ′
(
w− p− (L− a)

LN

L

)(
LN

L

)2
∣∣∣∣∣L

]

= αe−α(w−p) E
[

exp

{
α(L− a)

LN

L

}(
LN

L

)2
∣∣∣∣∣L

]

︸ ︷︷ ︸
= ∂2

∂t2
mgfBeta(1,N−1)(t)

∣∣∣
t=α(L−a)

= α e−α(w−p)(N − 1)!
∞∑

k=0

(k + 1) (k + 2) (α(L− a))k

(N + k + 1)!
,

so that

E
[

N∑

j=1

u′
(
w − p− Lj + a

Lj

L

)
Lj

L

LN

L

∣∣∣∣∣L
]

= α e−α(w−p)(N − 1)!
∞∑

k=0

(N − 1) (k + 1) (α(L− a))k + (k + 1) (k + 2) (α(L− a))k

(N + k + 1)!

= α e−α(w−p)(N − 1)!
∞∑

k=0

(k + 1) (N + 1 + k) (α(L− a))k

(N + k + 1)!

= α e−α(w−p)(N − 1)!
∞∑

k=0

(k + 1) (α(L− a))k

(N + k)!
.
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For the denominator,

E



1{q L≥a}

N∑

j=1

U ′
(
w− p− Lj − a

Lj

L

)
Lj

L





= E
[

1{q L≥a} N α e−α(w−p) (N − 1)!
∞∑

k=0

(k + 1) (α(L− a))k

(N + k)!

]

= N !α e−α(w−p)
∞∑

k=0

k + 1

(N + k)!
αk
∫ ∞

a/q

νN

(N − 1)!
(l − a)k lN−1 e−ν l dl

= N !α e−α(w−p)
∞∑

k=0

(α

ν

)k k + 1

(N + k)!
e−ν a

N−1∑

j=0

(
N − 1

j

)
(aν)j

(N + k − j − 1)!

(N − 1)!

×
∫ ∞

a/q

νN+k−j

(N + k − j − 1)!
e−ν(l−a) (l − a)N+k−j−1 dl

= N !α e−α(w−p)
∞∑

k=0

(α

ν

)k k + 1

(N + k)!
e−ν a

N−1∑

j=0

(aν)j

j!

(N + k − j − 1)!

(N − j − 1)!
Γ̄N+k−j,ν

(
a

(
1− q

q

))
.

Hence,

q φ̃i =
1

N
E




1{q L≥a}

∑∞
k=0

(k+1) (α(L−a))k

(N+k)!
∑∞

k=0

(
α
ν

)k k+1
(N+k)! e

−ν a∑N−1
j=0

(aν)j

j!
(N+k−j−1)!
(N−j−1)! Γ̄N+k−j,ν

(
a
(
1−q
q

))

︸ ︷︷ ︸
=ψ̂(L)




.

For implementation purposes, the numerator can be expressed as
∞∑

k=0

(k + 1) tk

(N + k)!

∣∣∣∣∣
t=α(L−a)

=
∂

∂t

[ ∞∑

k=0

tk+1

(N + k)!

]∣∣∣∣∣
t=α(L−a)

=
∂

∂t

[
t−(N−1)

∞∑

k=N

tk

k!

]∣∣∣∣∣
t=α(L−a)

=
∂

∂t

[

t−(N−1)

(

et −
N−1∑

k=0

tk

k!

)]∣∣∣∣∣
t=α(L−a)

= −(N − 1)t−N

(
et −

N−1∑

k=0

tk

k!

)
+ t−(N−1)

(
et −

N−1∑

k=0

k tk−1

k!

)∣∣∣∣∣
t=α(L−a)

=

(
et −

N−2∑

k=0

tk

k!

)
×
(
t−N+1 − t−N (N − 1)

)
+

(N − 1)

(N − 1)!
t−1

∣∣∣∣∣
t=α(L−a)

.
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Finally,

ψ̃(I) = ψ̃(qL) = E
[
∂P̃
P

∣∣∣∣∣L

]

= const E
[

N∑

j=1

α exp

{
−α
(
w− p− Lj + a

Lj

L

)}
Lj

L

∣∣∣∣∣L
]

= const N E
[
eα(L−a)Lj/L

Lj

L

∣∣∣∣L
]

= const
∂

∂x
mgfBeta(1,N−1)(x)

∣∣∣∣
x=α(L−a)

= ψ̂(L),

since E
[
ψ̃(I)

]
= 1.

D Allocation in a Security Market Equilibrium
To keep the setup as simple as possible, we limit our considerations to a one-period market with
a finite number of securities (M), each security with potentially distinct payoffs in X states and
assume that the risk-free rate is zero. More specifically, let Ω(S) = {ω(S)

1 , . . . ,ω(S)
X } be the set of

these states with associated sigma-algebra F (S) given by its power set and let p(S)j = P
(
{ω(S)

j }
)

denote the associated physical probabilities. Let thenD be theM ×X matrix withDij describing
the payoff of the ith security in state ω(S)

j , where we assume

span(D) = RX .

This condition allows us to define state prices, consistent with the absence of arbitrage within the
securities market, denoted by πj , j = 1, . . . , X. Thus, any arbitrary menu of securities-market-
sub-state-contingent consumption can be purchased at time zero. However, it would be misleading
to characterize markets as complete, since Ω(S) does not provide a complete description of the
“states of the world”. Instead, we characterize the full probability space as

(
Ω̄, F̄ ,P

)
, with

Ω̄ = Ω(S) × Ω =
{
ω̄ = (ω(S),ω)

∣∣ω(S) ∈ Ω(S), ω ∈ Ω
}
,

F̄ = F (S) ∨ F , and
P
(
Ā
)

=
∑

j∈ΥA

p(S)j × P
(
Aj

∣∣∣{ω(S)
j }
)

for Ā =
⋃

j∈ΥA
{ω(S)

j }×Aj ∈ F̄ with Aj ∈ F , j = 1, 2, . . . , |ΥA|.
Our problem now, however, is that the market is no longer complete so that we need a notion

of what insurance liabilities are “worth” when they cannot be hedged completely. We make the
assumption that the insurance market is “small” relative to the securities market and, for purposes
of valuing insurance liabilities, define the probability measure

Q
(
Ā
)
=
∑

j∈ΥA

πj × P
(
Aj

∣∣∣{ω(S)
j }
)
, Ā ⊆ Ω̄,
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i.e. it given by the Radon-Nikodym derivative ∂Q∂P ((ω
(S)
j ,ω)) = πj

p(S)
j

.
Consumer utility now depends on the individual’s chosen security market allocation and may

be expressed as

vi = EP [Ui (Wi − pi − Li +Ri)] with v′i = EP [U ′
i (Wi − pi − Li +Ri)] ,

whereWi is F (S)-measurable with wij = Wi(ω
(S)
j ) and

∑
j πj wij = wi whereas Li—as before—

is F -measurable. The recovery Ri, on the other hand, now depends both on insurance loss activity
as well as portfolio decisions made within the insurance company. To elaborate on this, the budget
constraint of the insurance company may be expressed as

a =
∑

j

πj Kj a ⇒ 1 =
∑

j

πj Kj ,

whereKj a reflects consumption purchased in the securities market stateω (S)
j or—more precisely—

in the states of the world Ω̄j =
{
ω̄ = (ω(S),ω)

∣∣ω(S) = ω(S)
j

}
. We write K to denote the corre-

sponding F (S)-measurable random variable. Consumer i’s recovery can then be expressed as

Ri = min

{
Ii,

K a

I
Ii

}

and the fair valuation of claims is thus

ei = EQ [Ri] = EQ [Ri 1{I<K a}
]

︸ ︷︷ ︸
=eZi

+EQ [Ri 1{I≥K a}
]

︸ ︷︷ ︸
=eDi

.

Hence, the firm’s problem becomes

max
a,{qi},{pi},{Kj},{wij}

∑
pi −

∑
ei − τ a,

subject to

vi ≥ γi,

s(q1, . . . , qN) ≤ a,∑

j

πj Kj = 1,

∑

j

πj wij = wi.

In addition to a new set of optimality conditions connected with {Kj} and {wij}, we have the
same set of first order conditions (as before, we sacrifice technical rigor by assuming a solution in
a smooth part of the function):

[qi] −
∑

k

∂ek
∂qi

+
∑

k

λk
∂vk
∂qi

− ∂s

∂qi
ξ = 0,

[a] −
∑

k

∂ek
∂a

− τ +
∑

k

λk
∂vk
∂a

+ ξ = 0,

[pi] 1− λi
∂vi
∂w

= 0.



THE MARGINAL COST OF RISK, RISK MEASURES, AND CAPITAL ALLOCATION 33

The first order condition for {wij} is:

[wij ] λi
∂vi
∂wij

− ηi πj = 0 (36)

⇔ λi p
(S)
j EP

[
U ′
i(Wi − pi − Li +Ri)|ω(S)

j

]
− ηi πj = 0,

where {ηi} are the Lagrange multipliers for the individual wealth constraints. Since

0 =
∑

j

(
λi p

(S)
j EP

[
U ′
i(Wi − pi − Li +Ri)|ω(S)

j

]
− ηi πj

)

= λi
∂vi
∂w

− ηi,

with [pi] we obtain ηi ≡ 1.
As before, we seek a pricing function satisfying:

[
∂vi
∂qi

+ EP
[
1{I≥K a} U

′
i

K a

I2
Ii
∂Ii
∂qi

]]
− ∂vi
∂w

∂p∗i
∂qi

= 0.

Proceeding analogously to Section 2, we arrive at the marginal pricing condition associated with a
decentralized implementation:

∂p∗i
∂qi

=
∑

k

∂ek
∂qi

+
∂s

∂qi
ξ −
∑

k $=i

∂vk
∂qi

v′k
+

EP
[
1{I≥K a} U ′

i
K a
I2 Ii

∂Ii
∂qi

]

v′i
.

Simplifying, we obtain

∂p∗i
∂qi

=
∂eZi
∂qi

+
∂s

∂qi

[
∑

k

∂ek
∂a

+ τ −
∑

k

∂vk
∂a

v′k

]
+ EP

[
1{I≥K a}

∑

k

U ′
k

v′k

K a

I2
Ik

∂Ii
∂qi

]

=
∂eZi
∂qi

+
∂s

∂qi

[

EQ [K 1{I≥K a}
]
+ τ −

∑

k

∂vk
∂a

v′k

]

+
EP
[
1{I≥K a}

∑
k

U ′
k

v′k

K
I2 Ik

∂Ii
∂qi

]

∑
k

∂vk
∂a
v′k

×
∑

k

∂vk
∂a

v′k
× a

=
∂eZi
∂qi

+
∂s

∂qi

[
EQ [K 1{I≥K a}

]
+ τ −

∑

k

∂vk
∂a

v′k

]
+ φ̃i × a×

[
∑

k

∂vk
∂a

v′k

]
,

where

φ̃i =
EP
[
1{I≥K a}

∑
k

U ′
k

v′k

K
I2 Ik

∂Ii
∂qi

]

EP
[
1{I≥K a}

∑
k

U ′
k

v′k

Ik
I

] .

Hence, we essentially obtain the same result as before—with the only differences worth noting
being that 1) the marginal cost of capital, EQ [K 1{I≥K a}

]
+ τ, as well as the component of

marginal cost deriving from claimant recoveries in solvent company states, ∂e
Z
i

∂qi
, now reflect state

prices derived from the security markets, and 2) the “weights” used in the internal capital allocation
formula now include a factor K, reflecting the fact that available company resources may vary
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across default states due to company asset allocation. Importantly, note that the capital allocation
weights are still determined by customer marginal utility, rather than state prices—although the
latter will be connected to the former due to customer asset allocation choices.

For instance, in the limiting case of a complete market, Li and Ri are F (S)-measurable so that
we can write lij = Li(ω

(S)
j ) and rij = Ri(ω

(S)
j ), lij, rij ∈ R, and (36) becomes

λi p
(S)
j U ′

i(wij − pi − lij + rij) = πj .

Thus, with [pi]:

φ̃i =
EQ
[
1{I≥K a}

∑
k

K
I2 Ik

∂Ii
∂qi

]

EQ
[
1{I≥K a}

]

= EQ

[
K

∂Ii
∂qi

I

∣∣∣∣∣ I ≥ K a

]
,

i.e. qi × φ̃i ×Q (I ≥ K a)× a is the fair price of the recovery.
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